三角函数模型的简单应用试题(含答案)6
三角函数经典题目(带答案)

三角函数经典题目练习1.已知α1231、已知角2、P (x ,5则sin 1、已知2、函数(f3、已知 象限1. 已知π22.设0≤α是 .sin αtan x 若<0___.53sin +-=m m θ,524cos +-=m m θ(πθπ<<2),则=θ________.1tan tan αα,是关于x 的方程2230x kx k -+-=的个实根,且παπ273<<,则ααsin cos +的值 .0)13(22=++-m x x 的两根为()πθθθ2,0,cos ,sin ∈,求(1)m =_______(2)θθθθtan 1cos cot 1sin -+-=________.α )415tan(325cos ππ-+= . θθθθcos sin cos sin -+=2,则sin(θ-5π)·sin ⎪⎭⎫⎝⎛-θπ23= α终边上P (-4,3),)29sin()211cos()sin()2cos(απαπαπαπ+---+= .已知锐角α终边上一点P 的坐标是(2sin2,-2cos2),α= . sin163°·sin223°+sin253°·sin313°= . =-+θθtan 1tan 1_________tan 20tan 4020tan 40︒+︒︒⋅︒= α∈(0,2π),若sin α=53,则2cos(α+4π)= . 336cos =⎪⎭⎫ ⎝⎛-απ,则⎪⎭⎫ ⎝⎛+απ65cos =______,)65απ--=_____..【知二求多】1、已知cos ⎪⎭⎫ ⎝⎛-2βα= -54,sin ⎪⎭⎫ ⎝⎛-2αβ=135,且0<β<2π<α<π,则cos 2βα+=____.2已知tan α=43,cos(α+β)=-1411, α、β为锐角,则cos β=______.【方法套路】1、设21sin sin =+βα,31cos cos =+βα,则)cos(βα-=___ .2.已知ββαcos 5)2cos(8++=0,则αβαtan )tan(+= .3,41)sin(,31)sin(=-=+βαβα则___tan tan =βα【给值求角】1tan α=71,tan β=31,α,β均为锐角,则α+2β= .2、若sinA=55,sinB=1010,且A,B 均为钝角, 则A+B= .【半角公式】1α是第三象限,2524sin -=α,则tan 2α= . 2、已知01342=+++a ax x (a >1)的两根为αtan ,βtan ,且α,∈β ⎝⎛-2π,⎪⎭⎫2π,则2tan βα+=______3若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+= . 4、若⎥⎦⎤⎢⎣⎡∈27,25ππα,则ααsin 1sin 1-++=5x 是第三象限角xx xx x x x x cos sin 1cos sin 1cos sin 1cos sin 1-++++++-+=______ 【公式链】1=+++ 89sin 3sin 2sin 1sin 2222_______ 2sin10o sin30o sin50o sin70o=_______ 3(1+tan1o )(1+tan2o )…(1+tan45o )=_______六、给值求角 已知31sin -=x ,写出满足下列关系x 取值集合 ]3,5[)3()2(]2,0[)1(πππ--∈∈∈x R x x七、函数性质 【定义域问题】 1. x x y sin 162+-=定义域为_________2、1)32tan(--=πx y 定义域为_________【值域】1、函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为__________2、若函数g (x )=2a sin x +b 的最大值和最小值分别为6和2,则|a |+b 的值为________3、函数x xy sin 2sin 1+-=的值域4、函数xxy cos 1sin 21+-=的值域5、函数x x y sin 2cos -=的值域【解析式】1、已知函数f (x )=3sin 2ωx -cos 2ωx 的图象关于直线x =π3对称,其中ω∈⎝⎛⎭⎫-12,52.函数f (x )的解析式为________.2、已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的图象在y 轴上的截距为1,在相邻两最值点(x 0,2),⎝⎛⎭⎫x 0+32,-2(x 0>0)上f (x )分别取得最大值和最小值.则所得图像的函数解析式是________ 3.将函数sin y x =的图像上所有的点右移10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是___________4、()()sin f x A x h ωϕ=++(0,0,)2A πωϕ>>< 的图象如图所示,求函数)(x f 的解析式;【性质】1、已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π递减,则ω的取值范围是( )A.⎣⎡⎦⎤12,54B.⎣⎡⎦⎤12,34C.⎝⎛⎦⎤0,12 D.(0,2] 2、若函数()sin (0)f x x ωω=>在区间π0,3⎡⎤⎢⎥⎣⎦递增,在区间ππ,32⎡⎤⎢⎥⎣⎦上单调递减,则ω=3、sin(2)3y x π=+图像的对称轴方程可能是A .6x π=- B .12x π=- C .6x π= D .4、已知函数x a x x f 2cos 2sin )(+=关于x 称,则a =_______5.()2sin()f x x ωϕ=++m 对任意x 有()6f x f π+=若()6f π=3,则m=________【图象】1、为了得到函数sin(2)3y x π=-sin(2)6y x π=+的图像向____移动____2、为了得到函数sin(2)3y x π=-y=cos2x 图像向____移动____个长度单位 3.将函数sin(2)y x ϕ=+的图象沿x 个单位后,得到一个偶函数的图象,则ϕ取值为 (A)34π (B) 4π(C)0 (D) 4π-【综合练习】1、已知定义在R 上的函数f (x )满足:当sin x f (x )=cos x ,当sin x >cos x 时,f (x )=sin x .下结论:①f (x )是周期函数;②f (x )③当且仅当x =2k π(k ∈Z)时,f (x )当且仅当2k π-π2<x <(2k +1)π(k ∈Z)时,f (⑤f (x )的图象上相邻两个最低点的距离是正确的结论序号是________.f(x)=sin(2x+x x 2cos 2)62sin()6+-+ππ)求f(x)的最小值及单调减区间; )求使f(x)=3的x 的取值集合。
1.6 三角函数模型的简单应用

1 A (30 10) 10 2
1 b (30 10) 20 2 1 2 14 6, 2 8
8 3 代入(*)式,解得 4
综上,所求解析式为:
3 y 10sin( x ) 20, x [6,14] 8 4
注:
一般地,所求出的函数模型只能近似刻画这天某个时段的 温度变化情况,因此应当特别注意自变量的变化范围。
例2:画出函数 y | sin x | 的图象并观察其周期。
解:函数图象如图所示:
从图中可以看出,函数y | sin x |是以 为周期的波浪形曲线。
我们也可以这样验证: 由于 | sin( x ) || sin x || sin x | 所以,函数 y | sin x | 是以 为周期的函数。 注: 利用函数图象的直观性,通过观察图象而获得对函数性质的 认识,这是研究数学问题的常用方法。
例4:海水受日月的引力,在一定的时候发生涨落的现象叫潮。 一般地,早潮叫潮,晚潮叫汐。在通常情况下,船在涨潮时驶进 航道,靠近码头;卸货后,在落潮时返回海洋。下面是某港口在 某季节每天的时间与水深关系表: 时刻 0:00 3:00 水深/米 5.0 7.5 时刻 9:00 12:00 水深/米 2.5 5.0 时刻 18:00 21:00 水深/米 5.0 2.5
一、三角函数模型的应用:
例1:如图,某地一天从6~14时的温度变化曲线近似满足函数
y A sin( x ) b
(1)求这一天6~14时的最大温差; (2)写出这段曲线的函数解析式。 解:(1)由图可知,这段时间的最大温差是 20 C 。 (2)从图中可以看出,从6~14时的图象是函数 y A sin( x ) b (*) 的半个周期的图象 将 A 10, b 20, , x 6, y 10
1-6 三角函数模型的简单应用

基 础 巩 固一、选择题1.电流强度I (A)随时间t (s)变化的关系式是I =5sin ⎝ ⎛⎭⎪⎫100πt +π3,则当t =1200s 时,电流强度I 为( )A .5 AB .2.5 AC .2 AD .-5 A[答案] B[解析] 将t =1200代入I =5sin ⎝ ⎛⎭⎪⎫100πt +π3 得I =2.5 A.2.(安徽高考)动点A (x ,y )在圆x 2+y 2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t =0时,点A 的坐标是(12,32),则当0≤t ≤12时,动点A 的纵坐标y 关于t (单位:秒)的函数的单调递增区间是( )A .[0,1]B .[1,7]C .[7,12]D .[0,1]和[7,12] [答案] D[解析] 由已知可得该函数的周期为T =12, ω=2πT =π6,又当t =0时,A (12,32),∴y =sin(π6t +π3),t ∈[0,12],可解得函数的单调递增区间是[0,1]和[7,12].3.(新课标全国卷)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为( )[答案] C[解析] P 从P 0出发,逆时针运动,t =0时,d =2,t 与d 满足关系式d =2sin(t -π4)(t ≥0).所以选择C.4.如图所示为一简谐振动的图象,则下列判断正确的是( )A .该质点的振动周期为0.7 sB .该质点的振幅为5 cmC .该质点在0.1 s 和0.5 s 时振动速度最大D .该质点在0.3 s 和0.7 s 时的加速度为零 [答案] B5.在△ABC 中,sin A =32,则∠A =( ) A.π6 B.π3 C.2π3 D.π3或2π3[答案] D6.如图,是一向右传播的绳波在某一时刻绳子各点的位置图,经过12周期后,乙点的位置将处于图中的( )A .甲B .乙C .丙D .丁[答案] D 二、填空题7.振动量y =2sin(ωx +φ)(φ<0)的初相和频率分别为-π和32,则它的相位是________.[答案] 3πx -π[解析] 由题φ=-π,f =1T =32=ω2π ∴ω=3π∴y =3sin(3πx -π).相位是3πx -π.8.(山东临沂12-13高一)某城市一年中12个月的平均气温与月份关系可近似用三角函数y =a +A cos[π6(x -6)](x =1,2,3,……12)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低为18 ℃,则10月份的平均气温为________℃.[答案] 20.5 三、解答题9.单摆从某点开始左右摆动,它离开平衡位置的位移s (厘米)和时间t (秒)的函数关系式为s =6sin ⎝⎛⎭⎪⎫πt +π6.求:(1)单摆开始振动(t =0)时离开平衡位置的位移; (2)单摆离开平衡位置的最大位移. [解析] (1)当t =0秒时,s =6sin π6=3 cm.(2)当t =13秒时,位移最大,s =6sin ⎝ ⎛⎭⎪⎫π3+π6=6 cm.10.如图所示,摩天轮的半径为40 m ,O 点距地面的高度为50 m ,摩天轮做匀速转动,每3 min 转一圈,摩天轮上的P 点的起始位置在最低点处.(1)试确定在时刻t 分时P 点距离地面的高度;(2)在摩天轮转动的一圈内,有多长时间P 点距离地面超过70 m?[解析] (1)以中心O 为坐标原点建立如图所示的坐标系,设t 分时P 距地面高度为y ,依题意得y =40sin ⎝ ⎛⎭⎪⎫2π3t -π2+50.(2)令40sin ⎝⎛⎭⎪⎫2π3t -π2+50>70,∴sin ⎝⎛⎭⎪⎫2π3t -π2>12,∴2k π+π6<2π3t -π2<2k π+5π6, ∴2k π+2π3<2π3t <2k π+4π3, ∴3k +1<t <3k +2.令k =0得1<t <2.因此,共有1 min距地面超过70 m.。
16三角函数模型简单应用练习及参考答案

1.6 三角函数模型简单应用练习题:1.你能利用函数sin y x =的奇偶性画出图象吗?它与函数sin y x =的图象有什么联系?2.已知:1sin 2α=-,若(1),22ππα∈-⎛⎫⎪⎝⎭; (2)(0,2)απ∈;(3)α是第三象限角;(4)α∈R .分别求角α。
3.已知[]0,2θπ∈, sin ,cos θθ分别是方程210x kx k -++=的两个根,求角θ.4.设A 、B 、C 、D 是圆内接四边形ABCD 的四个内角,求证: (1)sin A =sin C ;(2)cos (A +B )=cos (C +D ); (3)tan (A +B +C )=-tan D .5.某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元,该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元,假设商店每月购进这种商品m 件,且当月销完,你估计哪个月份盈利最大?6.把一张纸卷到圆柱形的纸筒面上,卷上几圈.用剪刀斜着..将纸筒剪断,再把卷着的纸展开,你就会看到:纸的边缘线是一条波浪形的曲线,试一试动手操作一下.它是正弦曲线吗?7.如图,铁匠师傅在打制烟筒弯脖时,为确保对接成直角,在铁板上的下剪线正好是余弦曲线:cos xy a a=的一个周期的图象,问弯脖的直径为12 cm 时,a 应是多少cm ?8.已知函数f (x )=x 2cos 12-,试作出该函数的图象,并讨论它的奇偶性、周期性以及区间[0,2π]上的单调性。
9、(14分)如图,扇形AOB 的半径为2,扇形的圆心角为4π,PQRS 是扇形的内接矩形,设∠AOP=θ, (1) 试用θ表示矩形PQRS 的面积y ;(2)利用正、余弦的和(差)与倍角公式化简矩形面积表达式y.10.某人用绳拉车沿直线方向前进100米,若绳与行进方向的夹角为30°,人的拉力为20牛,则人对车所做的功为多少焦.11.某港口水的深度y (米)是时间t ,单位:时)(24t 0≤≤,记作y=f(x),下面是某日水深的数据:经长期观察,y=f(t)的曲线可以近似地看成函数b t Asin y +=ϖ的图象。
三角函数测试题及答案

三角函数测试题及答案一、选择题1. 已知角A的正弦值为\( \sin A = \frac{1}{2} \),则角A的余弦值\( \cos A \)是:A. \( \frac{1}{2} \)B. \( \frac{\sqrt{3}}{2} \)C. \( -\frac{1}{2} \)D. \( -\frac{\sqrt{3}}{2} \)2. 函数\( y = \sin x + \cos x \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \pi/2 \)D. \( 4\pi \)3. 已知\( \cos x = \frac{1}{3} \),且\( x \)在第一象限,求\( \sin x \)的值:A. \( \frac{2\sqrt{2}}{3} \)B. \( \frac{2\sqrt{5}}{3} \)C. \( \frac{4\sqrt{2}}{9} \)D. \( \frac{4\sqrt{5}}{9} \)二、填空题4. 根据正弦定理,如果三角形ABC的边a和角A相对,且\( a = 5 \),\( \sin A = \frac{3}{5} \),则边b的长度为______(假设\( \sin B = \frac{4}{5} \))。
5. 已知\( \tan x = -1 \),求\( \sin 2x \)的值。
三、解答题6. 求以下列三角方程的解:\( \sin^2 x + \cos^2 x = 1 \)7. 证明:\( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \)。
四、应用题8. 在直角三角形ABC中,角C为直角,已知AB = 10,AC = 6,求BC 的长度。
答案:一、选择题1. C2. B3. B二、填空题4. 45. 1 或 -1三、解答题6. 该方程对所有\( x \)都成立,因为它是三角恒等式。
人教a版必修4学案:1.6三角函数模型的简单应用(含答案)

