实验室气相色谱仪原理及操作步骤.

合集下载

实验室气相色谱仪原理及操作步骤.

实验室气相色谱仪原理及操作步骤.

实验室气相色谱仪原理及操作步骤.气相色谱仪原理及步骤一气相色谱仪的原理:色谱分析是一种多组份混合物的分离、分析工具。

它主要利用物质的物理性质对混合物进行分离,测定混合物的各组份。

并对混合物中的各组份进行定量、定性分析。

气相色谱仪是以气体作为流动相(载气)。

当样品被送入进样器后由载气携带进入色谱柱。

由于样品中各组份在色谱柱中的流动相(气相)和固定相(液相或固相)间分配或吸附系数的差异。

在载气的冲洗下,各组份在两相间作反复多次分配,使各组份在色谱柱中得到分离,然后由接在柱后的检测器根据组份的物理化学特性,将各组份按顺序检测出来。

使用气相色谱法具有以下特点:1.分离效能高。

对物理化学性能很接近的复杂混合物质都能很好地分离,进行定性、定量检测。

有时在一次分析时可同时解决几十甚至上百个组分的分离测定。

2.灵敏度高。

能检测出ppm级甚至ppb级的杂质含量3 分析速度快。

一般在几分钟或几十分钟内可以完成一个样品的测定。

4.应用范围广。

气相色谱法可以分析气体、易挥发的液体和固体样品。

就有机物分析而言,应用最为广泛,可以分析约20%的有机物。

此外,某些无机物通过转化也可以进行分析。

二步骤:(1)打开氮气、氢气、空气发生器的电源开关(或氮气钢瓶总阀),调整输出压力稳定在0.4Mpa左右(气体发生器一般在出厂时已调整好,不用再调整)。

(2)打开色谱仪气体净化器的氮气开关转到“开”的位置。

注意观察色谱仪载气B的柱前压上升并稳定大约5分钟后,打开色谱仪的电源开关。

(3)设置各工作部温度。

TVOC分析的条件设置:(a)柱箱:柱箱初始温度50℃、初始时间10min、升温速率5℃/min、终止温度250℃、终止时间10min; (b)进样器和检测器:都是250℃。

苯分析时的色谱条件:(a)柱箱:柱箱初始温度100℃、初始时间0min、升温速率0℃/min、终止温度0℃、终止时间0min; (b)进样器和检测器:都是150℃。

(4)点火:待检测器(按“显示、换档、检测器”可查看检测器温度)温度升到100℃以上后,打开净化器上的氢气、空气开关阀到“开”的位置。

气相色谱仪的一般流程和工作原理

气相色谱仪的一般流程和工作原理

气相色谱仪的一般流程和工作原理一台完整的气相色谱仪包括下列几个基本组成部分,如图6—17所示。

1)载气供气系统.包括供气钢瓶(或气源)、减压稳压器、过滤干操器、流量控制器、流量指示器等。

载气流量一般控制在10-200mL/min。

2)分离色谱柱。

色谱柱是气相色谱仪的心脏,样品分析的分离全靠在色谱柱中进行.目前在气相色谱仪中,填充柱、毛细管柱和填充毛细管柱用得最多.3)进样系统。

进样系统用来精确调整每次分析的进样量,同时保证把液态样品转化为气相,然后加人载气气流中,因此它具备温度可以调整的汽化器。

进样定m的操作在试验室色谱仪中常用微量注射器人工注人,而在工业色谱仪中是采用转阀控制的金属定量管进样。

转阀的切换可以由人工或自动程序控制系统操作.4)检测器。

检测器是把物质流出的组分转换为电信号输出,并经放大器放大后由记录仪表记录或由数据处理装置求积、显示、打印.检测器不仅有热导检测器,也有氢火焰离子化检测器和各种放射性检测器等.5)供电及信号放大记录、处理装置。

气相色谱仪检测器的供电要求稳定,当用热检测器时,应有直流稳压电源供电,另一方面检测器输出的信号,常常是毫安或微安数量级甚至更小,因此必须加以放大;当测最高浓度或反应灵敏的组分时,由于输出信号太大,以至超出指示记录仪的测量范围,所以又需要适当地进行信号衰减才能输送给记录仪和数据处理装置.信号记录仪最常用的是电子自动电位差计.常见的数据处理装置有数字显示打印自动积分仪、小型电子计算机等,它们常与程序控制系统联用。

