转差频率控制的异步电动机矢量控制系统的仿真研究资料
异步电动机矢量控制系统仿真研究

异步电动机矢量控制系统仿真研究摘要:本文以异步电机矢量控制原理为基础,通过坐标变换和转子磁链位置计算,利用Matlab/Simulink 构建一种异步电动机矢量控制系统的模型。
通过仿真不仅验证了模型的正确性,而且还为实际调速系统控制算法实现提供可靠的分析依据。
关键词:矢量控制;异步电动机;Matlab/Simulink1 引言直流电动机调速系统具有优良的静、动态调速特性,其根本原因在于作为控制对象的他励直流电动机电磁转矩能够容易而灵活地进行控制[1-2]。
在1971 年德国学者提出的矢量变换控制方法中,正交旋转坐标系的直轴励磁轴(M)与转子磁场重合,交轴为转矩轴(T),转子磁场的交轴分量为零,电磁转矩的方程得到简化,即在磁场恒定的情况下,电磁转矩与交轴电流分量成正比,因此,感应电机的机械特性与他励直流电机的机械特性完全一样,实现了磁场和转矩的解耦控制。
像直流调速系统一样,实现了交流电动机的磁通和转矩分别独立控制,从而使交流电动机具有了直流电动机的全部点。
由于直轴和转子磁场重合,因此也称转子磁场定向控制[3-5]。
2 转子磁场定向(FOC)控制框图矢量控制系统的结构图如图1所示。
系统的给定量有参考转速和参考磁链,其总的控制思路是:给定磁链除以1/Lm输出励磁电流给定值,给定转速与电机反馈转速相比较后,通过速度调节器,输出转矩信号的给定值,电机三相实际输出电流经过坐标变换,解耦为实际励 磁电流分量和转矩电流分量。
励磁给定值与实际励磁电流,转矩信号给定值与实际转矩电流分量分别经过pi调节器后,经过旋转逆变换,换算成两相静止坐标下矢量调制信号αU 、βU ,再由SVPWM算法得到PWM脉宽调制信号,去驱动控制逆变器的功率开关器件IGBT,最终实现了异步电机转矩的有效控制[4-5]。
PI图1 异步电动机矢量控制系统结构图3 系统仿真模型的建立 系统的仿真模型如图2所示:图2 异步电动机矢量控制系统仿真图3.1 主要仿真模块介绍3.1.1 速度、转矩、磁链调节器模块三个调节器的参数值如表1;三个调节器的内部接线结构如图3所示。
基于三电平异步电机转差频率矢量控制的仿真研究

Si lt n St d f y c r n u t ri Sl r q e c mua i u y o o As n h o o s Mo o n i F e u n y p Co t I a e o r e 1v I n r s n Th e . e o B e
K y wo d e r s:s p fe u n y;t r e l v l i lt n;v ra l e u n y s e d r g lt n l q e c h e - e ;smu a i i r e o a ib e f q e c p e e u ai r o
后感 应 电机 也 在 工 业 领 域 得 到 广 泛 的 普 及 , 着 随
过 续 流二 极 管 并 对 电容 C 充 电 , 该 相输 出 电压 则
为 V = 一 E 2 /。
R +, J P
1
一
坐 标 系 表 示 同 步 旋 转 坐 标 系 , 中 其
( g e zt n 轴 固 定 在 磁 链 矢 量 上 , (oq e man t ai ) i o T tru ) 轴 超 前 轴 9 。 0 。该 坐 标 系 和 磁链 矢 量 一 起 在 空 间 以同 步 角 速 度 t 旋 转 , 控 制 的 基 本 方 程 式 O 其
如下 :
l
L
, P J
O J1
一 wL
L P L
R + L P
一
一
, P J
一
电压 方 程 :
三
R + L P
Y
L
P
R 4 -L P
式 中 :。 “ “ / 分 别 为 定 、 子 电 压 的 转 矩 分 u / ,  ̄ r t 转 量 和励 磁 分 量 ; 为 定 子 电 阻 ; L R L , 为 定 子 、 转 子 绕 组 自感 ; 为 微 分 算 子 ; 为 异 步 电 动 机 为例 , 给 s 以 当 和 S 导 通 触 发 脉 冲 , 和 s S 关 断 , 源 对 电容 C 充 电 , 电 。 如 忽略 S 和 s: 压 降 , 该 相 输 出 电 压 为 V =E 管 则 / 2 。当 给 s 和 S, 导通 触 发 脉 冲 时 , 和 s S。 关 断 , 若 负 载 电 流 为 流 入 方 向 , 电 源 对 电容 c。 电 , 则 充 电 流流 过 箝 位 二 极 管 D 和 S 此 时 该 相 输 出 端 电 压 V = 若 负 载 电流 为 流 出 方 向 , 流 先 流 过 0; 电