1.6三角函数模型的简单应用自主学习知识梳理1.三角函数的周期性y=A sin(ωx+φ) (ω≠0)的周期是T=________;y=A cos(ωx+φ) (ω≠0)的周期是T=________;y=A tan(ωx+φ) (ω≠0)的周期是T=________.2.函数y=A sin(ωx+φ)+k (A>0,ω>0)的性质(1)y max=________,y min=________.(2)A=__________,k=__________.(3)ω可由__________确定,其中周期T可观察图象获得.(4)由ωx1+φ=______,ωx2+φ=__________,ωx3+φ=__________,ωx4+φ=__________,ωx5+φ=________中的一个确定φ的值.3.三角函数模型的应用三角函数作为描述现实世界中________现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥着十分重要的作用.自主探究结合三角函数图象的特点,思考后写出下列函数的周期.(1)y=|sin x|的周期是________;(2)y=|cos x|的周期是________;(3)y=|tan x|的周期是________;(4)y=|A sin(ωx+φ)| (Aω≠0)的周期是________;(5)y=|A sin(ωx+φ)+k| (Aωk≠0)的周期是____________________________________________________________________;(6)y=|A tan(ωx+φ)| (Aω≠0)的周期是__________.对点讲练知识点一从实际问题中提炼三角函数模型例1如图(1)所示为一个观览车示意图,该观览车半径为4.8 m,圆上最低点与地面距离为0.8 m,60秒转动一圈,图中OA与地面垂直,以OA为始边,逆时针转动θ角到OB,设B点与地面距离为h.(1)(1)求h与θ间关系的函数解析式;(2)设从OA开始转动,经过t秒到达OB,求h与t间关系的函数解析式.回顾归纳如果实际问题中,某种变化着的现象具有一定的周期性,那么它就可以借助三角函数来描述,从而构建三角函数模型.变式训练1 如图所示,一个摩天轮半径为10 m ,轮子的底部在地面上2 m 处,如果此摩天轮按逆时针转动,每30 s 转一圈,且当摩天轮上某人经过点P 处(点P 与摩天轮中心高度相同)时开始计时.(1)求此人相对于地面的高度关于时间的关系式;(2)在摩天轮转动的一圈内,约有多长时间此人相对于地面的高度不小于17 m.知识点二 三角函数模型在物理学科中的应用例2 交流电的电压E (单位:伏)与时间t (单位:秒)的关系可用E =2203sin ⎝⎛⎭⎫100πt +π6来表示,求:(1)开始时的电压;(2)最大电压值重复出现一次的时间间隔; (3)电压的最大值和第一次取得最大值的时间.回顾归纳 三角函数模型在物理学科中有着广泛的应用.在应用三角函数知识解决物理问题时,应当注意从复杂的物理背景中提炼基本的数学关系,还要调动相关物理知识来帮助理解问题.变式训练2 如图表示电流I 与时间t 的函数关系式:I =A sin(ωt +φ)在同一周期内的图象.(1)据图象写出I =A sin(ωt +φ)的解析式;(2)为使I =A sin(ωt +φ)中t 在任意一段1100的时间内电流I 能同时取得最大值和最小值,那么正整数ω的最小值是多少?知识点三 三角函数模型在实际问题中的应用t 小时+B 的图象.(1)试根据数据表和曲线,求出y =A sin ωt +B 的解析式;(2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间?(忽略离港所用的时间)回顾归纳 确定函数关系式y =A sin ωt +B ,就是确定其中的参数A ,ω,B 等,可从所给的数据中寻找答案.由于函数的最大值与最小值不是互为相反数,若设最大值为M ,最小值为m ,则A =M -m 2,B =M +m2.变式训练3 设y =f (t )是某港口水的深度y (米)关于时间t (时)的函数,其中0≤t ≤24.下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:函数中,最能近似表示表中数据间对应关系的函数是( )A .y =12+3sin π6t ,t ∈[0,24]B .y =12+3sin ⎝⎛⎭⎫π6t +π,t ∈[0,24]C .y =12+3sin π12t ,t ∈[0,24]D .y =12+3sin ⎝⎛⎭⎫π12t +π2,t ∈[0,24]1.三角函数模型是研究周期现象最重要的数学模型.三角函数模型在研究物理、生物、自然界中的周期现象(运动)有着广泛的应用.2.三角函数模型构建的步骤(1)收集数据,观察数据,发现是否具有周期性的重复现象. (2)制作散点图,选择函数模型进行拟合. (3)利用三角函数模型解决实际问题.(4)根据问题的实际意义,对答案的合理性进行检验.课时作业一、选择题1. 如图所示,单摆从某点开始来回摆动,离开平衡位置O 的距离s cm 和时间t s 的函数关系式为s =6sin ⎝⎛⎭⎫100πt +π6,那么单摆来回摆动一次所需的时间为( )A.150 sB.1100s C .50 s D .100 s 2.据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f (x )=A sin(ωx+φ)+b ⎝⎛⎭⎫A >0,ω>0,|φ|<π2的模型波动(x 为月份),已知3月份达到最高价9千元,7月份价格最低为5千元,根据以上条件可确定f (x )的解析式为( )A .f (x )=2sin ⎝⎛⎭⎫π4x -π4+7(1≤x ≤12,x ∈N *)B .f (x )=9sin ⎝⎛⎭⎫π4x -π4(1≤x ≤12,x ∈N *) C .f (x )=22sin π4x +7(1≤x ≤12,x ∈N *)D .f (x )=2sin ⎝⎛⎭⎫π4x +π4+7(1≤x ≤12,x ∈N *) 3.若函数f (x )=3sin(ωx +φ)对任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6等于( ) A .3或0 B .-3或0 C .0 D .-3或34. 如图所示,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致是( )二、填空题5.函数y =2sin ⎝⎛⎭⎫m 3x +π3的最小正周期在⎝⎛⎭⎫23,34内,则正整数m 的值是________. 6.设某人的血压满足函数式p (t )=115+25sin(160πt ),其中p (t )为血压(mmHg),t 为时间(min),则此人每分钟心跳的次数是________.7.一根长l cm 的线,一端固定,另一端悬挂一个小球,小球摆动时离开平衡位置的位移s (cm)与时间t (s)的函数关系式时s =3cos ⎝⎛⎭⎫g l t +π3,其中g 是重力加速度,当小球摆动的周期是1 s 时,线长l 等于________.三、解答题8. 如图,一个水轮的半径为4 m ,水轮圆心O 距离水面2 m ,已知水轮每分钟转动5圈,如果当水轮上点P 从水中浮现时(图中点P 0)开始计算时间.(1)将点P 距离水面的高度z (m)表示为时间t (s)的函数; (2)点P 第一次到达最高点大约需要多少时间?§1.6 三角函数模型的简单应用答案知识梳理 1.2π|ω| 2π|ω| π|ω|2.(1)A +k -A +k (2)y max -y min 2 y max +y min 2 (3)ω=2πT (4)0 π2 π 32π 2π3.周期 自主探究(1)π (2)π (3)π (4)π|ω| (5)2π|ω| (6)π|ω|对点讲练 例1 解(2)(1)由题意可作图如图(2)所示.过点O 作地面平行线ON ,过点B 作ON 的垂线BM 交ON 于M 点.当θ>π2时,∠BOM =θ-π2.h =|OA |+0.8+|BM |=5.6+4.8sin ⎝⎛⎭⎫θ-π2; 当0≤θ≤π2时,上述解析式也适合.综上所述,h =5.6+4.8sin ⎝⎛⎭⎫θ-π2. (2)点A 在⊙O 上逆时针运动的角速度是π30,∴t 秒转过的弧度数为π30t ,∴h =4.8sin ⎝⎛⎭⎫π30t -π2+5.6,t ∈[0,+∞). 变式训练1 解 (1)设在t s 时,摩天轮上某人在高h m 处.这时此人所转过的角为2π30t=π15 t ,故在t s 时,此人相对于地面的高度为h =10 sin π15t +12(t ≥0). (2)由10sin π15t +12≥17,得sin π15t ≥12,则52≤t ≤252. 故此人有10 s 相对于地面的高度不小于17 m. 例2 解 (1)当t =0时,E =1103(伏), 即开始时的电压为1103伏.(2)T =2π100π=150(秒),即时间间隔为0.02秒.(3)电压的最大值为2203伏.当100πt +π6=π2,即t =1300秒时第一次取得最大值.变式训练2 解 (1)由题图知,A =300,t 1=-1300,t 2=1150,∵T =2(t 2-t 1)=2(1150+1300)=150,∴ω=2πT=100π.由ωt 1+φ=0知φ=-ωt 1=π3,∴I =300sin(100πt +π3).(2)问题等价于T ≤1100,即2πω≤1100,也即ω≥200π,故最小正整数为ω=629.例3 解 (1)从拟合的曲线可知,函数y =A sin ωt +B 的一个周期为12小时,因此ω=2πT =π6. 又y min =7,y max =13,∴A =12(y max -y min )=3,B =12(y max +y min )=10.∴函数的解析式为y =3sin π6t +10 (0≤t ≤24).(2)由题意,水深y ≥4.5+7,即y =3sin π6t +10≥11.5,t ∈[0,24],∴sin π6t ≥12,π6t ∈⎣⎡⎦⎤2k π+π6,2k π+5π6,k =0,1, ∴t ∈[1,5]或t ∈[13,17],所以,该船在1∶00至5∶00或13∶00至17∶00能安全进港. 若欲于当天安全离港,它在港内停留的时间最多不能超过16小时.变式训练3 A [在给定的四个选项A 、B 、C 、D 中我们不妨代入t =0及t =3,容易看出最能近似表示表中数据间对应关系的函数是A.]课时作业 1.A 2.A3.D [因为f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,所以直线x =π6是函数f (x )图象的对称轴. 所以f ⎝⎛⎭⎫π6=3sin ⎝⎛⎭⎫π6ω+φ=3sin ⎝⎛⎭⎫k π+π2 =±3.因此选D.]4.C [d =f (l )=2sin l2.]5.26,27,28解析 ∵T =6πm ,又∵23<6πm <34∴8π<m <9π,且m ∈Z ,∴m =26,27,28. 6.80解析 T =2π160π=180(分).f =1T=80(次/分).7.g 4π2 解析 T =2πgl=1.∴ g l =2π.∴l =g4π2.8.解 (1)如图所示建立直角坐标系,设角φ⎝⎛⎭⎫-π2<φ<0是以Ox 为始边,OP 0为终边的角.OP 每秒钟内所转过的角为5×2π60=π6. 由OP 在时间t (s)内所转过的角为⎝⎛⎭⎫5×2π60t =π6t .由题意可知水轮逆时针转动,得z =4sin ⎝⎛⎭⎫π6t +φ+2. 当t =0时,z =0,得sin φ=-12,即φ=-π6.故所求的函数关系式为z =4sin ⎝⎛⎭⎫π6t -π6+2.(2)令z =4sin ⎝⎛⎭⎫π6t -π6+2=6,得sin ⎝⎛⎭⎫π6t -π6=1, 令π6t -π6=π2,得t =4, 故点P 第一次到达最高点大约需要4 s.。
三角函数应用题练习及答案

三角函数的应用题一、【学习目标】1、了解解直角三角形在测量及几何问题中的应用。
2、掌握仰角、俯角、坡度、坡角等概念,利用解直角三角形解应用问题。
3、学会测量底部可以到达的物体的高度。
二、【知识要求】会利用解直角三角形的知识解决一般图形问题,并能掌握把一般三角形化为直角三角形的方法。
三、【例题分析】 第一阶梯[例1]如图,AD∥BC,AC⊥BC,若AD=3,DC=5,且∠B=30°,求AB 的长。
解:∵∠DAC=90° 由勾股定理,有 CD 2=AD 2+AC 2 ∵AD=3,DC=5 ∴AC=4 ∵∠B=30° ∴AB=2AC ∴AB=8[例2]如图,△ABC 中,∠B=90°,D 是BC 上一点,且AD=DC ,若tg ∠DAC=41,求tg ∠BAD 。
探索:已知tg∠DAC 是否在直角三角形中?如果不在怎么办?要求∠BAD 的正切值需要满足怎样的条件?点拨:由于已知中的tg∠DAC 不在直角三角形中,所以需要转化到直角三角形中,即可地D 点作AC 的垂线。
又要求∠BAD 的正切值应已知Rt△BAD 的三边长,或两条直角边AB 、BD 的长,根据已知可知没有提 供边长的条件,所以要充分利用已知中的tg∠DAC 的条件。
由于AD=DC ,即∠C=∠DAC,这时也可 把正切值直接移到Rt△ABC 中。
解答:过D 点作DE⊥AC 于E ,41DAC =∠tg 且AE DE DAC =∠tg设DE=k ,则AE=4k∵AD=DC,∴∠DAC=∠C,AE=EC ∴AC=8k∵41==BC AB tgC设AB=m ,BC=4m 由勾股定理,有AB 2+BC 2=AC 2∴k m 17178=k BC 171732=∴由勾股定理,有CD 2=DE 2+EC 2k CD 17=∴k BD 171715=∴由正切定理,有.815=∠∴=∠BAD tg AB DBBAD tg[例3]如图,四边形ABCD 中,∠D=90°,AD=3,DC=4,AB=13,BC=12,求sinB 。
高三复习:三角函数模型及解三角形应用举例(含解析答案)