6)恒温级程序控制系统、色谱柱、检测器及汽化器。

这些部件要求在一定温度下工作,因此在色谱仪中这三个部件装在恒温箱中,由恒温控制系统控制稳定的温度。

恒温控制的精度一般都在土0。

5℃ ,程序控制系统包括自动进料、出峰自动衰减、程序升温、柱子的自动切换等。

简单的程序控制可采用机械凸轮式,较高复杂的用电子程序控制器。

气相色谱仪的结构,按其用途不同而有许多种类.下面简单介绍以热导池为检测器的实验用气相色谱仪,其流程示意图如图6-18所示.载气由高压气瓶1(或其他气源)经减压阀2减压供给,精密调节阀3控制载气的压力和流量,再通过净化干操管4净化脱水之后,进人热导池6的参比池,随后通过进样器7到色谱柱8,最后从热导池的测量池放空.色谱柱后的流速可用皂膜流速计9侧定.待色谱柱温度及气流稳定后,从进样器注人待分析样品,在载气带动下,不同的组分在色谱柱内得到分离而先后流出色谱柱。

气相色谱仪使用方法及试验操作步骤

气相色谱仪使用方法及试验操作步骤

气相色谱仪使用方法及试验操作步骤气相色谱技术是现代化学分析中的紧要手段之一、气相色谱仪(GC)是一种高效液相色谱(HPLC)和毛细管电泳技术(CE)之类的分析仪器,广泛应用于生物化学、环境分析、食品安全、药物、化工等领域。

本文介绍气相色谱仪的使用方法和试验操作步骤,希望对大家的讨论工作有所帮忙。

一、气相色谱仪的基本原理气相色谱法是一种在惰性载气流动作用下,利用样品成分在不同温度下对固定相上分别的方法。

气相色谱仪紧要由进样装置、色谱柱、检测器、计算机软件构成。

其中,色谱柱是气相色谱仪的核心部件,可以依据不同的应用场合配置不同种类的色谱柱。

气相色谱仪基本原理如下:1.样品挥发成分进入色谱柱2.色谱柱中填充有不同材料的液态或固态载气固定相3.不同挥发成分因固定相的选择性分别在分别列中停留时间不同4.通过检测器检测不同挥发成分的特征值并进行分析和识别二、气相色谱仪的使用方法在使用气相色谱仪前,需要正确安装气瓶、NN、纯化器等设备并进行调试。

操作气相色谱仪时需要保持仪器的稳定和一些紧要试验参数的精准性,操作前应谙习相关操作手册。

1. 样品的制备在进行气相色谱分析之前,必需将待测的样品进行制备。

在样品制备过程中需要注意以下几点:1.样品中的挥发物质必需彻底挥发,在对样品进行处理之前要先进行预处理2.需要保证样品的纯度,才能保证气相色谱仪的分析结果精准3.样品制备过程中不得使用水及含水溶液2. 进样操作样品制备完成后,需要将样品注入气相色谱仪中进行分析。

进样过程中应注意以下事项:1.进样量应依据样品的性质和检测要求合理选择,超量进样会影响分析结果2.在进样前应先进行检测器本底稳定,然后才能进行样品的进样3.每次进样之前,应清洗进样针头以确保不会显现交叉污染的情况3. 计算分析结果在分析中,需要计算并分析样品的峰面积、峰高度、保留时间等分析参数。

计算分析结果时,应注意以下几点:1.分析结果的精准性和牢靠性与仪器和操作人员的技术水平有关,需要统计和分析每个分析参数的偏差情况,以确定操作的精准性2.计算结果应与标准品进行对比,然后进行数据修正,以确定试验数据的精准性和牢靠性三、试验操作步骤以下是气相色谱仪常规分析的步骤:1.准备分析样品,依照标准样品来自制,应使用干燥无残留污染的样品容器2.准备好进样设备,清洗进样针头3.设置分析条件,包括纪录时间、流速、温度程序4.进样到色谱柱中5.依照设定条件进行扫描,然后进行数据分析6.依据得到的数据进行分析,然后生成试验报告四、总结气相色谱仪是一种紧要的分析仪器,广泛应用于生物化学、环境分析、食品安全、药物、化工等领域。