异步电动机矢量控制系统的仿真

异步电动机矢量控制系统仿真1.异步电机矢量控制系统的原理及其仿真1.1 异步电动机矢量控制原理异步电机矢量变换控制系统和直接转矩控制系统都是目前已经获得应用的高性能异步电机调速系统,对比直接转矩控制系统,矢量变换系统有可以连续控制,调速范围宽的优点,因此矢量变换控制系统为现代交流调速的重要方向之一。
本文采用的是转子磁场间接定向电流控制型交流异步电机矢量控制系统[1],如图1所示。
图1矢量变换控制系统仿真原理图如果把转子磁链方向按空间旋转坐标系的M轴方向定向,则可得到按转子磁场方式定向下的三相鼠笼式异步电动机的矢量控制方程。
(1)(2)(3)(4)(5)上列各式中,是转子励磁电流参考值;是转差角频率给定值;是定子电流的励磁分量;是定子电流的转矩分量;是定子频率输入角频率;是转子速度;是转子磁场定向角度;是转子时间常数;和分别是电机互感和转子自感。
图4所示控制系统中给定转速与实际电机转速相比较,误差信号送入转速调节器,经转速调节器作用产生给定转矩信号,电机的激磁电流给定信号根据电机实际转速由弱磁控制单元产生,再利用式(1)产生定子电流激磁分量给定信号,定子电流转矩分量给定信号则根据式(2)所示的电机电磁转矩表达式生成。
、和转子时间常数Lr一起产生转差频率信号,与ωr相加生成转子磁场频率给定信号,对积分则得到转子磁场空间角度给定信号。
和经坐标旋转和2/3相变换产生定子三相电流给定信号、和,与定子三相电流实测信号、和相比较,由滞环控制器产生逆变器所需的三相PWM信号。
1.2 异步电机转差型矢量控制系统建模在MATLAB/SIMULINK环境下利用电气系统模块库中的元件搭建交流异步电机转差型矢量控制系统[2],电流控制变频模型如图2所示。
图2 电流控制变频模型图整个仿真图由电气系统模块库中的元件搭建组成,元件的直观连接与实际的主电路相像似,其中主要包括:速度给定环节,PI速度调节器、坐标变换模块、磁场定向模块、滞环电流调节器、IGBT逆变器元件、异步电动机元件以及测量和显示模块。
转差频率控制的异步电动机矢量控制系统仿真

此时加入负载后,在加入负载的一瞬间,转速略有下降,但过一 会儿基本能恢复。 5.1.2 加入积分环节 (1)Ki=10。
图 5.1 转差频率的异步电动机矢量控制仿真图 表 5.1 仿真模块参数
仿真模块参数值 电源 电动机 电压 Un 定子电阻 Rs 转子电阻 Rr 互感 Lm 漏磁系数 σ 加载时间 算法 0.0072 380V 频率 fn 0.435Ω 定子漏感 L1s 0.816Ω 转子漏感 L1r 0.0069mH 转动惯量 J 0.0056 极对数 P 负载设定 TL 0.45s 加载值 仿真参数 ode5 步长 G4 2 G5 30/pi 50Hz 0.002mH 0.002mH 0.19kg*m2 2 65N*m 1.00E-05 G6 Pi/30 510V
升降,整个调速过程更为平滑。工业用的变频器通常会使用这个方案。 根据系统原理图和式(2.1)至式(2.4)进行分析,转子磁链保持 不变的情况下,定子电流 i1t 决定电机转矩的大小(2.1),通过 i1t 可 以计算出 ωs 的大小(2.4),转子总磁链 Ψr 可由 i1m 可以计算出。通过 公式间的转换,在磁通大小不变的前提下,最终可以得到
135
(2)K=1。
电子技术
图 4.3 转速调节器模块 系统图中的其他模块,在 Simulink 模型库里都有现成模型,所以 PWM 模块、三相异步电动机模块、整流模块、测量模块等就不一一 例举,通过将上述模块整合到一起,可建立对转差频率矢量控制系统 原理图的仿真模型,完成仿真。如图 5.1 所示。仿真的参数表 5.1 所示。
图 4.1 函数运算模块 4.3 坐标变换模块 如图 4.2 所示,模块由 G3、dq0-to-abc、sin、cos 模块等构成, 主要是利用 Simulink 中的函数公式,搭建数学变换模型。实现二相 旋转坐标系到三相静止坐标的转换,dq0-to-abc 的输出是 PMW 的三 相调制信号,G3 对输出信号进行衰减,使其的幅值小于 1,满足输 出信号的要求。衰减系数可在调试时,先断开输出,根据信号的大 小计算衰减系数。
转差频率控制的异步电动机矢量控制系统仿真