§4.8 三角函数模型及解三角形应用举例解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.题型一 测量距离、高度问题例1(2013·江苏)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC匀速步行,速度为50m /min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1260m ,经测量cos A =1213,cos C =35.①求索道AB 的长;②问:乙出发多少分钟后,乙在缆车上与甲的距离最短?③为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?题型二测量角度问题例2如图,在海岸A处发现北偏东45°方向,距A处(3-1)海里的B处有一艘走私船.在A处北偏西75°方向,距A处2海里的C处的我方缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度,以B处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.题型三利用三角函数模型求最值例3如图,在直径为1的圆O中,作一关于圆心对称、邻边互相垂直的十字形,其中y>x>0.(1)将十字形的面积表示为θ的函数;(2)θ满足何种条件时,十字形的面积最大?最大面积是多少?变式如图为一个缆车示意图,该缆车半径为4.8米,圆上最低点与地面距离为0.8米,且60秒转动一圈,图中OA与地面垂直,以OA为始边,逆时针转动θ角到OB,设B点与地面间的距离为h.(1)求h与θ间关系的函数解析式;(2)设从OA开始转动,经过t秒后到达OB,求h与t之间的函数关系式,并求缆车到达最高点时用的最少时间是多少?课堂练习:1.已知△ABC ,C 为坐标原点O ,A (1,sin α),B (cos α,1),α∈⎝⎛⎦⎤0,π2,则当△OAB 的面积达到最大值时,α=______.2.某人向正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰好是3km ,那么x 的值为________. 3.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°且相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ等于________.4.8三角函数模型及解三角形应用举例作业1.如图为一半径是3m的水轮,水轮的圆心O距离水面2m.已知水轮每分钟旋转4圈,水轮上的点P到水面的距离y(m)与时间x(s)满足函数关系y=A sin(ωx+φ)+2(ω>0,A>0),则ω=________,A=________.2.甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是________________.3.如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个观测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30m,并在点C处测得塔顶A的仰角为60°,求塔高AB.4.某渔船在航行中不幸遇险,发出呼叫信号,我海军舰艇在A处获悉后,立即测出该渔船在方位角为45°,距离为10nmile的C处,并测得渔船正沿方位角为105°的方向,以10nmile/h的速度向某小岛B靠拢,我海军舰艇立即以103nmile/h的速度前去营救,求舰艇的航向和靠近渔船所需的时间.5.某运输装置如图所示,其中钢结构ABD 是AB =BD =l ,∠B =π3的固定装置,AB 上可滑动的点C 使CD 垂直于地面(C 不与A ,B 重合),且CD 可伸缩(当CD 伸缩时,装置ABD 随之绕D 在同一平面内旋转),利用该运输装置可以将货物从地面D 处沿D →C →A 运送至A 处,货物从D 处至C 处运行速度为v ,从C 处至A 处运行速度为3v .为了使运送货物的时间t 最短,需在运送前调整运输装置中∠DCB =θ的大小.(1)当θ变化时,试将货物运行的时间t 表示成θ的函数(用含有v 和l 的式子表示); (2)当t 最小时,C 点应设计在AB 的什么位置?6某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少? (2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.§4.8 三角函数模型及解三角形应用举例解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.题型一 测量距离、高度问题例1(2013·江苏)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC匀速步行,速度为50m /min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1260m ,经测量cos A =1213,cos C =35.①求索道AB 的长;②问:乙出发多少分钟后,乙在缆车上与甲的距离最短?③为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? (1)答案 30+30 3解析 在△P AB 中,∠P AB =30°,∠APB =15°,AB =60,sin15°=sin(45°-30°)=sin45°cos30°-cos45°sin30°=22×32-22×12=6-24,由正弦定理得PB sin30°=ABsin15°,∴PB =12×606-24=30(6+2),∴树的高度为PB ·sin45°=30(6+2)×22=(30+303)m.(2)解 ①在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin [π-(A +C )]=sin(A +C ) =sin A cos C +cos A sin C=513×35+1213×45=6365. 由正弦定理AB sin C =ACsin B ,得AB =AC sin B ×sin C =1 2606365×45=1 040(m).所以索道AB 的长为1040m.②假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),由于0≤t ≤1040130,即0≤t ≤8,故当t =3537min 时,甲、乙两游客距离最短.③由正弦定理BC sin A =ACsin B ,得BC =AC sin B ×sin A =12606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得125043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在⎣⎡⎦⎤125043,62514(单位:m/min)范围内. 题型二 测量角度问题例2 如图,在海岸A 处发现北偏东45°方向,距A 处(3-1)海里的B 处有一艘走私船.在A 处北偏西75°方向,距A 处2海里的C 处的我方缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度,以B 处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.思维点拨 设缉私船t 小时后在D 处追上走私船,确定出三角形,先利用余弦定理求出BC ,再利用正弦定理求出时间.解 设缉私船应沿CD 方向行驶t 小时,才能最快截获(在D 点)走私船,则CD =103t (海里),BD =10t (海里),在△ABC 中,由余弦定理,有 BC 2=AB 2+AC 2-2AB ·AC cos ∠BAC =(3-1)2+22-2(3-1)·2·cos120°=6. ∴BC =6(海里).又∵BC sin ∠BAC =ACsin ∠ABC,∴sin ∠ABC =AC ·sin ∠BAC BC =2·sin120°6=22,∴∠ABC =45°,∴B 点在C 点的正东方向上, ∴∠CBD =90°+30°=120°,在△BCD 中,由正弦定理,得BD sin ∠BCD =CDsin ∠CBD,∴sin ∠BCD =BD ·sin ∠CBD CD =10t ·sin120°103t =12.∴∠BCD =30°,∴缉私船沿北偏东60°的方向行驶.又在△BCD 中,∠CBD =120°,∠BCD =30°, ∴D =30°,∴BD =BC ,即10t = 6. ∴t =610小时≈15(分钟). ∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟. 思维升华 测量角度问题的一般步骤(1)在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离; (2)用正弦定理或余弦定理解三角形;(3)将解得的结果转化为实际问题的解.题型三 利用三角函数模型求最值例3 如图,在直径为1的圆O 中,作一关于圆心对称、邻边互相垂直的十字形,其中y >x >0.(1)将十字形的面积表示为θ的函数;(2)θ满足何种条件时,十字形的面积最大?最大面积是多少? 思维点拨 由题图可得:x =cos θ,y =sin θ.列出面积函数后,利用三角函数性质求解,注意θ的范围. 解 (1)设S 为十字形的面积,则S =2xy -x 2=2sin θcos θ-cos 2θ (π4<θ<π2);(2)S =2sin θcos θ-cos 2θ=sin2θ-12cos2θ-12=52sin(2θ-φ)-12,其中tan φ=12, 当sin(2θ-φ)=1,即2θ-φ=π2时,S 最大.所以,当θ=π4+φ2(tan φ=12)时,S 最大,最大值为5-12.思维升华 三角函数作为一类特殊的函数,可利用其本身的值域来求函数的最值.变式 如图为一个缆车示意图,该缆车半径为4.8米,圆上最低点与地面距离为0.8米,且60秒转动一圈,图中OA 与地面垂直,以OA 为始边,逆时针转动θ角到OB ,设B 点与地面间的距离为h . (1)求h 与θ间关系的函数解析式; (2)设从OA 开始转动,经过t 秒后到达OB ,求h 与t 之间的函数关系式,并求缆车到达最高点时用的最少时间是多少?解 (1)以圆心O 为原点,建立如图所示的平面直角坐标系,则以Ox为始边,OB 为终边的角为θ-π2,故点B 的坐标为(4.8cos(θ-π2),4.8sin(θ-π2)), ∴h =5.6+4.8sin ⎝⎛⎭⎫θ-π2. (2)点A 在圆上转动的角速度是π30弧度/秒,故t 秒转过的弧度数为π30t ,∴h =5.6+4.8sin ⎝⎛⎭⎫π30t -π2,t ∈[0,+∞).到达最高点时,h =10.4米.由sin ⎝⎛⎭⎫π30t -π2=1,得π30t -π2=π2,∴t =30秒, ∴缆车到达最高点时,用的最少时间为30秒.课堂练习:1.已知△ABC ,C 为坐标原点O ,A (1,sin α),B (cos α,1),α∈⎝⎛⎦⎤0,π2,则当△OAB 的面积达到最大值时,α=______.答案 π2解析 ∵S =1-12×1×sin α-12×1×cos α-12(1-cos α)(1-sin α)=12-12sin αcos α =12-14sin2α. ∴当α=π2时,S 取到最大值.3.某人向正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰好是3km ,那么x 的值为________. 答案 3或2 3解析 如图所示,设此人从A 出发,则AB =x ,BC =3,AC =3,∠ABC =30°, 由余弦定理得(3)2=x 2+32-2x ·3·cos30°,整理,得x 2-33x +6=0,解得x =3或2 3.4.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°且相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ等于________.答案 2114解析 在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos120°=2800,所以BC =207. 由正弦定理,得sin ∠ACB =AB BC ·sin ∠BAC =217.由∠BAC =120°,知∠ACB 为锐角,故cos ∠ACB =277.故cos θ=cos(∠ACB +30°)=cos ∠ACB cos30°-sin ∠ACB sin30°=2114.4.8 三角函数模型及解三角形应用举例作业1.如图为一半径是3m 的水轮,水轮的圆心O 距离水面2m .已知水轮每分钟旋转4圈,水轮上的点P 到水面的距离y (m)与时间x (s)满足函数关系y =A sin(ωx +φ)+2(ω>0,A >0),则ω=________,A =________.答案 2π153 解析 每分钟转4圈,每圈所需时间T =604=15. 又T =2πω=15,∴ω=2π15,A =3. 2.甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是________________.答案 203米、4033米 解析 如图,依题意有甲楼的高度为AB =20·tan60°=203(米),又CM=DB =20(米),∠CAM =60°,所以AM =CM ·1tan60°=2033(米),故乙楼的高度为CD =203-2033=4033(米). 3.如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个观测点C 与D ,测得∠BCD =15°,∠BDC =30°,CD =30m ,并在点C 处测得塔顶A 的仰角为60°,求塔高AB .解 在△BCD 中,∠CBD =180°-15°-30°=135°,由正弦定理,得BC sin ∠BDC =CD sin ∠CBD,所以BC =30sin30°sin135°=15 2 (m). 在Rt △ABC 中,AB =BC ·tan ∠ACB =152tan60°=15 6 (m).所以塔高AB 为156m.4.某渔船在航行中不幸遇险,发出呼叫信号,我海军舰艇在A 处获悉后,立即测出该渔船在方位角为45°,距离为10nmile 的C 处,并测得渔船正沿方位角为105°的方向,以10nmile/h 的速度向某小岛B 靠拢,我海军舰艇立即以103nmile/h 的速度前去营救,求舰艇的航向和靠近渔船所需的时间.解 如图所示,设所需时间为t 小时,则AB =103t ,CB =10t .在△ABC 中,根据余弦定理,则有AB 2=AC 2+BC 2-2AC ·BC ·cos120°,可得:(103t )2=102+(10t )2-2×10×10t cos120°.整理得:2t 2-t -1=0,解得t =1或t =-12(舍去). 所以舰艇需1小时靠近渔船,此时AB =103,BC =10. 在△ABC 中,由正弦定理得:BC sin ∠CAB =AB sin120°, 所以sin ∠CAB =BC ·sin120°AB =10×32103=12. 所以∠CAB =30°.所以舰艇航行的方位角为75°.5.某运输装置如图所示,其中钢结构ABD 是AB =BD =l ,∠B =π3的固定装置,AB 上可滑动的点C 使CD 垂直于地面(C 不与A ,B 重合),且CD 可伸缩(当CD 伸缩时,装置ABD 随之绕D 在同一平面内旋转),利用该运输装置可以将货物从地面D 处沿D →C →A 运送至A 处,货物从D 处至C 处运行速度为v ,从C 处至A 处运行速度为3v .为了使运送货物的时间t 最短,需在运送前调整运输装置中∠DCB =θ的大小.(1)当θ变化时,试将货物运行的时间t 表示成θ的函数(用含有v 和l 的式子表示);(2)当t 最小时,C 点应设计在AB 的什么位置?解 (1)在△BCD 中,∵∠BCD =θ,∠B =π3,BD =l , ∴BC =l sin (2π3-θ)sin θ,CD =3l 2sin θ, ∴AC =AB -BC =l -l sin (2π3-θ)sin θ, 则t =AC 3v +CD v =l 3v -l sin (2π3-θ)3v sin θ+3l 2v sin θ(π3<θ<2π3). (2)t =l 6v (1-3cos θsin θ)+3l 2v sin θ=l 6v +3l 6v ·3-cos θsin θ. 令m (θ)=3-cos θsin θ,θ∈(π3,2π3),则m ′(θ)=1-3cos θsin 2θ. 令m ′(θ)=0,得cos θ=13,设cos θ0=13,θ0∈(π3,2π3), 则θ∈(π3,θ0)时,m ′(θ)<0;当θ∈(θ0,2π3)时,m ′(θ)>0,∴当cos θ=13时,m (θ)取得最小值22,此时BC =6+48l . 故当BC =6+48l 时货物运行时间最短. 6某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.规范解答解 (1)设相遇时小艇的航行距离为S 海里, 则S =900t 2+400-2·30t ·20·cos (90°-30°) =900t 2-600t +400=900(t -13)2+300.[4分] 故当t =13时,S min =103,v =10313=30 3.[6分] 即小艇以303海里/小时的速度航行,相遇小艇的航行距离最小.[7分](2)设小艇与轮船在B 处相遇.则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-600t +400t2.[9分] ∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.[10分] 又t =23时,v =30, 故v =30时,t 取得最小值,且最小值等于23.[12分] 此时,在△OAB 中,有OA =OB =AB =20.故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时.[14分]。
高考数学(文)大一轮复习检测:第三章第6讲函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用 Word版