气相色谱仪原理结构及操作

气相色谱仪原理结构及操作

气相色谱仪原理、结构及操作1、基本原理气相色谱GC是一种分离技术;实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析;混合物的分离是基于组分的物理化学性质的差异,GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离;待分析样品在汽化室汽化后被惰性气体即载气,一般是N2、He等带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡;但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出;当组分流出色谱柱后,立即进入检测器,检测器能够将样品组分的存在与否转变为电信号,而电信号的大小与被测组分的量或浓度成比例,当将这些信号放大并记录下来时,就是如图2所示的色谱图假设样品分离出三个组分,它包含了色谱的全部原始信息;在没有组分流出时,色谱图的记录是检测器的本底信号,即色谱图的基线;2、气相色谱结构及维护进样隔垫进样隔垫一般为硅橡胶材料制成,一般可分普通型、优质型和高温型三种,普通型为米黄色,不耐高温,一般在200℃以下使用;优质型可耐温到300℃;高温型为绿色,使用温度可高于350℃,至色谱柱最高使用温度的400℃;正因为进样隔垫多为硅橡胶材料制成,其中不可避免地含有一些残留溶剂和/或低分子齐聚物,另外由于汽化室高温的影响,硅橡胶会发生部分降解,这些残留的溶剂和降解产物如果进入色谱柱,就可能出现“鬼峰”即不是样品本身的峰,从而影响分析;解决的办法有:一是进行“隔垫吹扫”,二是更换进样隔垫;一般更换进样隔垫的周期以下面三个条件为准:1出现“鬼峰”;2保留时间和峰面积重现性差;3手动进样次数70次,或自动进样次数50次以后;玻璃衬管气相色谱的衬管多为玻璃或石英材料制成,主要分成分流衬管、不分流衬管、填充柱玻璃衬管三种类型;衬管能起到保护色谱柱的作用,在分流/不分流进样时,不挥发的样品组分会滞留在衬管中而不进入色谱柱;如果这些污染物在衬管内积存一定量后,就会对分析产生直接影响;比如,它会吸附极性样品组分而造成峰拖尾,甚至峰分裂,还会出现“鬼峰”,因此一定要保持衬管干净,注意及时清洗和更换;玻璃衬管清洗的原则和方法当以下现象:1出现“鬼峰”;2保留时间和峰面积重现性差出现时,应考虑对衬管进行清洗;清洗的方法和步骤如下:1拆下玻璃衬管;2取出石英玻璃棉;3用浸过溶剂比如丙酮的纱布清洗衬管内壁; 玻璃衬管更换时要注意玻璃棉的装填:装填量3~6mg,高度5~10mm;要求填充均匀、平整;气体过滤器变色硅胶可根据颜色变化来判断其性能,但分子筛等吸附有机物的过滤器就不能用肉眼判断了,所以必须定期更换,一般3个月更换或再生一次;由于分流气路中的分子筛过滤器饱和或受污严重,就会出现基线漂移大的现象,这个时候就必须更换或再生过滤器了;再生的方法是:1卸下过滤器,反方向连接于原色谱柱位置;2再生条件:载气流速40~50ml/min,温度340℃,时间5h;检测器如果说色谱柱是色谱分离的心脏,那么,检测器就是色谱仪的眼睛;无论色谱分离的效果多么好,若没有好的检测器就会“看”不出分离效果;因此,高灵敏度、高选择性的检测器一直是色谱仪发展的关键技术;目前,GC所使用的检测器有多种,其中常用的检测器主要有火焰离子化检测器FID、火焰热离子检测器FTD、火焰光度检测器FPD、热导检测器TCD、电子俘获检测器ECD等;下面对检测器的日常维护作简单讨论:2.4.1火焰离子化检测器FID1 FID虽然是准通用型检测器,但有些物质在检测器上的响应值很小或无响应,这些物质包括永久气体、卤代硅烷、H2O、NH3、CO、CO2、CS2、CCl4,等等;所以检测这些物质时不应使用FID;2FID的灵敏度与氢气、空气、氮气的比例有直接关系,因此要注意优化,一般三者的比例应接近或等于1∶10∶1;3FID是用氢气在空气燃烧所产生的火焰使被测物质离子化的,故应注意安全问题;在未接上色谱柱时,不要打开氢气阀门,以免氢气进入柱箱;测定流量时,一定不能让氢气和空气混合,即测氢气时,要关闭空气,反之亦然;无论什么原因导致火焰熄灭时,应尽量关闭氢气阀门,直到排除了故障重新点火时,再打开氢气阀门;4为防止检测器被污染,检测器温度设置不应低于色谱柱实际工作的最高温度;检测器被污染的影响轻则灵敏度明显下降或噪音增大,重则点不着火;消除污染的办法是对喷嘴和气路管道的清洗;具体方法是:断开色谱柱,拔出信号收集极;用一细钢丝插入喷嘴进行疏通,并用丙酮、乙醇等溶剂浸泡;2.4.2 火焰热离子检测器FTDFTD使用注意事项:1 铷珠:避免样品中带水,使用寿命大约600~700h;2 载气:N2或He,要求纯度%;一般He的灵敏度高;3 空气:最好是选钢瓶空气,无油;4 氢气:要求纯度%;另外需要注意的是使用FTD时,不能使用含氰基固定液的色谱柱,比如OV-1701;2.4.3火焰光度检测器FPDFPD使用注意事项:1 FPD也是使用氢火焰,故安全问题与FID相同;2 顶部温度开关常开250℃;3 