转差频率控制的异步电动机矢量控制系统仿真摘要本文主要进行MATLAB对异步电动机转差频率控制系统仿真,分析异步电动机转差频率控制技术的主要控制方法、基本组成与工作原理。
在此基础上介绍了异步电动机的坐标变换,对异步电动机转差频率矢量控制系统的基本原理进行了阐述。
最后,对仿真结果进行分析,总结出如下结论:采用转差频率矢量控制的矢量控制系统具有良好的控制性能。
关键词:转差频率,矢量控制,异步电动机Induction Motor Slip Frequency Indirect Vector ControlOf Matlab SimulationAbstractThis paper focuses on the matlab simulation of the asynchronous motor speed regulation system.Firstly , this paper analyzes the main control method , basic composition and working principle of the induction motor slip frequency control technology.Secondly , this paper analysis the dynamic model of asynchronous motor and further introduces the coordinate transfer and the basic principle of motor slip frequency vector control system. At the same time , the simulation work to prove its feasibility.Finally , according to analysis of the simulation results , the conclusions are as follows simply slip frequency control is always with poor load capacity , on the contrary the vector control applications can enhance the ability to regulate the motor of the torque and without voltage compensation.Key words:slip frequency,vector control,induction motor目录摘要 (I)Abstract (II)1绪论 (1)1.1现代交流调速技术的发展 (1)1.1.1异步电动机交流调速系统的类型 (2)1.1.2交流调速系统的发展趋势和动向 (2)1.2 MATLAB和Simulink概述 (2)1.3转差频率控制的调速系统 (4)1.3.1转差频率控制的基本概念 (4)1.3.2基于异步电动机稳态模型控制的转差频率控制规律 (5)2异步电动机转差频率间接矢量控制交流调速系统 (8)2.1异步电机的特点 (8)2.2三相异步电动机的多变量非线性数学模型 (8)2.2.1电压方程 (9)2.2.2磁链方程 (10)2.2.3转矩方程 (11)2.2.4电力拖动系统运动方程 (12)2.3矢量控制技术思想 (13)2.3.1坐标变换 (14)2.3.2交流异步电机在两相任意旋转坐标系上的数学模型 (19)2.3.3异步电机在两相静止坐标系( 坐标系)上的数学模型 (21)2.3.4异步电机在两相同步旋转系上的数学模型 (22)2.3.5三相异步电动机在两相坐标系上的状态方程 (22)2.4基于转差频率矢量控制调速系统的组成 (23)2.4.1基于转差频率间接矢量控制调速系统的工作原理 (23)2.4.2异步电动机转差频率间接矢量控制公式推导 (24)3主电路与控制电路 (26)3.1 PWM逆变器 (26)3.2控制电路的设计 (27)3.2.1转速PI调节器的设计 (27)3.2.2函数运算模块的设计 (28)4 转差频率间接矢量控制的MATLAB仿真 (30)4.1仿真模型的搭建及参数设置 (30)4.1.1主电路模型 (30)4.1.2控制电路的模型搭建 (31)4.2仿真结果与分析 (33)4.2.1仿真波形图 (33)4.2.2仿真结果分析 (35)4.3本章总结 (35)参考文献 (36)致谢 (37)1绪论1.1现代交流调速技术的发展交流技术诞生于19世纪,但由于其性能无法与直流调速技术相比,所以过去的直流调速技术一直在电气传动领域中占统治地位。