第6讲函数y =A sin(ωx +φ)的图象及三角函数模型的简单应用,[学生用书P74])1.y =A sin(ωx +φ)的有关概念1.辨明两个易误点(1)平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数; (2)解决三角函数性质的有关问题时,要化为y =A sin(ωx +φ)的形式,但最大值、最小值与A 的符号有关.2.三角函数图象变换的两种方法(ω>0)1.教材习题改编y =2sin ⎝⎛⎭⎫2x -π4的振幅、频率和初相分别为( )A .2,1π,-π4B .2,12π,-π4C .2,1π,-π8D .2,12π,-π8[答案]A2.教材习题改编要得到函数y =cos(x +1),x ∈R 的图象,只需把y =cos x (x ∈R )上的所有点( )A .向左平移π个单位长度B .向右平移π个单位长度C .向左平移1个单位长度D .向右平移1个单位长度 [答案]C3.(2016·高考全国卷甲)若将函数y =2sin2x 的图像向左平移π12个单位长度,则平移后图像的对称轴为( )A .x =k π2-π6(k ∈Z )B .x =k π2+π6(k ∈Z )C .x =k π2-π12(k ∈Z )D .x =k π2+π12(k ∈Z )B [解析]函数y =2sin2x 的图像向左平移π12个单位长度,得到的图像对应的函数表达式为y =2sin2⎝ ⎛⎭⎪⎫x +π12,令2⎝ ⎛⎭⎪⎫x +π12=k π+π2(k ∈Z ),解得x =k π2+π6(k ∈Z ),所以所求对称轴的方程为x =k π2+π6(k ∈Z ),故选B.4.教材习题改编为了得到函数y =3sin ⎝⎛⎭⎫x -π5的图象,只需将y =3sin ⎝⎛⎭⎫x +π5的图象上的所有点( )A .向左平移π5个单位长度B .向右平移π5个单位长度C .向左平移2π5个单位长度D .向右平移2π5个单位长度D [解析]因为y =3sin ⎝ ⎛⎭⎪⎫x -π5=3sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π5-2π5,故选D.5.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.[解析]由题图可知,T 4=2π3-π3=π3,即T =4π3,所以2πω=4π3,故ω=32.[答案]32五点法作图及图象变换[学生用书P75][典例引领](2015·高考湖北卷)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y=g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.【解】(1)根据表中已知数据,解得A =5,ω=2,φ=-π6,数据补全如下表:且函数解析式为f (x )=5sin ⎝ ⎭⎪2x -π6.(2)由(1)知f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6,则g (x )=5sin ⎝⎛⎭⎪⎫2x +2θ-π6.因为函数y =sin x 图象的对称中心为(k π,0),k ∈Z, 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝ ⎛⎭⎪⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.[通关练习]1.(2016·高考全国卷乙)将函数y =2sin ⎝⎛⎭⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为( )A .y =2sin ⎝⎛⎭⎫2x +π4B .y =2sin ⎝⎛⎭⎫2x +π3C .y =2sin ⎝⎛⎭⎫2x -π4D .y =2sin ⎝⎛⎭⎫2x -π3D [解析]函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的周期为π,所以将函数y =2sin ⎝⎛⎭⎪⎫2x +π6的图象向右平移π4个单位长度后,得到函数图象对应的解析式为y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+π6=2sin ⎝ ⎛⎭⎪⎫2x -π3.故选D.2.(2017·南宁模拟)将函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝⎛⎭⎫π6=________.[解析]y =sin x ――――――――→向左平移π6个单位长度y =sin ⎝ ⎛⎭⎪⎫x +π6 ――――――――→纵坐标不变横坐标变为原来的2倍y =sin ⎝ ⎛⎭⎪⎫12x +π6, 即f (x )=sin ⎝ ⎛⎭⎪⎫12x +π6,所以f ⎝ ⎛⎭⎪⎫π6=sin ⎝ ⎛⎭⎪⎫π12+π6=sin π4=22.[答案]22由图象确定y =A sin(ωx +φ)的解析式[学生用书P76][典例引领](1)(2016·高考全国卷甲)函数y =A sin(ωx +φ)的部分图象如图所示,则( )A .y =2sin ⎝⎛⎭⎫2x -π6B .y =2sin ⎝⎛⎭⎫2x -π3C .y =2sin ⎝⎛⎭⎫x +π6D .y =2sin ⎝⎛⎭⎫x +π3(2)(2015·高考全国卷Ⅰ)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A .⎝⎛⎭⎫k π-14,k π+34,k ∈Z B .⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C .⎝⎛⎭⎫k -14,k +34,k ∈Z D .⎝⎛⎭⎫2k -14,2k +34,k ∈Z 【解析】(1)由图易知A =2,因为周期T 满足T 2=π3-⎝ ⎛⎭⎪⎫-π6,所以T =π,ω=2πT =2.由x =π3时,y =2可知2×π3+φ=π2+2k π(k ∈Z ),所以φ=-π6+2k π(k ∈Z ),结合选项可知函数解析式为y =2sin ⎝⎛⎭⎪⎫2x -π6.(2)由图象知,周期T =2⎝⎛⎭⎫54-14=2,所以2πω=2,所以ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,所以f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,所以f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z . 【答案】 (1)A (2)D确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法 (1)求A ,b ,确定函数的最大值M 和最小值m , 则A =M -m 2,b =M +m 2.(2)求ω,确定函数的最小正周期T ,则可得ω=2πT .(3)求φ,常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:“最大值点”(即图象的“峰点”)时ωx +φ=π2+2k π(k ∈Z );“最小值点”(即图象的“谷点”)时ωx +φ=3π2+2k π(k ∈Z ).[通关练习]1.(2017·石家庄模拟)函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则f ⎝⎛⎭⎫11π24的值为( )A .-62 B .-32C .-22D .-1D [解析]由图象可得A =2,最小正周期T =4×⎝⎛⎭⎪⎫7π12-π3=π,则ω=2πT =2.又f ⎝ ⎛⎭⎪⎫7π12=2sin ⎝ ⎛⎭⎪⎫7π6+φ=-2,得φ=π3,则f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,f ⎝ ⎛⎭⎪⎫11π24=2sin ⎝ ⎛⎭⎪⎫11π12+π3=2sin 5π4=-1,选项D 正确.2.已知函数f (x )=A cos(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的图象如图所示,f ⎝⎛⎭⎫π2=-23,则f ⎝⎛⎭⎫-π6=( )A .-23B .-12C .23D .12A [解析]由题图知T 2=11π12-7π12=π3,所以T =2π3,即ω=3,当x =7π12时,y =0,即3×7π12+φ=2k π-π2,k ∈Z ,所以φ=2k π-9π4,k ∈Z ,即k =1时,φ=-π4,所以f (x )=A cos ⎝⎛⎭⎪⎫3x -π4.即A cos ⎝⎛⎭⎪⎫3π2-π4=-23,得A =223, 所以f (x )=223cos ⎝⎛⎭⎪⎫3x -π4,故f ⎝ ⎛⎭⎪⎫-π6=223cos ⎝ ⎛⎭⎪⎫-π2-π4=-23.三角函数图象与性质的综合应用(高频考点)[学生用书P76]三角函数的图象与性质的综合问题是每年高考的热点内容,题型多为解答题. 高考对三角函数的图象与性质的综合应用问题的考查主要有以下四个命题角度: (1)图象变换与函数性质; (2)恒等变换与函数性质;(3)三角函数图象与性质;(4)三角函数性质与平面向量(见第四章第3讲).[典例引领](2016·高考天津卷)已知函数f (x )=4tan x ·sin ⎝⎛⎭⎫π2-x cos ⎝⎛⎭⎫x -π3- 3.(1)求f (x )的定义域与最小正周期;(2)讨论f (x )在区间⎣⎡⎦⎤-π4,π4上的单调性.【解】(1)f (x )的定义域为⎩⎪⎨⎪⎧x ⎪⎪⎪⎭⎪⎬⎪⎫x ≠π2+k π,k ∈Z .f (x )=4tan x cos x cos ⎝ ⎛⎭⎪⎫x -π3-3=4sin x cos ⎝ ⎛⎭⎪⎫x -π3-3=4sin x ⎝⎛⎭⎫12cos x +32sin x -3=2sin x cos x +23sin 2x -3 =sin2x +3(1-cos2x )-3=sin2x -3cos2x =2sin ⎝⎛⎭⎪⎫2x -π3.所以,f (x )的最小正周期T =2π2=π.(2)令z =2x -π3,函数y =2sin z 的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z .由-π2+2k π≤2x -π3≤π2+2k π,得-π12+k π≤x ≤5π12+k π,k ∈Z .设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =⎩⎪⎨⎪⎧x ⎪⎪⎪⎭⎪⎬⎪⎫-π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4.所以,当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减.函数y =A sin(ωx +φ)(A >0,ω>0)的性质(1)奇偶性:φ=k π(k ∈Z )时,函数y =A sin(ωx +φ)为奇函数;φ=k π+π2(k ∈Z )时,函数y =A sin(ωx +φ)为偶函数.(2)周期性:y =A sin(ωx +φ)存在周期,其最小正周期为T =2πω.(3)单调性:根据y =sin t 和t =ωx +φ的单调性来研究,由-π2+2k π≤ωx +φ≤π2+2k π(k ∈Z )得单调增区间;由π2+2k π≤ωx +φ≤3π2+2k π(k ∈Z )得单调减区间.(4)对称性:利用y =sin x 的对称中心为(k π,0)(k ∈Z )求解,令ωx +φ=k π(k ∈Z )得其对称中心.利用y =sin x 的对称轴为x =k π+π2(k ∈Z )求解,令ωx +φ=k π+π2(k ∈Z )得其对称轴.[题点通关]角度一图象变换与函数性质1.(2017·邢台摸底考试)先把函数f (x )=sin ⎝⎛⎭⎫x -π6的图象上各点的横坐标变为原来的12(纵坐标不变),再把新得到的图象向右平移π3个单位,得到y =g (x )的图象.当x ∈⎝⎛⎭⎫π4,3π4时,函数g (x )的值域为( )A .⎝⎛⎦⎤-32,1 B .⎝⎛⎦⎤-12,1 C .⎝⎛⎭⎫-32,32 D .[-1,0)A [解析]依题意得g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π3-π6=sin ⎝ ⎛⎭⎪⎫2x -5π6,当x ∈⎝ ⎛⎭⎪⎫π4,3π4时,2x -5π6∈⎝ ⎛⎭⎪⎫-π3,2π3,sin ⎝⎛⎭⎪⎫2x -5π6∈⎝⎛⎦⎤-32,1,此时g (x )的值域是⎝⎛⎦⎤-32,1.角度二恒等变换与函数性质2.已知函数f (x )=cos 2x -sin 2x 2-12sin2x +14,则f (x )取得最小值时的x 的集合为________.[解析]依题意知,f (x )=12cos2x -12sin2x +14=22cos ⎝ ⎛⎭⎪⎫2x +π4+14,当2x +π4=2k π+π(k ∈Z ),即x =k π+3π8(k ∈Z )时,f (x )取得最小值-22+14=1-224,所以f (x )取得最小值时的x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x =k π+3π8,k ∈Z .[答案]⎩⎨⎧⎭⎬⎫x |x =k π+3π8,k ∈Z角度三三角函数图象与性质3.(2017·南昌模拟)已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A .π2B .2π3C .πD .2πC [解析]f (x )=3sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π6,由2sin ⎝⎛⎭⎫ωx +π6=1,得sin ⎝ ⎛⎭⎪⎫ωx +π6=12,设x 1,x 2分别为距离最小的相邻交点的横坐标,则ωx 1+π6=2k π+π6(k ∈Z ),ωx 2+π6=2k π+5π6(k ∈Z ),两式相减,得x 2-x 1=2π3ω=π3,所以ω=2,故f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6的最小正周期为π,选C.三角函数模型的简单应用[学生用书P77][典例引领]某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?【解】(1)因为f (t )=10-2⎝ ⎛⎭⎪⎫32cos π12t +12sin π12t=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝⎛⎭⎪⎫π12t +π3≤1. 当t =2时,sin ⎝ ⎛⎭⎪⎫π12t +π3=1;当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1.于是f (t )在[0,24)上的最大值为12,最小值为8.故实验室这一天最高温度为12℃,最低温度为8℃,最大温差为4℃. (2)依题意,当f (t )>11时实验室需要降温.由(1)得f (t )=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,故有10-2sin ⎝ ⎛⎭⎪⎫π12t +π3>11,即sin ⎝ ⎛⎭⎪⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温.三角函数模型在实际中的应用体现在两个方面,一是已知函数模型,利用三角函数的有关性质解决问题,其关键是准确理解自变量的意义及自变量与函数之间的对应关系,二是把实际问题抽象转化成数学问题,建立三角函数模型,再利用三角函数的有关知识解决问题,其关键是建模.如图所示,某市拟在长为8km 的道路OP 的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM ,该曲线段为函数y =A sin ωx (A >0,ω>0),x ∈[0,4]的图象,且图象的最高点为S (3,23),赛道的后一部分为折线段MNP ,求A ,ω的值和M ,P 两点间的距离.[解]依题意,有A =23,T4=3,又T =2πω,所以ω=π6,所以y =23sin π6x ,x ∈[0,4],所以当x =4时,y =23sin 2π3=3,所以M (4,3),又P (8,0), 所以MP =(8-4)2+(0-3)2=42+32=5 (km),即M ,P 两点间的距离为5km.,[学生用书P78])——三角函数的图象与性质(本题满分12分)(2017·石家庄模拟)已知函数f (x )=cos 2ωx cos φ+sin ωx cos ωx sin φ-12sin ⎝⎛⎭⎫π2+φ(ω>0,0<φ<π)的最小正周期为π,且x =π6是函数f (x )的图象的一条对称轴. (1)求ω,φ的值;(2)将函数y =f (x )图象上的各点向左平移π12个单位长度,得到函数y =g (x )的图象,求函数g (x )在⎣⎡⎦⎤0,5π12上的最值及取最值时对应的x 的值.[思维导图](1)(2)(1)由题意得,f (x )=1+cos 2ωx 2cos φ+12sin 2ωx sin φ-12cos φ=12cos 2ωx cos φ+12sin 2ωx sin φ =12(cos 2ωx cos φ+sin 2ωx sin φ) =12cos(2ωx -φ).(4分) 又函数f (x )的最小正周期为π,所以2π2ω=π,所以ω=1,(5分)故f (x )=12cos(2x -φ),又x =π6是函数f (x )的图象的一条对称轴,故2×π6-φ=k π(k ∈Z ),因为0<φ<π,所以φ=π3.(6分)(2)由(1)知f (x )=12cos ⎝ ⎛⎭⎪⎫2x -π3,将函数y =f (x )图象上的各点向左平移π12个单位长度,得到函数y =g (x )的图象,故g (x )=12cos ⎝ ⎛⎭⎪⎫2x -π6.(9分)因为x ∈⎣⎢⎡⎦⎥⎤0,5π12,所以2x -π6∈⎣⎢⎡⎦⎥⎤-π6,2π3,因此当2x -π6=0,即x =π12时,g (x )max =12;当2x -π6=2π3,即x =5π12时,g (x )min =-14.(12分)(1)解决三角函数图象与性质综合问题的方法:先将y =f (x )化为y =a sin x +b cos x 的形式,然后用辅助角公式化为y =A sin(ωx +φ)的形式,再借助y =A sin(ωx +φ)的性质(如周期性、对称性、单调性等)解决相关问题. (2)注意解题步骤的规范性①求最值、单调区间或由值求角时一定要注意限定角的取值范围; ②涉及k π或2k π时要注意k 的范围,规范步骤,减少出错; ③注意题目最后的总结,保证步骤的完整性.,[学生用书P257(独立成册)])1.函数y =sin ⎝⎛⎭⎫2x -π3在区间⎣⎡⎦⎤-π2,π上的简图是( )A [解析]令x =0,得y =sin ⎝ ⎛⎭⎪⎫-π3=-32,排除B ,D.由f ⎝ ⎛⎭⎪⎫-π3=0,f ⎝ ⎛⎭⎪⎫π6=0,排除C.2.(2016·高考四川卷)为了得到函数y =sin ⎝⎛⎭⎫x +π3的图象,只需把函数y =sin x 的图象上所有的点( )A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向上平行移动π3个单位长度D .向下平行移动π3个单位长度A [解析]函数y =sin x 的图象向左平行移动π3个单位长度可得到y =sin ⎝ ⎛⎭⎪⎫x +π3的图象.3.函数f (x )=tan ωx (ω>0)的图象的相邻两支截直线y =2所得线段长为π2,则f ⎝⎛⎭⎫π6的值是( )A .-3B .33C .1D . 3D [解析]由题意可知该函数的周期为π2,所以πω=π2,ω=2,f (x )=tan2x ,所以f ⎝ ⎛⎭⎪⎫π6=tan π3= 3.4.(2017·洛阳统考)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则f (x )的解析式是( )A .f (x )=sin ⎝⎛⎭⎫3x +π3B .f (x )=sin ⎝⎛⎭⎫2x +π3C .f (x )=sin ⎝⎛⎭⎫x +π3D .f (x )=sin ⎝⎛⎭⎫2x +π6D [解析]由图象可知A =1,T 4=5π12-π6,所以T =π,所以ω=2πT =2,故排除A 、C ,把x =π6代入检验知,选项D 符合题意.5.(2017·太原模拟)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期是π,若将f (x )的图象向右平移π3个单位后得到的图象关于原点对称,则函数f (x )的图象( )A .关于直线x =π12对称B .关于直线x =5π12对称C .关于点⎝⎛⎭⎫π12,0对称D .关于点⎝⎛⎭⎫5π12,0对称B [解析]因为f (x )的最小正周期为π,所以2πω=π,ω=2,所以f (x )的图象向右平移π3个单位后得到g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π3+φ=sin ⎝ ⎛⎭⎪⎫2x -2π3+φ的图象,由g (x )的图象关于原点对称知,φ-23π=k π,即φ=23π+k π,k ∈Z ,因为|φ|<π2,所以φ=-π3,即f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,由2x-π3=π2+k π,得x =5π12+k π2,k ∈Z ,故选B. 6.将函数f (x )=sin2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后得到函数g (x )的图象.若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( )A .5π12B .π3C .π4D .π6D [解析]由已知得g (x )=sin(2x -2φ),满足|f (x 1)-g (x 2)|=2,不妨设此时y =f (x )和y =g (x )分别取得最大值与最小值,又|x 1-x 2|min =π3,令2x 1=π2,2x 2-2φ=-π2,此时|x 1-x 2|=⎪⎪⎪⎪⎪⎪π2-φ=π3,又0<φ<π2,故φ=π6,选D. 7.(2016·高考全国卷丙)函数y =sin x -3cos x 的图象可由函数y =2sin x 的图象至少向右平移________个单位长度得到.[解析]因为y =sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,所以函数y =sin x -3cos x 的图象可由函数y=2sin x 的图象至少向右平移π3个单位长度得到.[答案]π38.已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,y =f (x )的部分图象如图,则f ⎝⎛⎭⎫π24=________.[解析]由题图可知,T =2⎝ ⎛⎭⎪⎫3π8-π8=π2,所以ω=2,所以2×π8+φ=k π+π2(k ∈Z ).又|φ|<π2,所以φ=π4.又f (0)=1,所以A tan π4=1,得A =1,所以f (x )=tan ⎝ ⎛⎭⎪⎫2x +π4,所以f ⎝ ⎛⎭⎪⎫π24=tan ⎝ ⎛⎭⎪⎫π12+π4=tan π3= 3.[答案] 39.(2017·长春质量监测)已知函数f (x )=sin ⎝⎛⎭⎫2x +π3与g (x )的图象关于直线x =π6对称,将g (x )的图象向左平移φ(φ>0)个单位后与f (x )的图象重合,则φ的最小值为________.[解析]函数g (x )的解析式为g (x )=sin2x ,其图象向左平移φ个单位后对应解析式为y =sin(2x +2φ),从而2φ=π3+2k π,即φ=π6+k π(k ∈N ),所以φmin =π6.[答案]π610.已知函数f (x )=cos ⎝⎛⎭⎫3x +π3,其中x ∈⎣⎡⎦⎤π6,m ,若f (x )的值域是⎣⎡⎦⎤-1,-32,则m 的取值范围是________.[解析]画出函数图象,由x ∈⎣⎢⎡⎦⎥⎤π6,m ,可知5π6≤3x +π3≤3m +π3,因为f ⎝ ⎛⎭⎪⎫π6=cos 5π6=-32且f ⎝ ⎛⎭⎪⎫2π9=cos π=-1,要使f (x )的值域是⎣⎡⎦⎤-1,-32,只要2π9≤m ≤5π18,即m 的取值范围是⎣⎢⎡⎦⎥⎤2π9,5π18.[答案]⎣⎡⎦⎤2π9,5π1811.已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π6+a (ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.(1)求a 和ω的值;(2)求函数f (x )在[0,π]上的单调递减区间.[解] (1)f (x )=4cos ωx ·sin ⎝⎛⎭⎪⎫ωx +π6+a=4cos ωx ·⎝⎛⎭⎫32sin ωx +12cos ωx +a=23sin ωx cos ωx +2cos 2ωx -1+1+a =3sin2ωx +cos2ωx +1+a=2sin ⎝⎛⎭⎪⎫2ωx +π6+1+a .当sin ⎝⎛⎭⎪⎫2ωx +π6=1时,f (x )取得最大值2+1+a =3+a ,又f (x )图象上最高点的纵坐标为2, 所以3+a =2,所以a =-1.又f (x )图象上相邻两个最高点的距离为π, 所以f (x )的最小正周期T =π, 所以2ω=2πT=2,所以ω=1.(2)由(1)得f (x )=2sin ⎝⎛⎭⎪⎫2x +π6,由π2+2k π≤2x +π6≤3π2+2k π,k ∈Z , 得π6+k π≤x ≤2π3+k π,k ∈Z . 令k =0,得π6≤x ≤2π3,所以函数f (x )在[0,π]上的单调递减区间为⎣⎢⎡⎦⎥⎤π6,2π3.12.已知函数f (x )=A sin(ωx +φ)+b (A >0,ω>0)的图象如图所示,则f (x )的解析式及S =f (0)+f (1)+f (2)+…+f (2017)的值分别为( )A .f (x )=12sin2πx +1,2017B .f (x )=12sin2πx +1,201712C .f (x )=12sin π2x +1,2018D .f (x )=12sin π2x +1,201812D [解析]由题图知,A =1.5-0.52=12,b =1.5+0.52=1.因为函数f (x )的周期是4,所以ω=π2.由五点法作图知,π2×0+φ=0,所以φ=0,故函数的解析式为f (x )=12sin π2x +1. 因为f (0)=1,f (1)=32,f (2)=1,f (3)=12,f (4)=1,f (5)=32,…,所以S =f (0)+f (1)+504×(f (0)+f (1)+f (2)+f (3))=1+32+504×⎝⎛⎭⎫1+32+1+12 =52+2016=201812. 13.设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x ∈R )的图象关于直线x =π对称.其中ω,λ为常数,且ω∈⎝⎛⎭⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝⎛⎭⎫π4,0,求函数f (x )的值域.[解] (1)因为f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ =-cos2ωx +3sin2ωx +λ=2sin ⎝⎛⎭⎪⎫2ωx -π6+λ,由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝ ⎛⎭⎪⎫2ωπ-π6=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝⎛⎭⎫12,1,k ∈Z ,所以k =1,故ω=56.所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点⎝ ⎛⎭⎪⎫π4,0,得f ⎝ ⎛⎭⎪⎫π4=0,即λ=-2sin ⎝ ⎛⎭⎪⎫56×π2-π6=-2sin π4=-2,即λ=- 2.故f (x )=2sin ⎝ ⎛⎭⎪⎫53x -π6-2,函数f (x )的值域为[-2-2,2-2].14.函数f (x )=cos(πx +φ)⎝⎛⎭⎫0<φ<π2的部分图象如图所示.(1)求φ及图中x 0的值;(2)设g (x )=f (x )+f ⎝⎛⎭⎫x +13,求函数g (x )在区间⎣⎡⎦⎤-12,13上的最大值和最小值. [解] (1)由题图得f (0)=32,所以cos φ=32,因为0<φ<π2,故φ=π6.由于f (x )的最小正周期等于2, 所以由题图可知1<x 0<2, 故7π6<πx 0+π6<13π6, 由f (x 0)=32得cos ⎝⎛⎭⎪⎫πx 0+π6=32, 所以πx 0+π6=11π6,x 0=53.(2)因为f ⎝⎛⎭⎫x +13=cos ⎣⎢⎡⎦⎥⎤π⎝⎛⎭⎫x +13+π6 =cos ⎝⎛⎭⎪⎫πx +π2=-sin πx ,所以g (x )=f (x )+f ⎝⎛⎭⎫x +13=cos ⎝⎛⎭⎪⎫πx +π6-sin πx =cos πx cos π6-sin πx sin π6-sin πx =32cos πx -32sin πx =3sin ⎝ ⎛⎭⎪⎫π6-πx .当x ∈⎣⎡⎦⎤-12,13时,-π6≤π6-πx ≤2π3.所以-12≤sin ⎝ ⎛⎭⎪⎫π6-πx ≤1,故π6-πx =π2,即x =-13时,g (x )取得最大值3;当π6-πx =-π6, 即x =13时,g (x )取得最小值-32.。
2019-2020学年高中数学人教A版必修4练习:1.6 三角函数模型的简单应用 课堂强化 Word版含解析