FPD的氢气、空气和尾吹气流量与FID不同,一般氢气为60~80ml/min,空气为100~120ml/min,而尾吹气和柱流量之和为20~25ml/min;分析强吸附性样品如农药等,中部温度应高于底部温度约20℃;4 更换滤光片或点火时,应先关闭光电倍增管电源;5 火焰检测器,包括FID、FPD,必须在温度升高后再点火;关闭时,应先熄火再降温;2.4.4热导检测器TCDTCD使用注意事项:1确保热丝不被烧断;在检测器通电之前,一定要确保载气已经通过了检测器,否则,热丝就可能被烧断,致使检测器报废;关机时一定要先关检测器电源,然后关载气;任何时候进行有可能切断通过TCD的载气流量的操作,都要关闭检测器电源;2载气中含有氧气时,热丝寿命会缩短,所以载气中必须彻底除氧;3用氢气作载气时,气体排至室外;4基线漂移大时,要考虑以下几个问题:双柱是否相同,双柱气体流速是否相同;是否漏气;更换色谱柱至检测器的石墨垫圈; 池体污染;清洗措施:正己烷浸泡冲洗;2.4.5 电子俘获检测器ECDECD使用注意事项:1 气路安装气体过滤器和氧气捕集器;氧气捕集器再生:2 使用填充柱时也需供给尾吹气2~3ml/min;3 操作温度为250~350℃;无论色谱柱温度多么低,ECD的温度均不应低于250℃, 否则检测器很难平衡;4 关闭载气和尾吹气后,用堵头封住ECD出口,避免空气进入;3、基本操作加热由于气相色谱仪的生产厂家和质量的不同.测定温度的方式也不相同对于用微机设数法或拨轮选择法给定温度.一般是直接设数或选择合适给定温度值加以升温.而如果是采用旋钮定位法.则有技巧可言3.1.1过温定位法将温控旋钮调至低于操作温度约30℃处给气相色谱仪升温当过温至约为操作温度时.配台温度指示和加热指示灯.再逐渐将温控旋钮调至台适位置3.1.2 分步递进定位法将温控旋钮朝升温方向转动一个角度.升温开始.指示灯亮:当温度基本稳定时再同向转动温控旋钮.开始继续升温:如此递进调节、直至恒温在工作温度上. 调池平衡调池平衡实际是调热导电桥平衡.使之有较为台适的输出讲调节技巧.其实是对具有池平衡、调零和记录调零等第一步.用池平衡或调零旋钮将记录仪指针调至台适位置;第二步.自衰减至l6倍左右.观察记录仪指针移动情况;第三步.用记录谓零旋钮将记录仪指针调回原处;第四步.退回衰减.观察记录仪指针移动情况;第五步.用调零或池平衡旋钮将记录仪指针调回原处点火氢焰气相色谱仪开机时需要点火.有时因各种原因致使熄火后.也需要点火然而.我们经常会遇到点火不着的情况下面介绍两种点火技巧.供同行们相试3.3.1 加大氢气流量法先加大氢气流量.点着火后.再缓慢调回工作状况此法通用3.3.2 减少尾吹气流量法先减少尾吹气流量.点着火后.再调回工作状况此法适用于用氢气怍载气.用空气作助燃气和尾畋气情况气比的调节氢焰气相色谱仪三气的流量比.有关资料均建议为:氮气:氢气:空气:l:l:10 但由于转子流量计指示流量的不准确性.事实上谁会去苛求这个配比呢本人认为为各气旌以良好匹配.目的是既有高的检测器灵敏度又能有较好的分离效果.还不致于容易熄火;本着上述原则气比应按下法调节:1氮气流量的调节在色谱柱条件确定后、样品组分分离效果的好坏、氮气的流量大小是决定因素调节氮气流量时.要进样观察组分分离情况.直至氮气流量尽可能大且样品组分有较好分离为止2氢气和空气流量的调节氢气和空气流量的调节效果.可以用基流的大小来检验先调节氢气流量使之约等于氮气的流量.再调节空气流量在调节空气流量时.要观察基流的改变情况只要基流在增加.仍应相向调节.直至基流不再增加不止最后.再将氢气流量上调少许;进样技术在气相色谱分析中,一般是采用注射器或六通阀门进样在考虑进样技术的时候.主要是以注射器进样为对象3.5.1 进样量进样量与气化温度、柱容量和仪器的线性响应范围等因素有关,也即进样量应控制在能瞬间气化.达到规定分离要求和线性响应的允许范围之内填充柱冲洗法的瞬间进样量:液体样品或固体样品溶液一般为0.01~ 10微升.气体样品一般为0.1~ 10毫升在定量分析中.应注意进样量读数准确1排除注射器里所有的空气用微量注射器抽取液体样品时.只要重复地把液体抽凡注射器又迅速把其排回样品瓶.就可做到遗一点;还有一种更好的方法.可以排除注射器里所有的空气那就是用计划注射量的约2倍的样品置换注射器3~5次.每扶取到样品后,垂直拿起注射器.针尖朝上任何依然留在注射器里的空气都应当跑到针管顶部推进注射器塞子.空气就会被排掉;2保证进样量的准确用经畿换过的注射器取约计划进样量2倍左右的样品.垂直拿起注射器.针尖朝上.让针穿过一层纱布.这样可用纱布吸收从针尖排出的液体推进注射器塞子.直到读出所需要的数值用纱布擦干针尖至此准确的液体体积已经测得.需要再抽若干空气到注射器里.如果不慎推动柱塞.空气可以保护液体使之不被排走3.5.2 进样方法双手章注射器用一只手通常是左手把针插入垫片.洼射大体积样品即气体样品或输入压力极高时.要防止从气相色谱仪来的压力把柱塞弹出用右手的大拇指让针尖穿过垫片尽可能踩的进入进样口.压下柱塞停留1~ 2秒钟.然后尽可能快而稳地抽出针尖继续压住柱塞3.5.3 进样时间进样时间长短对柱效率影响很大,若进样时间过长.遇使色谱区域加宽而降低柱效率因此.对于冲洗法色谱而言.进样时间越短越好.一般必须小于1秒钟;。

气相色谱仪操作及原理

气相色谱仪操作及原理

气相色谱仪操作及原理气相色谱仪是一种以通过采集来分析物质的组成,并且精确的测量各种含量的分析仪器。

它的采集原理是将待测物质由低压容器进入柱子,柱子内装有各种不同柱层介质,以导致物质的分离和层析。

物质由低压容器进入柱子中,在柱子内各成分将依据其不同物理化学性质经柱层介质(静电及溶剂等)进行吸附、分馏,分离,层析。

当各分子在机器中柱内的移动距离不一样时,各成分将被分离、测定,从而反映出混合物中各组成成份的相对含量。

气相色谱仪的操作步骤主要有:1.准程序:校准要求确定零差及斜率,定标曲线选择及确定。

2.整:根据物体的特性,进行压力,温度,流速,延时等参数的调节,以最大限度的发挥仪器性能。

3.行:运行前,对色谱板和耦合仪器(如火焰检测器)进行检测,确保其可靠性,并进行真空泵的调试,真空泵的压力要稳定。

4.析:将待检样品以特定的加样器加入柱内,并经过恒温,恒定流速,恒定延时条件下开始分析,并监控检测器和记录仪的输出数据。

5.析完毕:分析完毕后,要做好数据处理工作,以便让结果反映准确的含量。

此外,气相色谱仪的可靠性也很重要,要完成准确的测量,仪器的调整和校准要达到最佳的状态;柱层的准备工作得当,另外,在分析的时候,待检样品的浓度要求也是一个重要的参数,要根据实际情况考虑。