1.如图是一向右传播的绳波在某一时刻绳子各点的位置图,经过12周期后,乙的位置将移至( ) A .x 轴上 B .最低点C .最高点D .不确定解析:相邻的最大值与最小值之间间隔半个周期,故乙移至最高点.答案:C2.将单摆的摆球拉至平衡位置左侧无初速释放,并同时开始计时,取平衡位置为坐标原点,且向右为正,则下列振动图像中正确的是( )解析:由条件知t =0时,y <0,故D 正确.答案:D3.如图,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数d =f (l )的图像大致是( )解析:令AP 所对圆心角为θ,由|OA |=1,则l =θ,sin θ2=d 2, ∴d =2sin θ2=2sin l 2,即d =f (l )=2sin l 2(0≤l ≤2π),它的图像为C. 答案:C4.据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f (x )=A sin(ωx +φ)+B (A >0,ω>0,|φ|<π2)的模型波动(x 为月份),已知3月份达到最高价9千元,7月份价格最低为5千元,根据以上条件可确定f (x )的解析式为________. 解析:由条件可知⎩⎪⎨⎪⎧ A +B =9,-A +B =5,∴B =7,A =2. 又T =2(7-3)=8,∴ω=π4, 令3×π4+φ=π2,∴φ=-π4, ∴f (x )=2sin(π4x -π4)+7. 答案:f (x )=2sin(π4x -π4)+7 5.一根长acm 的线,一端固定,另一端悬挂一个小球,小球摆动时,离开平衡位置的位移s (cm)和时间t (s)的函数关系式是s =3cos( g a t +π3),t ∈[0,+∞),则小球摆动的周期为________. 解析:T =2πg a =2π·a g . 答案:2π·a g6.在波士顿估计某一天白昼时间的小时数D (t )的表达式是:D (t )=3sin2π365(t -79)+12,其中t 表示某天的序号,t =0表示1月1日,以此类推.(1)在波士顿哪一天白昼时间最长?哪一天白昼时间最短?(2)估计在波士顿一年中有多少天的白昼时间超过10.5 h?解:(1)白昼时间最长的一天,即D (t )取得最大值的一天,由2π365(t -79)=π2,得t =170.25,而t ∈N ,所以t =170,对应的是6月20日(闰年除外).类似地,t =353时D (t )取得最小值,即12月20日白昼最短.(2)D (t )>10.5,即3sin 2π365(t -79)+12>10.5, sin 2π365(t -79)>-12,t ∈[0,365], ∴-π6<2π365(t -79)<7π6, 得49≤t ≤291,291-48=243,∴约有243天的白昼时间超过10.5 h.。
高一数学人教版寒假作业(14)函数y=sin(wx ψ)图像与性质及三角函数模型的简单应用

寒假作业(14)函数y=sin(wx +ψ)图像与性质及三角函数模型的简单应用1、将函数π2sin(2)6y x =+的图象向右平移14个最小正周期后,所得图象对应的函数为( )A.π2sin(2)4y x =+ B.π2sin(2)3y x =+C.π2sin(2)4y x =-D.π2sin(2)3y x =-2、设函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭,则下列结论正确的是( )A.()f x 的图象关于直线3x π=对称 B.()f x 的图象关于点,04π⎛⎫⎪⎝⎭对称C.把()f x 的图象向左平移12π个单位长度,得到一个偶函数的图象 D.()f x 的最小正周期为,且在0,6π⎡⎤⎢⎥⎣⎦上为增函数3、若函数()y f x =的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x 轴向左平移π2个单位,沿y 轴向下平移1个单位,得到函数1sin 2y x =的图象则()y f x =是( )A. 1πsin 2122y x ⎛⎫=++ ⎪⎝⎭B. 1πsin 2122y x ⎛⎫=-+ ⎪⎝⎭C. 1πsin 2124y x ⎛⎫=-+ ⎪⎝⎭D. 1πsin 2124y x ⎛⎫=++ ⎪⎝⎭4、将函数(2)y sin x ϕ=+的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为 ( )A.3π4B.π4 C.0 D.π4- 5、为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( )A.向左平移π3个单位长度B.向右平移π3个单位长度C.向左平移π6个单位长度D.向右平移π6个单位长度6、若将函数2sin 2y x =的图象向左平移π12个单位长度,则平移后图象的对称轴为( ) A.ππ(k Z)26k x =-∈ B.ππ(k Z)26k x =+∈C.ππ(k Z)212k x =-∈D. ππ(k Z)212k x =+∈7、函数()cos()f x x =+ωϕ的部分图象如图所示,则()f x 的单调递减区间为( )A. 13,,Z 44k k k π-π+∈⎛⎫ ⎪⎝⎭B. 132,2,Z 44k k k π-π+∈⎛⎫⎪⎝⎭C. 13,,Z 44k k k ⎛⎫-+∈ ⎪⎝⎭D. 132,2,Z 44k k k ⎛⎫-+∈ ⎪⎝⎭8、将函数sin y x =的图象上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( ) A. sin 210y x π⎛⎫=-⎪⎝⎭B. sin 25y x π⎛⎫=-⎪⎝⎭C. 1sin 210y x π⎛⎫=-⎪⎝⎭D. 1sin 220y x π⎛⎫=-⎪⎝⎭9、函数sin()y A x ωϕ=+的部分图象如图所示,则( )A.π2sin(2)6y x =- B.π2sin(2)3y x =- C.π2sin()6y x =+D.π2sin()3y x =+10、已知函数()sin (0)4f x x ωω⎛⎫ ⎪⎝⎭π=+>的最小正周期为π,则该函数的图象( )A.关于直线8x =π对称B.关于点,04⎛⎫⎪⎝⎭π对称 C.关于直线4x =π对称D.关于点,08⎛⎫⎪⎝⎭π对称11、如图所示的是函数sin()(0,0,)y A x A ωϕωϕ=+>>-π<<π的图象,由图中条件写出该函数的解析式为y=__________________.12、若将函数sin y x =的图象上所有点________________,得到πsin()6y x =-的图象,再将πsin()6y x =-的图象上所有点____________________,可得到1πsin()26y x =-的图象.13、将函数()sin()f x x ωϕ=+ππ0,22ωϕ⎛⎫>-≤< ⎪⎝⎭的图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到sin y x =的图象,则π()6f =_________.14、将函数sin(2)y x ϕ=+的图象沿x 轴向左平移π8个单位长度后,得到一个偶函数的图象,则φ的一个绝对值最小的取值为________________.15、如图为某简谐运动的图象,这个简谐运动需要__________s 往返一次16、如图,圆O 的半径为2,l 为圆O 外一条直线,圆心O 到直线l 的距离03,OA P =为圆周上一点,且06AOP π∠=,点P 从0P 处开始以2秒一周的速度绕点O 在圆周上按逆时针方向做匀速圆周运动.①1秒钟后,点P 的横坐标为__________;②t 秒钟后,点P 到直线l 的距离用t 可以表示为__________;17、某城市一年中12个月的平均气温与月份x 的关系可近似地用三角函数()()cos 61,2,3,,126y a A x x π⎛⎫=+-= ⎪⎝⎭来表示,已知6月份的月平均气温最高,为28C ︒,12月份的月平均气温最低,为18C ︒,则10月份的平均气温值为__________. 18、如图某地夏天从814时用电量变化曲线近似满足函数()sin y A x b ωϕ=++(1)这一天的最大用电量为__________万度,最小用电量为__________万度; (2)这段曲线的函数解析式为__________.19、右图是一弹簧振子做简谐振动的图象,横轴表示振动的时间,纵轴表示振子的位移.则这个振子振动的函数解析式是______________.20、下图是一个单摆的振动图象,根据图象回答下面问题:(1)单摆的振幅为__________;(2)振动频率为__________.答案以及解析1答案及解析: 答案:D解析:函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的最小正周期为,将函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象向右平移14个最小正周期,即4π个单位长度后,所得图象对应的函数为2sin 22sin 2463y x x ⎡ππ⎤π⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故选D.2答案及解析: 答案:C 解析:当3x π=时,2,()sin 03x f x π+=π=π=,不合题意,A 错误;当4x π=时,5512,()sin 3662x f x πππ+===,B 错误;把()f x 的图象向左平移12π个单位长度,得到函数sin 2sin 2cos21232y x x x ⎡ππ⎤π⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,是偶函数,C 正确;当12x π=时,sin 1122f ππ⎛⎫== ⎪⎝⎭,当6x π=时,2sin 163f ππ⎛⎫==< ⎪⎝⎭,在0,6π⎡⎤⎢⎥⎣⎦上()f x 不是增函数,D错误.3答案及解析: 答案:B解析:根据题意,将函数1sin 2y x =的图象向上平移一个单位1sin 12y x =+,同时在沿x 轴向右平移π2个单位, 1πsin 22y x ⎛⎫=- ⎪⎝⎭再每一点的纵坐标保持不变,横坐标缩短为到原来的12倍.4答案及解析: 答案:B解析:解:令2y f x sin x ϕ==+()(), 则πππ()sin[2()]sin(2)884f x x x ϕϕ+=++=++,∵π()8f x +为偶函数,∴ππ+π42k ϕ=+,∴ππ4k ϕ=+,k Z ∈, ∴当0k =时,π4ϕ=.故φ的一个可能的值为π4.故选:B .5答案及解析: 答案:D解析:因为ππsin(2)sin[2()]36y x x =-=-,所以只需把函数sin 2y x =的图象上所有的点向右平移π6个单位长度即可.故选D.6答案及解析:答案:B解析: 将函数2sin 2y x =的图象向左平移π12个单位长度,得到2sin 2()2sin(2)126y x x ππ=+=+, 由2(Z)62x k k ππ+=π+∈得:(Z)26k x k ππ=+∈, 即平移后的图象的对称轴方程为ππ(k Z)26k x =+∈,故选B .7答案及解析: 答案:D解析:由题中所给图像知22142π=ωπω+ϕ=⎧⎪⎪⎨⎪⎪⎩则4=π⎧⎪⎨π=⎪⎩ωϕ 即()cos 4f x x π⎛⎫=π+ ⎪⎝⎭.所以由余弦函数图象和性质,知224k x k ππ<π+<π+π, 即1322,Z 44k x k k -<<+∈. 所以()f x 的单调递减区间为132,2,Z 44k k k ⎛⎫-+∈ ⎪⎝⎭.8答案及解析: 答案:C解析:将函数sin y x =的图象上所有的点向右平移π10个单位长度, 得πsin 10y x ⎛⎫=-⎪⎝⎭,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变), 得1πsin 210y x ⎛⎫=- ⎪⎝⎭,故选C. 考点:三角函数的平移变换.9答案及解析: 答案:A解析:由图易知2A =,因为周期T 满足ππ()236T =--,所以2ππ,2T Tω===. 由π3x =时,2y =可知ππ22π(Z)32k k ϕ⨯+=+∈,所以π2π6k ϕ=-+(Z)k ∈,结合选项可知函数解析式为π2sin(2)6y x =-.10答案及解析: 答案:A解析:依题意得2,2T ωωπ==π=.故()sin 24f x x π⎛⎫=+ ⎪⎝⎭.所以sin 2sin 108842f ππππ⎛⎫⎛⎫=⨯+==≠⎪ ⎪⎝⎭⎝⎭,3sin 2sin 044442f ππππ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭. 故该函数的图象关于直线8x π=对称,不关于点,04π⎛⎫ ⎪⎝⎭和点,08π⎛⎫ ⎪⎝⎭对称,也不关于直线4x π=对称.故选A.11答案及解析:答案:22sin 33x π⎛⎫+ ⎪⎝⎭解析:将函数22sin3y x =的图象沿x 轴向左平移2π个单位长度,就得到本题的图象,故所求函数为222sin 2sin 3233y x x ⎡π⎤π⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.12答案及解析:答案:向右平移π6个单位长度;纵坐标不变,坐标伸长到原来的2倍 解析:将函数sin y x =的图象上所有点向右平移π6个单位长度,得到πsin()6y x =-的图象,再将其横坐标伸长到原来的2倍可得到1πsin()26y x =-的图象.13答案及解析:答案:2解析:把函数sin y x =的图象向左平移π6个单位长度得到πsin()6y x =+的图象, 再把πsin()6y x =+的图象上每一点的横坐标伸长为原来的2倍,纵坐标不变,得到函数1πsin()26y x =+的图象,所以π1πππ()sin sin 626642f ⎛⎫=⨯+==⎪⎝⎭14答案及解析: 答案:π4解析:由题意得π()sin[2()]8g x x ϕ=++πsin 24x ϕ⎛⎫=++ ⎪⎝⎭为偶函数,所以πππ42k ϕ+=+,Z k ∈. 所以ππ(Z)4k k ϕ=+∈,要绝对值最小,则令0k =,得π4ϕ=.15答案及解析: 答案:0.8 解析:由图象知周期0.800.8T =-=,则这个简谐运动需要0.8s 往返一次.16答案及解析:答案:①②()3206cos t t π⎛⎫-π+≥ ⎪⎝⎭解析:①1秒钟后,点P 从0P 处绕点O 在圆周上按逆时针方向做匀速圆周运动旋转了半周,此时点P 与0P 关于原点对称,从而点P 的横坐标为②由题意得,周期为2,则t 秒钟后,旋转角为π,t 则此时点P 的横坐标为26cos t π⎛⎫π+ ⎪⎝⎭ ,所以点P 到直线l 的距离为32,0.6cos t t π⎛⎫-π+≥ ⎪⎝⎭17答案及解析: 答案:20.5C ︒解析:由题意,可求得函数解析式为()235cos 66y x π⎛⎫=+- ⎪⎝⎭,将10x =代入解析式,可得答案为20.5C ︒18答案及解析: 答案: (1) 50,30 (2) []10sin 40,8,1466y x x ππ⎛⎫=++∈ ⎪⎝⎭解析:(1)由图象得最大用电量为50万度,最小用电量为30万度. (2)观察图象可知,从814时的图象是()sin y A x b ωϕ=++的半个周期的图象,∴()()11503010,503040,22A b =⨯-==⨯+= ∵12148,,26ωωππ⨯=-∴=∴10406y sin ϕπ⎛⎫=++ ⎪⎝⎭.将8,30x y ==代入上式,解得,6ϕπ= ∴所求解析式为[]1040,8,1466y sin x x ππ⎛⎫=++∈⎪⎝⎭19答案及解析: 答案:5ππ2sin()(0)24y t t =+≥ 解析:设函数解析式为πsin()(0,0,0,||)2y A x A t ωϕωϕ=+>>≤<,由题图知,2A =,2(0.50.1)0.8T =⨯-=,所以2π2π5π0.82T ω===,又图象过点,所以2sin ϕ=解得π4ϕ=. 所以所求函数解析式是5ππ2sin()(0)24y t t =+≥.20答案及解析:答案:(1)1cm (2)1.25Hz解析:(1)由题中图象,可知单摆的振幅是1cm.(2)单摆的周期0.8T =,频率1 1.25Hz f T==.由Ruize收集整理。
高考数学复习:函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用

A=1,B=6,T=4,因为T2= ,所以ω= ,所以y=sin( x ) 6.
2
2
因为当x=1时,y=6,所以6=sin( ) 6,
2
结合表中数据得 +φ=2kπ,k∈Z,可取φ=- ,
2
2
所以y=sin( x ) 6.
22
答案:y=sin( x ) 6
22
考点一 函数y=Asin(ωx+φ)的图象及图象变换 【题组练透】 1.(2017·全国卷Ⅱ)已知曲线C1:y=cos x,C2:y= sin (2x 2),则下面结论正确的是 ( )
2
_______,周期T为____________,频率为____________
____,初相φ为______________.
【解析】振幅A=2,T=
2
=6,f=
1 6
,因为图象过点(0,1),
所以1=2sin φ,所以s3in φ= 1 ,又|φ|< ,所以
2
2
φ= .
6
答案:2 6 1
第四节 函数y=Asin(ωx+φ)的图象 及三角函数模型的简单应用
(全国卷5年6考)
【知识梳理】
1.y=Asin(ωx+φ)的有关概念
y=Asin(ωx+ φ)(A>0,ω> 0),x∈R
振周 幅期
频率|
=_|_2_|
初 相位 相
_ω__x_+_ _φ__
_φ__
2.“五点法”作函数y=Asin(ωx+φ)(A>0,ω>0)的 五个关键点
x
___
ωx+φ _0_
y= Asin(ωx 0
函数y=Asin(x+a)的图象及三角函数模型的简单应用

第四节 函数y =A sin(ωx +Φ)的图象及三角函数模型的简单应用1. 函数y =cos x (x ∈R )的图象向左平移2π个单位后,得到函数y =g (x )的图象,则g (x )的解析式为( )A. y =-sin xB. y =sin xC. y =-cos xD .y =cos x2. 已知f (x )=sin x x (x ∈R ),函数y =f (x +Φ)的图象关于直线x =0对称,则Φ的值可以是( )A.2π B.3π C. 4πD. 6π3. 如图为f (x )=A sin(ωx +Φ)(A >0,ω>0,|Φ|<π)的图象的一段,则其解析式为( )A. y 3x π⎛⎫-⎪⎝⎭B. y 223x π⎛⎫-⎪⎝⎭C. y 23x π⎛⎫+ ⎪⎝⎭D. y 23x π⎛⎫- ⎪⎝⎭4. 在同一平面直角坐标系中,函数y =cos 322x π⎛⎫+ ⎪⎝⎭(x ∈[0,2π])的图象和直线y =12的交点个数是( )A. 0B. 1C. 2D. 45. 关于函数y =sin 2x x 图象的对称性,下列说法正确的是( )A. 关于直线x =3π对称 B. 关于直线x =6π对称 C. 关于点03π⎛⎫⎪⎝⎭,对称D. 关于点06π⎛⎫⎪⎝⎭,对称6. (2010⋅天津)如图是函数y =A sin(ωx +Φ)(x ∈R )在区间566ππ⎡⎤-⎢⎥⎣⎦,上的图象,为了得到这个函数的图象,只要将y =sin x (x ∈R )图象上的所有点( )A. 向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B. 向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C. 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D. 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 7. (2010⋅辽宁改编)设ω>0,函数y =sin 3x πω⎛⎫+ ⎪⎝⎭+2的图象向右平移43π个单位后与原图象重合,则ω的最小值是________.8. (2011⋅济南模拟)把函数y =sin x (x ∈R )的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到的图象所表示的函数解析式为__________________.9. 如图所示为函数y =A sin(ωx +Φ)的图象上的一段,则这个函数的解析式为________.10. (2010⋅广东)已知函数f (x )=A sin(3x +Φ)(A >0,x ∈(-∞,+∞),0<Φ<π)在x =12π时取得最大值4.(1)求f (x )的最小正周期; (2)求f (x )的解析式;(3)若f 2312πα⎛⎫+⎪⎝⎭=125,求sin α.11. (2011⋅重庆南开中学月考)已知函数f (x )=A sin(ωx +Φ)0,0,02x A πω⎛⎫∈>><Φ< ⎪⎝⎭R ,的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最高点M ,26π⎛⎫ ⎪⎝⎭. (1)求f (x )的解析式;(2)求f (x )的单调区间.答案:6. A 解析:观察图象可知,函数y =A sin(ωx +Φ)中A =1,2πω=π,故ω=2,由ω⨯6π⎛⎫-⎪⎝⎭+Φ=0,得Φ=3π,所以函数y =sin 23x π⎛⎫+ ⎪⎝⎭,故只要把y =sin x 的图象向左平移3π个单位,再把各点的横坐标缩短到原来的12倍即可.7. 32 解析:由题意知T =2πω≤43π,∴ω≥32.8. y =sin 23x π⎛⎫+ ⎪⎝⎭ 解析:把函数y =sin x (x ∈R )的图象上所有的点向左平行移动3π个单位长度,得y =sin 3x π⎛⎫+ ⎪⎝⎭,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得y =sin 23x π⎛⎫+⎪⎝⎭. 9. y =2sin 3324x π⎛⎫- ⎪⎝⎭解析:由图象知,A =2,2T =56π-6π=23π,即T =43π.∵2πω=43π,∴ω=32,∴y =2sin 32x ⎛⎫+Φ ⎪⎝⎭.∵当x =56π时,y =2,∴2=2sin 3526π⎛⎫⨯+Φ ⎪⎝⎭,即sin 54π⎛⎫Φ+ ⎪⎝⎭=1,∴Φ+54π=2π,Φ=-34π,∴y =2sin 3324x π⎛⎫- ⎪⎝⎭.10. (1)T =23π.(2)由f (x )的最大值是4知,A =4,f (x )max =f 12π⎛⎫ ⎪⎝⎭=4sin 312π⎛⎫⨯+Φ ⎪⎝⎭=4,即sin 4π⎛⎫+Φ ⎪⎝⎭=1, ∵0<Φ<π,∴4π<4π+Φ<54π.∴4π+Φ=2π,∴Φ=4π. ∴f (x )=4sin 34x π⎛⎫+⎪⎝⎭. (3)f 2312πα⎛⎫+ ⎪⎝⎭=4sin[32312πα⎛⎫+ ⎪⎝⎭+4π]=125,即sin 233124ππα⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦=35, sin 22πα⎛⎫+ ⎪⎝⎭=35,即cos 2α=35,∴1-2sin 2α=35,sin 2α=15,∴sin α=±5.11. (1)由题意得f (x )的最小正周期T =2π⋅2=π,∴ω=2T π=2ππ=2.又由M 26π⎛⎫⎪⎝⎭是最高点,得A =2,且当α=6π时,f (x )有最大值. ∴sin 26π⎛⎫⋅+Φ ⎪⎝⎭=sin 3π⎛⎫+Φ ⎪⎝⎭=1,∴3π+Φ=2π+2k π,k ∈Z ,即Φ=6π+2k π,k ∈Z . 又∵0<Φ<2π,∴Φ=6π. ∴f (x )=2sin 26x π⎛⎫+⎪⎝⎭.(2)令-2π+2k π≤2x +6π≤2π+2k π,k ∈Z ,得k π-3π≤x ≤k π+6π,k ∈Z ; 令2π+2k π≤2x +6π≤32π+2k π,k ∈Z ,得k π+6π≤x ≤k π+23π,k ∈Z .∴f (x )在,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z 上单调递增;在2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z 上单调递减.。
高中数学必修4(人教A版)第一章三角函数1.6知识点总结含同步练习及答案

21 24 7.9 11.1
经长期观察,函数 y = f (t) 的图象可以近似地看成函数 y = k + A sin (ωt + φ) 的图象.下面的函数 中,最能近似表示表中数据间对应关系的函数是 ( A.y = 11 + 3 sin (
)
π π t + ) , t ∈ [0, 24] 12 2 π B.y = 11 + 3 sin ( t + π) , t ∈ [0, 24] 6 π C.y = 11 + 3 sin t , t ∈ [0, 24] 12 π D.y = 11 + 3 sin t , t ∈ [0, 24] 6
π π t + ) , t ∈ [0, 24] 12 2 π B. y = 11 + 3 sin ( t + π) , t ∈ [0, 24] 6 π C. y = 11 + 3 sin t , t ∈ [0, 24] 6 π D. y = 11 + 3 sin t , t ∈ [0, 24] 12
3. 某城市一年中 12 个月的平均气温与月份的关系可近似地用三角函数 y = a + A cos
π (x − 6) ( 6
x = 1, 2, 3, ⋯ , 12 ) 来表示,已知 6 月份的月平均气温最高,为 28∘ C , 12 月份的月平均气温最
低,为 18∘ C ,则 10 月份的平均气温值为
B.[1, 7]
D.[0, 1] 和 [7, 12]
2π π π 弧度,从而经过 t 秒转了 = t 弧度. 12 6 6 1 √3 π 而 t = 0 时, 点 A ( , .经过 t 秒后点 A 的纵坐标为 ) ,则 ∠xOA = 2 2 3
人教版高考数学(文):第3章第6讲函数y=asin(ωx+φ)的图象及三角函数模型的简单应用分层演练直击高考

)
A
π [解析] 函数 y=sin x 的图象向左平行移动 个单位长度可 3
π y=sinx+3的图象.
得到
第三章
三角函数、解三角形
3.函数 f(x)=tan ω x(ω>0)的图象的相邻两支截直线 y=2 所
π π 得线段长为 ,则 f6的值是( 2
) 3 B. 3 D. 3
g(x)的图
π 象关于直线 x= 对称,将 g(x)的图象向左平移 φ(φ>0)个单位 6 后与 f(x)的图象重合,则 φ 的最小值为________.
[解析] 函数 g(x)的解析式为 g(x)=sin 2x,其图象向左平移 φ 个单位后对应解析式为 y=sin(2x+2φ), π 从而 2φ= +2kπ, 3 π 即 φ= +kπ(k∈N), 6 π 所以 φmin= . 6 π [答案] 6
7.(2016· 高考全国卷丙)函数 y=sin x- 3cos x 的图象可由函 数 y=2sin x 的图象至少向右平移________个单位长度得到.
π x=2sinx- 3 , 所以函数
[解析] 因为 y=sin x- 3cos
y=sin x
π - 3cos x 的图象可由函数 y=2sin x 的图象至少向右平移 个 3 单位长度得到. π [答案] 3
A.- 3 C.1
D
π [解析] 由题意可知该函数的周期为 , 2
π π 所以 = ,ω =2,f(x)=tan 2x, ω 2 所以
π π f 6 =tan = 3
3.
第三章
三角函数、解三角形
4.(2017· 洛阳统考)已知函数 f(x)=Asin(ωx+φ) π A>0,ω>0,|φ|< 的部分图象如图所示,则 f(x) 的解析式是 2 ( ) π A.f(x)=sin3x+ 3 π B.f(x)=sin2x+ 3 π C.f(x)=sinx+ 3 π D.f(x)=sin2x+ 6 T 5π π 2π D [解析] 由图象可知 A=1, = - , 所以 T=π, 所以 ω= T 4 12 6
2023高考数学复习专项训练《三角函数的应用》(含答案)