气相色谱仪是一种多用途的仪器,它能够检测复杂混合物中各成分的含量和分布状况,为科学研究提供重要支持。

相比其他分析仪器,气相色谱仪在成分分析上具有更精确,快捷和低成本的优势,它被广泛应用于石油化学、精细化工、农业科学、食品、环境和生物技术等领域。

气相色谱仪的原理主要是利用柱层(静电力及溶剂的结合)的作用,对待检物质进行分离、层析,参考检测器的输出信号,判断各种成分的相对含量,实现物质的快速分析。

气相色谱仪的实际操作需要对相关仪器进行调整和校准,以最大限度的发挥仪器性能,待检样品的浓度也应合理调节,以得到精确可靠的测量结果。

显然,气相色谱仪是一种成熟可靠的仪器,它由于其高效,准确,低成本的优势,已经在各行各业得到了广泛的应用,极大的促进了我们对物质组成的认识和科学研究。

气相色谱操作规程

气相色谱操作规程

气相色谱操作规程
《气相色谱操作规程》
一、实验目的
本实验旨在通过气相色谱分析技术,掌握样品的分离与检测方法,提高实验者对色谱仪器的操作技能,进一步加深对气相色谱的理论与实践知识。

二、实验原理
气相色谱是利用气相色谱分析仪器对样品进行分离和检测的一种分析方法。

该方法通过样品在色谱柱中的分配和扩散,实现对混合物中各种组分的分离,然后利用检测器进行定量或定性分析。

三、实验步骤
1. 样品制备:将待测样品按照实验要求充分制备,并注明详细标签。

2. 色谱仪器准备:打开气相色谱仪器,进行相关初始化操作,包括检查色谱柱和检测器的清洁程度、连接气源并设置好气流速率和流场温度等。

3. 样品注入:将样品溶液通过进样口注入色谱柱中,注意保持流量均匀。

4. 色谱分离:根据最佳分离条件设定,进行色谱柱温度程序升温、保持和降温,保证样品能够被充分分离。

5. 数据采集和分析:通过色谱仪器数据采集系统采集样品分离结果,利用相关软件进行数据处理和分析。

四、注意事项
1. 实验者需严格遵守化学品安全操作规程,正确佩戴防护装备。

2. 对色谱柱和检测器进行长期维护,保持其功能的稳定。

3. 样品注入时,注意避免造成进样口的污染和堵塞。

4. 在操作过程中,注意观察并记录相关操作和设备的异常情况,及时调整。

五、实验总结
通过本次实验,实验者能够熟练地掌握气相色谱仪器的操作规程,进一步理解气相色谱的理论基础和分析应用,提高了实验者对色谱分析技术的应用能力和操作技能。

气相色谱仪的原理及应用方法

气相色谱仪的原理及应用方法

气相色谱仪的原理及应用方法一、气相色谱仪的原理气相色谱仪(Gas Chromatograph,简称GC)是一种分离和分析化合物的仪器。

它基于样品在气相和固定相之间相互分配的原理,通过柱和载气的选择实现对样品中各种化合物的分离。

1.1 采集样品在开始实验之前,需要准备样品,并采用适当的方法将需要分析的化合物转化为气态。

这可以通过蒸馏、热解、溶剂提取等方法完成。

1.2 柱的选择选择适当的柱是实现有效分离的关键。

柱的选择取决于需要分离的化合物的性质和分析目的。

常见的柱类型包括填充柱和毛细管柱。

填充柱常用于高分子化合物的分离,而毛细管柱适用于低分子量有机物的分离。

1.3 载气的选择载气在气相色谱中起到推动样品通过柱的作用。

常用的载气有氮气、氢气和惰性气体等。

载气的选择取决于对分子扩散速率和分离效果的要求,以及实验室中的安全性和成本等因素。

1.4 分离原理分离原理是气相色谱仪的核心。

它基于化合物在液相和固相之间的分配系数不同,使得样品中的各种化合物在柱上以不同的速率通过。

在样品通过柱的过程中,化合物会被分离出来,并形成不同的峰。

1.5 检测器的作用在分离完成后,需要通过检测器对分离出来的化合物进行定量或定性分析。

常见的检测器包括气体放大器检测器、火焰光度检测器和质谱检测器等。

二、气相色谱仪的应用方法气相色谱仪在各个领域中都有广泛的应用,以下列举几个主要的应用方法。

2.1 环境监测气相色谱仪在环境监测中起到非常重要的作用。

它可以用于检测大气中的有害气体和有机污染物,从而评估环境质量和监测污染源。

通过气相色谱仪的应用,我们可以及时发现和控制环境污染,保护人类的健康和生态环境。

2.2 化学分析气相色谱仪广泛应用于化学分析领域。

它可以对物质进行成分分析、结构鉴定和定量分析。

在药物分析、食品安全检测和石油化工等领域,气相色谱仪都是不可或缺的分析工具。

它可以高效地分离复杂的混合物,提高分析的准确性和灵敏度。

2.3 药物筛查气相色谱仪也被广泛应用于药物筛查。

气相色谱仪实验报告

气相色谱仪实验报告

气相色谱仪实验报告一、实验目的1、了解气相色谱仪的基本结构和工作原理。

2、掌握气相色谱仪的操作方法和实验条件的优化。

3、学会利用气相色谱仪进行样品的定性和定量分析。

二、实验原理气相色谱仪是一种分离分析复杂混合物中各组分的有效方法。

其工作原理基于不同物质在固定相和流动相之间的分配系数差异。

当样品被注入进样口后,瞬间气化,并被载气带入色谱柱。

在色谱柱中,各组分在固定相和流动相之间反复分配,由于分配系数的不同,导致各组分在色谱柱中的保留时间不同,从而实现分离。

当组分从色谱柱流出后,进入检测器,产生相应的电信号,经过放大和数据处理,得到色谱图。

三、实验仪器与试剂1、仪器气相色谱仪(配有氢火焰离子化检测器(FID))微量注射器色谱柱(如毛细管柱)计算机数据处理系统2、试剂正己烷、正庚烷、甲苯等标准品未知样品四、实验步骤1、仪器准备开启气相色谱仪、载气钢瓶、氢气发生器和空气发生器,设置仪器参数,如柱温、进样口温度、检测器温度、载气流速等。

待仪器稳定后,进行点火操作,检查检测器是否正常工作。

2、标准溶液的配制分别准确称取一定量的正己烷、正庚烷、甲苯等标准品,用适当的溶剂(如乙醇)配制成不同浓度的标准溶液。

3、标准曲线的绘制用微量注射器分别吸取不同浓度的标准溶液,按照设定的进样量注入气相色谱仪,记录各组分的峰面积。

以各组分的浓度为横坐标,峰面积为纵坐标,绘制标准曲线。

4、样品分析用微量注射器吸取适量的未知样品,注入气相色谱仪,记录色谱图。

根据标准曲线和样品中各组分的峰面积,计算未知样品中各组分的含量。

5、实验结束实验结束后,先关闭氢气和空气,待柱温、检测器温度降至室温后,关闭气相色谱仪和载气钢瓶。

五、实验结果与讨论1、标准曲线绘制的正己烷、正庚烷、甲苯等标准品的标准曲线呈现良好的线性关系,相关系数均在 099 以上,表明实验数据的可靠性。

2、样品分析结果未知样品中检测出了多种组分,通过与标准品的保留时间对比,初步定性了各组分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气相色谱仪原理及步骤
一气相色谱仪的原理:
色谱分析是一种多组份混合物的分离、分析工具。