2023高考数学复习专项训练《三角函数的应用》一、单选题(本大题共12小题,共60分)1.(5分)设函数f(x)=Acos(ωx+φ)(其中A>0,|ω|<;4,0<;φ<;π)的大致图象如图所示,则f(x)的最小正周期为()A. π2B. πC. 2πD. 4π2.(5分)数学必修二介绍了海伦−秦九韶公式:我国南宋时期著名的数学家秦九韶在其著作《数书九章》中,提出了已知三角形三边长求三角形的面积的公式,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.若把以上这段文字写成公式,即S=√14[a2c2−(a2+c2−b22)2],其中a、b、c分别为△ABC内角A、B、C的对边.若√3cosB√3sinB =1tanC,b=2,则△ABC面积S的最大值为()A. √3B. √5C. 3D. √23.(5分)某干燥塔的底面是半径为1的圆面O,圆面有一个内接正方形ABCD框架,在圆O的劣弧BC上有一点P,现在从点P出发,安装PA,PB,PC三根热管,则三根热管的长度和的最大值为()A、4B、2√3C、3√3D、2√6A. 4B. 2√3C. 3√3D. 2√64.(5分)现只有一把长为2m的尺子,为了求得某小区草坪坛边缘A,B两点的距离AB(AB大于2m),在草坪坛边缘找到点C与D,已知∠ACD=90∘,且tan∠ADB=−2√2,测得AC=1.2m,CD=0.9m,BD=1m,则AB=()A. √373m B. √5m C. √172m D. 3√22m5.(5分)已知函数f(x)=Asin(ωx+φ)(A>;0,ω>;0,|φ|<;π2)在一个周期内的图象如图所示.若方程f(x)=m在区间[0,π]上有两个不同的实数解x1,x2,则x1+x2的值为()A. π3B. 23π或43π C. 43π D. π3或43π6.(5分)设y=f(t)是某港口水的深度y(米)关于时间t(时)的函数,其中0⩽t⩽24.下表是该港口某一天从0时至24时记录的时间t与水深y的关系:经长期观观察,函数y=f(t)的图象可以近似地看成函数y=k+Asin(ωt+φ)的图象.在下面的函数中,最能近似表示表中数据间对应关系的函数是()A、y=12+3sinπ6t,t∈[0,24]B、y=12+3sin(π6t+π),t∈[0,24]C、y=12+3sinπ12t,t∈[0,24]D、y=12+3sin(π12t+π2),t∈[0,24]A. y=12+3sinπ6t,t∈[0,24]B. y=12+3sin(π6t+π),t∈[0,24]C. y=12+3sinπ12t,t∈[0,24]D. y=12+3sin(π12t+π2),t∈[0,24]7.(5分)泰山于1987年12月12日被列为世界文化与自然双重遗产,泰山及其周边坐落着许多古塔.某兴趣小组为了测量某古塔的高度,如图所示,在地面上一点A处测得塔顶B的仰角为60∘,在塔底C处测得A处的俯角为45∘.已知山岭高CD为256米,则塔高BC为()A. 256(√2−1)米B. 256(√3−1)米C. 256(√6−1)米D. 256(2√3−1)米8.(5分)为迎接校运动会的到来,学校决定在半径为20√2m,圆心角为π的扇形空地4OPQ内部修建一平行四边形观赛场地ABCD,如图所示,则观赛场地面积的最大值为( )A. 200m2B. 400(2−√2)m2C. 400(√3−1)m2D. 400(√2−1)m29.(5分)如图所示,单摆从某点开始来回摆动,离开平衡位置O的距离s(cm)和时),那么单摆摆动一个周期所需的时间为间t(s)的函数关系式为s=6sin(2πt+π6()A. 2πsB. πsC. 0.5sD. 1s10.(5分)小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆PA的高度与拉绳PB的长度相等,小明先将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为()A. 11+sin α米 B. 11−cos α米 C. 11−sin α米D. 11+cos α米11.(5分)瀑布是庐山的一大奇观,为了测量某个瀑布的实际高度,某同学设计了如下测量方案:有一段水平山道,且山道与瀑布不在同一平面内,瀑布底端与山道在同一平面内,可粗略认为瀑布与该水平山道所在平面垂直,在水平山道上A 点位置测得瀑布顶端仰角的正切值为32,沿山道继续走20m ,抵达B 点位置测得瀑布顶端的仰角为π3.已知该同学沿山道行进的方向与他第一次望向瀑布底端的方向所成角为π3,则该瀑布的高度约为()A. 60mB. 90mC. 108mD. 120m12.(5分)设y =f(t)是某港口水的深度y (米)关于时间t (时)的函数,其中0⩽t ⩽24,表格中是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数y =f(t)的图象可以近似地看成函数y =k +Asin(ωt +φ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )A. y =12+3sin π6t,t ∈[0,24] B. y =12+3sin(π6t +π2),t ∈[0,24] C. y =12+3sin π12t,t ∈[0,24] D. y =12+3sin(π12t +π2),t ∈[0,24] 二 、填空题(本大题共5小题,共25分)13.(5分)振动量函数y =√2sin(ωx +φ)(ω>;0)的初相和频率分别为-π和32,则它的运动周期为_______________,相位是_______________.14.(5分)如图,在平面直角坐标系中,点P 以每秒π2的角速度从点A 出发,沿半径为2的上半圆逆时针移动到B ,再以每秒π3的角速度从点B 沿半径为1的下半圆逆时针移动到坐标原点O,则上述过程中动点P的纵坐标y关于时间t的函数表达式为__________.15.(5分)函数f(x)=sin(ωx+φ)(其中ω>;0,|φ|<;π2)的图象如图所示,则函数f(x)=sin(ωx+φ)的最小正周期为_______________;为了得到g(x)=sinωx的图象,只需把y=f(x)的图象上所有的点向右平移_______________个单位长度.16.(5分)已知海湾内海浪的高度y(米)是时间t(0⩽t⩽24,单位:小时)的函数,记作y=f(t).某日各时刻记录的浪高数据如下表:经长期观测,y=f(t)可近似地看成是函数y=Acosωt+b.根据以上数据,可得函数y=Acosωt+b的表达式为__________.17.(5分)一个匀速旋转的摩天轮每12分钟转一周,最低点距地面2米,最高点距地面18米,P是摩天轮轮周上一定点,从P在最低点时开始计时,则16分钟后P点距地面的高度是____.三、解答题(本大题共6小题,共72分)18.(12分)某地为发展旅游业,在旅游手册中给出了当地一年每个月的月平均气温表,根据图中提供的数据,试用y=Asin(ωt+φ)+b近似地拟合出月平均气温y(单位:℃)与时间t(单位:月)的函数关系,并求出其周期和振幅,以及气温达到最大值和最小值的时间.(答案不唯一)19.(12分)某地种植大棚蔬菜,已知大棚内一天的温度(单位:℃)随时间t(单位:ℎ)的变化近似满足函数关系:f(t)=12−3sin(π12t+π3),t∈[0,24).(1)求实验室这一天的最大温差;(2)若某种蔬菜的生长要求温度不高于10.5℃,若种植这种蔬菜,则在哪段时间大棚需要降温?20.(12分)如图,有一块以点O为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD开辟为绿地,使其一边AD落在半圆的直径上,另两点B,C落在半圆的圆周上.已知半圆的半径长为20m.(1)如何选择关于点O对称的点A,D的位置,可以使矩形ABCD的面积最大,最大值是多少?(2)沿着AB,BC,CD修一条步行小路从A到D,如何选择A,D位置,使步行小路的距离最远?21.(12分)健康成年人的收缩压和舒张压一般为120~140mmHg和60~90mmHg.心脏跳动时,血压在增加或减小.血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数120/80mmHg为标准值.记某人的血压满足函数式p(t)=25sin160πt+115,其中p(t)为血压(mmHg),t为时间(min),试回答下列问题:(1)求函数p(t)的周期;(2)求此人每分钟心跳的次数;(3)求出此人的血压在血压计上的读数,并与正常值比较.22.(12分)如果α为小于360°的正角,且这个角的7倍角的终边与这个角的终边重合,则这样的角α是否存在?23.(12分)某港口的水深y(米)是时间t(0≤t≤24,单位:小时)的函数,下面是每天时间与水深的关系表:(A>0,ω>0).(1)根据以上数据,求出y=f(t)的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,则船舶在一天中有几个小时可以安全进出该港?答案和解析1.【答案】C;【解析】略2.【答案】A;【解析】此题主要考查正弦定理在解三角形中的应用,两角和与差公式,考查二次函数求最值问题,考查转化思想,属于较难题.先利用两角和的正弦公式、三角形的内角和、诱导公式化简已知条件可得sinC=√3sinA,由正弦定理可得c=√3a代入面积公式结合二次函数的性质即可求解.解:因为√3cosB√3sinB =1tanC=cosCsinC,所以sinC=√3sinCcosB+√3cosCsinB=√3sin(B+C)=√3sinA,由正弦定理可得:c=√3a,代入面积公式可得:S=√14[a2⋅3a2−(a2+3a2−222)2]=√14[3a4−(2a2−2)2]=√14(−a4+8a2−4)=√14[−(a2−4)2+12]=√−14(a2−4)2+3,所以当a=2时,−14(a2−4)2+3取得最大值3,所以△ABC面积S的最大值为√3,故选:A.3.【答案】null;【解析】此题主要考查三角函数的实际应用,属于基础题.求出|PA|+|PB|+|PC|=2√3sin(θ+φ),利用三角函数的性质即可求解.解:如图,设∠PAC=θ,θ∈[0,π4],可得|PA|+|PB|+|PC|=2[cosθ+sin(π4−θ)+sinθ]=(2+√2)cosθ+(2−√2)sinθ=2√3sin(θ+φ),其中tanφ=3+2√2,φ∈(π4,π2 ),所以(|PA|+|PB|+|PC|)max=2√3,由的范围可以取到最大值.故选B.4.【答案】C;【解析】此题主要考查解三角形的实际应用,考查数学运算的核心素养与应用意识,属于中档题.由题意可得AD=1.5m,利用tan∠ADB,求出cos∠ADB,进一步进行求解即可.解:因为∠ACD=90∘,AC=1.2m,CD=0.9m,所以AD=√AC2+CD2=1.5m.因为tan∠ADB=−2√2,所以cos∠ADB=−13,所以AB=√1.52+12−2×1.5×1×(−13)=√172m.5.【答案】D;【解析】略6.【答案】null;【解析】此题主要考查由y=Asin(ωx+φ)的部分图象确定其解析式以及应用,通过对实际问题的分析,转化为解决三角函数问题,属基础题.通过排除法进行求解,由y=f(t)可以近似看成y=k+Asin(ωx+φ)的图象,故可以把已知数据代入y=k+Asin(ωx+φ)中,分别按照周期和函数值排除,即可求出答案.解:排除法:∵y=f(t)可以近似看成y=k+Asin(ωx+φ)的图象,∴由T=12可排除C、D,将(3,15)代入,排除B.故选A.7.【答案】B;此题主要考查了三角形的边角关系应用问题,也考查了数形结合思想和运算求解能力,属于基础题.根据题意结合图形,利用三角形的边角关系,即可求出塔高BC 的值.解:如图所示,在Rt △ACD 中,∠CAD =45°,CD =256, 所以AD =256,在Rt △ABD 中,∠BAD =60°, 所以BD =ADtan∠BAD =256√3, 所以BC =BD −CD =256√3−256, 即塔高BC 为256(√3−1)米. 故选:B.8.【答案】D;【解析】如图所示,连接OC ,设∠COA =θ,作DF ⊥OP ,CE ⊥OP ,垂足分别为F ,E .根据平面几何知识可知,AB =CD =EF ,DF =OF =CE ,∴CE =20√2sinθ,EF =OE −OF =20√2cosθ−20√2sinθ.故四边形ABCD 的面积S 等于四边形DFEC 的面积,即有S =20√2sinθ×20√2(cosθ−sinθ)=400(sin2θ+cos2θ−1)=400√2sin(2θ+π4)−400,其中θ∈(0,π4).所以当sin(2θ+π4)=1,即θ=π8时,S max =400(√2−1),即观赛场地面积的最大值为400(√2−1)m 2.故选D .9.【答案】D;10.【答案】C; 【解析】此题主要考查三角函数在实际生活中的应用. 由题设可得PA −1=PAsinα,即可得结果. 解:由题设,PC =PB′sinα=PAsinα,而PC =PA −1,所以PA −1=PAsinα,可得PA =11−sinα米.故选:C11.【答案】A; 【解析】此题主要考查解三角形的应用,根据题意作出示意图是解答该题的关键,考查空间立体感、学科素养和运算能力,属于中档题.作出示意图,过点B 作BC ⊥OA 于C ,结合三角函数和勾股定理,转化为平面几何中的简单计算,即可得解.解:根据题意作出如下示意图,其中tanα=32,β=θ=π3,AB =20m ,过点B 作BC ⊥OA 于C , 设OH =3x ,则OA =OH tanα=2x ,OB =OH tanβ=√3x ,在Rt △ABC 中,因为AB =20,θ=π3,所以AC =AB ×cos π3=10,BC =AB ×sin π3=10√3,所以OC =OA −AC =2x −10,在Rt △OBC 中,由勾股定理知,(2x −10)2+(10√3)2=(√3x)2, 化简得x 2−40x +400=0,解得x =20, 所以瀑布的高度OH =3x =60m.故答案选:A.12.【答案】A;【解析】略13.【答案】23;3πx−π; 【解析】略14.【答案】f(t)={2sinπt2,0<t⩽2sin[π3(t−2)+π],2<t⩽5;【解析】此题主要考查利用三角函数的定义解决实际问题,在做题过程中点的坐标与角度之间的关系,属于综合题.解:由三角函数的定义可得:当动点P在半径为2的上半圆上运动时,t∈(0,2],终边OP对应的角度为π2t,所以P点坐标为(2cosπ2t,2sinπ2t),当动点P在半径为1的下半圆上运动时,t∈(2,5],终边OP对应的角度为π3(t−2)+π,所以P点坐标为(cos[π3(t−2)+π],sin[π3(t−2)+π]),综上:动点P的纵坐标y关于时间t的函数表达式为y={2sinπ2t,t∈(0,2]sin[π3(t−2)+π],t∈(2,5]15.【答案】π;π6+kπ,k∈Z;【解析】略16.【答案】y=12cosπ6t+1;【解析】此题主要考查了三角函数模型的应用的相关知识,试题难度一般. 解题时先计算出周期和振幅,然后求解解析式即可.解:由表中数据,知周期T=12,∴ω=2πT =2π12=π6,由t=0,y=1.5,得A+b=1.5;由t=3,y=1.0,得b=1.0,∴A=0.5,b=1,∴y=12cosπ6t+1.17.【答案】14;【解析】解:设P 与地面高度与时间t 的关系,f (t )=Asin (ωt+φ)+B (A >0,ω>0,φ∈[0,2π)),由题意可知:A=8,B=10,T=12,所以ω=,又因为f (0)=2,故ϕ=-πt所以f (16)=8sin(π- . 故答案为:14.18.【答案】解:根据图象可知,当t =1时,y 有最小值15;当t =8时,y 有最大值27. ∴{−A +b =15ω+φ=−π28ω+φ=π2A +b =27解得{A =6b =21ω=π7φ=−9π14, ∴y =6sin(π7t −9π14)+21,周期T =2πω=2ππ7=14,振幅A =6.气温在1月份时达到最低, 在8月份时达到最高.;【解析】此题主要考查由y =Asin(ωt +φ)的部分图象确定其解析式,属于中档题. 当t =8月份时平均气温达到最大值25℃,当t =1月份时,平均气温达到最小值15℃,列出方程组,结合周期与振幅,从而可得函数解析式.19.【答案】解:(1)由题意,函数f(t)=12−3sin(π12t +π3),t ∈[0,24), 根据正弦型函数的性质可得−1⩽sin(π12t +π3)⩽1,所以f(t)max=15,f(t)min=9,可得f(t)max−f(t)min=6,则实验室这一天的最大温差为6℃.(2)由题意,令f(t)>10.5,即12−3sin(π12t+π3)>10.5,即sin(π12t+π3)<12,因为t∈[0,24),可得π12t+π3∈[π3,7π3),所以5π6<π12t+π3<13π6,解得6<t<22,即在6时至22时这段时间内大棚需要降温.;【解析】此题主要考查了函数y=Asin(ωx+φ)的图象与性质,三角函数模型的应用,属于中档题.(1)根据正弦型函数的性质可得−1⩽sin(π12t+π3)⩽1,求得f(t)max=15,f(t)min=9,进而求得这一天的最大温差;(2)根据题意,令f(t)>10.5,得到sin(π12t+π3)<12,利用正弦型函数的性质,求得t的范围即可求解.20.【答案】解(1)连接OB,如图所示,设∠AOB=θ,则AB=OBsinθ=20sinθ,OA=OBcosθ=20cosθ,且θ∈(0,π2).因为A,D关于点O对称,所以AD=2OA=40cosθ.设矩形ABCD的面积为S,则S=AD·AB=40cosθ·20sinθ=400sin2θ.因为θ∈(0,π2),所以2θ∈(0,π),所以当sin2θ=1,即θ=π4时,S max=400(m2).此时AO=DO=10√2(m).故当A,D距离圆心O为10√2m时,矩形ABCD的面积最大,其最大面积是400m2.(2)由(1)知AB=20sinθ,AD=40cosθ,所以AB+BC+CD=40sinθ+40cosθ=40√2sin(θ+π4),又θ∈(0,π2),所以θ+π4∈(π4,3π4),当θ+π4=π2,即θ=π4时,(AB+BC+CD)max=40√2(m),此时AO=DO=10√2(m),即当A,D距离圆心O为10√2m时,步行小路的距离最远.;【解析】此题主要考查三角函数在实际生活中的应用,考查正弦函数的最值,是中档题21.【答案】解(1)T =2π|ω|=2π160π =180(min).(2)f =1T=80. 即此人每分钟心跳的次数为80.(3)p(t)max =115+25=140(mmHg),p(t)min =115−25=90(mmHg), 即收缩压为140mmHg ,舒张压为90mmHg.此人的血压在血压计上的读数为140/90mmHg ,在正常值范围内.;【解析】此题主要考查三角函数在实际生活中的应用,考查正弦函数的周期与频率之间的关系以及求正弦函数的的值域相关问题,属于一般题.22.【答案】解:由题意,有7α=k·360°+α(k ∈Z),即α=k·60°. 又由于0°<α<360°,即0°<k·60°<360°(k ∈Z),则k 取1,2,3,4,5,所以α的值可取60°,120°,180°240°,300°.; 【解析】略.23.【答案】【解析】(1)由题表中数据可得:水深的最大值为13,最小值为7,所以{A +B =13,−A +B =7B =13+72=10,A =13−72=3,且相隔12小时达到一次最大值,说明周期为12,因此T=2πω=12,ω=π6,故f(t)=3sin π6t +10(0≤t ≤24)(2)要想船舶安全,必须f (t )≥11.5,即3sin π6t +10≥11.5, 所以sin π6t ≥12,所以2kπ+π6≤π6t ≤5π6+2kπ,k ∈Z ,解得12k+1≤t≤5+12k ,k ∈Z ,当k=0时,1≤t≤5;当k=1时,13≤t≤17.故船舶能安全进出该港的时间段为1:00至5:00,13:00至17:00,共8个小时.; 【解析】略。
三角函数模型的简单应用试题含答案