它主要利用物
质的物理性质对混合物进行分离,测定混合物的各组份。

并对混合物中的各组份进行定量、定性分析。

气相色谱仪是以气体作为流动相(载气)。

当样品被送入进样器后由载气携带进入色谱柱。

由于样品中各组份在色谱柱中的流动相(气相)和固定相(液相或固相)间分配或
吸附系数的差异。

在载气的冲洗下,各组份在两相间作反复多次分配,使各组份在色谱柱中得到分离,然后由接在柱后的检测器根据组份的物理化学特性,将各组份按顺序检测出来。

使用气相色谱法具有以下特点:
1.分离效能高。

对物理化学性能很接近的复杂混合物质都能很好
地分离,进行定性、定量检测。

有时在一次分析时可同时解决几十甚至上百个组分的分离测定。

2.灵敏度高。

能检测出ppm级甚至ppb级的杂质含量
3 分析速度快。

一般在几分钟或几十分钟内可以完成一个样品的
测定。

4.应用范围广。

气相色谱法可以分析气体、易挥发的液体和固体
样品。

就有机物分析而言,应用最为广泛,可以分析约20%的有机物。

此外,某些无机物通过转化也可以进行分析。

二步骤:
(1)打开氮气、氢气、空气发生器的电源开关(或氮气钢瓶总阀),调整输出压力稳定在0.4Mpa左右(气体发生器一般在出厂时已调整好,不用再调整)。

(2)打开色谱仪气体净化器的氮气开关转到“开”的位置。

注意观察色谱仪载气B的柱前压上升并稳定大约5分钟后,打开色谱仪的电源开关。

(3)设置各工作部温度。

TVOC分析的条件设置:(a)柱箱:柱箱初始温度50℃、初始时间10min、升温速率5℃/min、终止温度250℃、终止时间10min; (b)进样器和检测器:都是250℃。

苯分析时的色谱条件:(a)柱箱:柱箱初始温度100℃、初始时间0min、升温速率0℃/min、终止温度0℃、终止时间0min; (b)进样器和检测器:都是150℃。

(4)点火:待检测器(按“显示、换档、检测器”可查看检测器温度)温度升到100℃以上后,打开净化器上的氢气、空气开关阀到“开”的位置。

观察色谱仪上的氢气和空气压力表分别稳定在0.1Mpa和0.15Mpa左右。

按住点火开关(每次点火时间不能超过6~8秒钟)点火。

同时用明亮的金属片靠近检测器出口,当火点着时在金属片上会看到有明显的水汽。

如果在6~8s时间内氢气没有被点燃,要松开点火开关,再重新点火。

在点火操作的过程中,如果发现检测器出口内白色的聚四氟帽中有水凝结,可旋下检测器收集极帽,把水清理掉。

在色谱工作站上判断氢火焰是否点燃的方法:观察基线在氢火焰点着后的电压值应高于点火之前。

(5)打开电脑及工作站A,打开一个方法文件:TVOC分析方法或苯分析方法。

显示屏左下方应有蓝字显示当前的电压值和时间。

接着可以转动色谱仪放大器面板上点火按钮上边的“粗调”旋钮,检查信号是否为通路(转动“粗调”旋钮时,基线应随着变化)。

待基线稳定后进样品并同时点击“启动”按钮或按一下色谱仪旁边的快捷按钮,进行色谱数据分析。

分析结束时,点击“停止”按钮,数据即自动保存。

(6).关机程序:首先关闭氢气和空气气源,使氢火焰检测器灭火。

在氢火焰熄灭后再将柱箱的初始温度、检测器温度及进样器温度设置为室温(20-30℃),待温度降至设置温度后,关闭色谱仪电源。

最后再关闭氮气。

(7)使用热解吸仪分析标准样品。

(a)TVOC分析时:
a.首先把解析仪的温度设置为300℃,把六通阀的开关置于反吹位置,固定好热解析管接头。

待热解析仪的温度稳定在300℃后,用微量进样器抽取1微升一定浓度的标准样品,将进样针扎入热解析仪的进样口,然后缓慢的将样品推入热解析管中,打开反吹气开关阀并同时计时,到5min时关闭反吹开关阀。

接着把金属毛细管插入进样口B内,随后把解析管移到加热炉内加热,同时开始计时。

加热1min后,将热解析仪的六通阀转换到“进样”位置,接着马上按色谱面板上的“起始”键和工作站的“启动”键,进行样品分析。

5min后再把六通阀转换到反吹位置,将金属毛细管从进样口拔出,打开反吹气开关阀以
火花热解析管。

(2)苯分析时:首先把解析仪的温度设置为300℃,把六通阀的开关置于反吹位置,固定好热解析管接头。

待热解析仪的温度稳定在320℃后,用气密进样针抽取一定量标准浓度气体,将进样针扎入热解析仪的进样口,然后缓慢的将样品推入热解析管中,打开反吹气开关阀并同时计时,到5min时关闭反吹开关阀。

接着把金属毛细管插入进样口B内,随后把解析管移到加热炉内加热,同时开始计时。

加热1min 后,将热解析仪的六通阀转换到“进样”位置,接着马上按工作站的“启动”键,进行样品分析。

5min后再把六通阀转换到反吹位置,将金属毛细管从进样口拔出,打开反吹气开关阀以活化热解析管。

相关文档
最新文档