一、选择题1.函数的2cos 3cos 2y x x =-+最小值为( )A .2B .0C .41-D .62.2sin 5cos )(+-⋅=x x x x f ,若a f =)2(,则)2(-f 的值为( ). A .-a B .2+a C .2-a D .4-a3.设A 、B 都是锐角,且cosA >sinB 则A+B 的取值是 ( )A .⎪⎭⎫ ⎝⎛ππ,2B .()π,0C .⎪⎭⎫⎝⎛2,0πD .⎪⎭⎫⎝⎛2,4ππ4.若函数)(x f 是奇函数,且当0<x 时,有x x x f 2sin 3cos )(+=,则当0>x 时,)(x f 的表达式为( )A .x x 2sin 3cos +B .x x 2sin 3cos +-C .x x 2sin 3cos -D .x x 2sin 3cos --5.下列函数中是奇函数的为( )A .y=xx xx cos cos 22-+ B .y=xx x x cos sin cos sin -+ C .y=2cosxD .y=lg(sinx+x 2sin 1+)二、填空题 6.在满足xx4πtan 1πsin +=0的x 中,在数轴上求离点6最近的那个整数值是 .7.已知()sin 4f x a x =+(其中a 、b 为常数),若()52=f ,则()2f -=__________.8.若︒>30cos cos θ,则锐角θ的取值范围是_________.9.由函数⎪⎭⎫⎝⎛≤≤=6563sin 2ππx x y 与函数y =2的图象围成一个封闭图形,这个封闭图形的面积是_________.10.函数1sin(2)2y x θ=+的图象关于y 轴对称的充要条件是三、解答题11.如图,表示电流强度I 与时间t 的关系式),0,0)(sin(>>+=ωϕωA t A I 在一个周期内的图象.①试根据图象写出)sin(ϕω+=t A I 的解析式 ②为了使)sin(ϕω+=t A I 中t 在任意一段1100秒的时间内I 能同时取最大值|A|和最小值-|A|, 那么正整数ω的最小值为多少?12.讨论函数y=lgcos2x 的的定义域、值域、奇偶性、周期性和单调性等函数的基本性质13.函数2()122cos 2sin f x a a x x =---的最小值为()()g a a R ∈, (1)求g a ()的表达式;(2)若1()2g a =,求a 及此时()f x 的最大值14.已知f(x)是定义在R 上的函数,且1()(2)1()f x f x f x ++=-(1)试证f(x)是周期函数. (2)若f(3)=f(2005)的值.15.已知函数)0,0)(sin()(πϕωϕω≤≤>+=x x f 是R 上的偶函数,其图象关于点⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛2π0,对称,且在,043πM 上是单调函数,求ϕω和的值.参考答案一、选择题1.B 2.D 3.C 4.B 5.D 二、填空题6.1 7.3 8.︒<<︒300θ 9.π34 10.,2k k Z πθπ=+∈三、解答题11.(1))3100sin(300ππ+=t I (2)629=ω12.定义域:(kπ-4π,kπ+4π),k ∈Z;值域]0,(-∞;奇偶性:偶函数;周期性:周期函数,且T=π;单调性:在(kπ-4π,kπ] (k ∈Z)上递增,在[kπ,kπ+4π)上递减13.2()122cos 2sin f x a a x x =---2122cos 2(1cos )a a x x =----22cos 2cos 12x a x a =---222(cos )12()22aa x a a R =----∈ (1)函数()f x 的最小值为()g a1.122aa <-<-当时即时,cos 1x =-由得 22()2(1)12122a a g a a =-----=2.11222a a -≤≤-≤≤当时即时,cos 2ax =由得 2()122a g a a =---3.122aa >>当时即时,cos 1x =由,22()2(1)1222a a g a a =----得=14a -综上所述得 21(2)()12(22)214(2)a a g a a a a a <-⎧⎪⎪=---≤≤⎨⎪->⎪⎩-(2) g a a ()=∴-≤≤1222有 2211243022a a a a -=++=--得13()a a ∴=-=-或舍221()2(cos )1222a a a f x x a =-=----将代入 211()2(cos )22f x x =++得cos 1x =当 2()x k k Z π=∈即时得 max ()5f x =14.(1)由1()(2)1()f x f x f x ++=-,故f(x+4)=)2(1)2(1+-++x f x f =1()f x -f(x+8)=f(x+4+4)=1(4)f x -+=f(x),即8为函数()f x 的周期 (2)由f(x+4) =1()f x -,得f(5)=1(1)f -=∴f(2005)=f(5+250×315. 由f (x )为偶函数,知|f (0)|=1,结合πϕ≤≤0,可求出2πϕ=.又由图象关于⎪⎭⎫⎝⎛0,43πM 对称,知043=⎪⎭⎫⎝⎛πf ,即043cos =ωπ 又0>ω及()()()2,1,01232,,2,1,0243=+=∴=+=k k k k ωππωπ . 当k=0,1即32=ω,2时,易验证f (x )在⎥⎦⎤⎢⎣⎡2,0π上单减;k≥2时,f(x )在⎥⎦⎤⎢⎣⎡2,0π上不是单调的函数.综上所述22,32πωϕ==或。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.函数的2cos 3cos 2y x x =-+最小值为( )
A .2
B .0
C .4
1
-
D .6
2.2sin 5cos )(+-⋅=x x x x f ,若a f =)2(,则)2(-f 的值为( ). A .-a B .2+a C .2-a D .4
-a
3.设A 、B 都是锐角,且cosA >sinB 则A+B 的取值是 ( )
A .⎪⎭
⎫ ⎝⎛ππ,2
B .()π,0
C .⎪⎭
⎫
⎝
⎛2,0π
D .⎪⎭
⎫
⎝⎛2,4ππ
4.若函数)(x f 是奇函数,且当0<x 时,有x x x f 2sin 3cos )(+=,则当0>x 时,)(x f 的表达式为( )
A .x x 2sin 3cos +
B .x x 2sin 3cos +-
C .x x 2sin 3cos -
D .x x 2sin 3cos --
5.下列函数中是奇函数的为( )
A .y=x
x x
x cos cos 22-+ B .y=
x
x x x cos sin cos sin -+ C .y=2cosx
D .y=lg(sinx+x 2sin 1+)
二、填空题 6.在满足
x
x
4
πtan 1πsin +=0的x 中,在数轴上求离点6最近的那个整数值是 .
7.已知(
)sin 4f x a x =+(其中a 、b 为常数),若()52=f ,则
()2f -=__________.
8.若︒>30cos cos θ,则锐角θ的取值范围是_________.
9.由函数⎪⎭
⎫
⎝⎛≤
≤=656
3sin 2ππ
x x y 与函数y =2的图象围成一个封闭图形,这个封闭图形的面积是_________.
10.函数1sin(2)2
y x θ=+的图象关于y 轴对称的充要条件是
三、解答题
11.如图,表示电流强度I 与时间t 的关系式
),0,0)(sin(>>+=ωϕωA t A I 在一个周期内的图象.
①试根据图象写出)sin(ϕω+=t A I 的解析式 ②为了使)sin(ϕω+=t A I 中t 在任意一段
1100
秒的时间内I 能同时取最大值|A|和最小值-|A|, 那么正整数ω的最小值为多少?
12.讨论函数y=lgcos2x 的的定义域、值域、奇偶性、周期性和单调性等函数的基本性质
13.函数2()122cos 2sin f x a a x x =---的最小值为()()g a a R ∈, (1)求g a ()的表达式;(2)若1
()2
g a =,求a 及此时()f x 的最大值
14.已知f(x)是定义在R 上的函数,且1()(2)1()
f x f x f x ++=
-
(1)试证f(x)是周期函数. (2)若f(3)=f(2005)的值.
15.已知函数)0,0)(sin()(πϕωϕω≤≤>+=x x f 是R 上的偶函数,其图象关于点⎥⎦
⎤
⎢⎣⎡⎪⎭⎫
⎝⎛2π0,对称,且在,043πM 上是单调函数,求ϕω和的值.
参考答案
一、选择题
1.B 2.D 3.C 4.B 5.D 二、填空题
6.1 7.3 8.︒<<︒300θ 9.π3
4 10.,2k k Z π
θπ=+∈
三、解答题
11.(1))3
100sin(300π
π+=t I (2)629=ω
12.定义域:(kπ-4π,kπ+4
π
),k∈Z;值域]0,(-∞;奇偶性:偶函数;
周期性:周期函数,且T=π;单调性:在(kπ-4
π
,kπ] (k∈Z)上递增,在
[kπ,kπ+4
π
)上递减
13.2()122cos 2sin f x a a x x =---
2122cos 2(1cos )a a x x =----
2
2cos 2cos 12x a x a =---2
2
2(cos )12()22
a
a x a a R =----
∈ (1)函数()f x 的最小值为()g a
1.122a
a <-<-当时即时,cos 1x =-由得 22()2(1)12122a a g a a =-----=
2.11222a a -≤≤-≤≤当时即时,cos 2
a
x =由得 2()122a g a a =---
3.122
a
a >>当时即时,cos 1x =由,22()2(1)1222a a g a a =----得=14a -
综上所述得 21
(2)()12(22)214(2)
a a g a a a a a <-⎧⎪
⎪
=---≤≤⎨⎪
->⎪⎩-
(2)Θg a a ()=
∴-≤≤1
2
22有 221
1243022
a a a a -=++=--得
13()a a ∴=-=-或舍
221()2(cos )1222a a a f x x a =-=----将代入 211
()2(cos )22
f x x =++得
cos 1x =当 2()x k k Z π=∈即时得 max ()5f x =
14.(1)由1()(2)1()
f x f x f x ++=
-,故f(x+4)=
)2(1)2(1+-++x f x f =1
()
f x -
f(x+8)=f(x+4+4)=1
(4)
f x -+=f(x),即8为函数()f x 的周期 (2)由
f(x+4)
=
1()
f x -
,得f(5)
=
1(1)f -
=
3
15. 由f (x )为偶函数,知|f (0)|=1,结合πϕ≤≤0,可求出2
π
ϕ=.
又由图象关于⎪⎭
⎫
⎝⎛0,43πM 对称,知04
3=⎪⎭
⎫
⎝⎛πf ,即043cos =ωπ 又0>ω及
()()()2,1,0123
2
,,2,1,0243=+=∴=+=k k k k ωππωπΛ. 当k=0,1即3
2
=ω,2时,易验证f (x )在⎥⎦
⎤⎢⎣⎡2,0π上单减;k≥2时,
f (x )在⎥
⎦
⎤⎢⎣⎡2,0π上不是单调的函数.综上所述22,32
πωϕ==或。