矢量控制异步电动机调速系统仿真设计

摘要近年来,随着电力半导体器件及微电子器件特别是微型计算机及大规模集成电路的发展,再加上现代控制理论,特别是矢量控制技术向电气传动领域的渗透和应用,使得交流电机调速技术日臻成熟。
以矢量控制为代表的交流调速技术通过坐标变换重建电机模型,从而可以像直流电机那样对转矩和磁通进行控制,交流调速系统的调速性能已经可以和直流调速系统相媲美。
因此,研究由矢量控制构成的交流调速系统已成为当今交流变频调速系统中研究的主要发展方向。
最后,综合矩阵变换的控制策略及异步电动机转子磁场定向理论,采用计算机仿真方法分别建立了矩阵变换仿真模型以及基于矩阵变换的异步电动机矢量控制系统仿真模型,对矩阵变换的控制原理、输入、输出性能以及矢量控制系统的优质的抗扰能力及四象限运行特性进行分析验证,展现了该新型交流调速系统的广阔发展前景,并针对基于矩阵变换的异步电动机矢量控制系统的特点,着重对矢量控制单元进行了软件设计。
本设计研究的是矢量控制的异步电动机的调速系统,采用MATLAB软件在其simulink中进行仿真。
关键词:坐标变换矢量控制异步电动机MATLAB simulink仿真ABSTRACTIn recent years, with the development of the power semiconductor device,the microelectronics component, the microcomputer and large-scale integrated circuit and modern control theory, especially the penetration from vector control technology to electric drive field and application, the feasible AC motor speed regulation technology has become more mature day by day.Depend on the control principle of the MC and the rotor-flux orientation theory, and using the computer simulation technology, the simulation model of the MC and the matrix converter fed induction motor vector control drive system has been build. The input-output characteristic and the ability of four-quadrantoperation have been testified, which has proved that the system has wide application field. The software of the vector control unit was designed at the end.This design is the study of vector control of the induction motor speed control system,using MATLAB software in its simulink simulation.Key words: matrix converter vector control induction motor MATLABsimulink simulation.目录1摘要......................................................................................... ABSTRACT .. (I)一.绪论 (4)1.1引言41.2 交流调速技术概况71.3仿真软件的发展状况及应用81.4 MATLAB 概述81.5 Simulink 概述11二.矢量控制理论 (12)2.1 异步电机的动态数学模型122.2 坐标变换162.2.1变换矩阵的确定原则162.2.2功率不变原则162.3矢量控制182.3.1 问题分析182.3.2直流电机的转矩控制182.3.3异步电机的转矩分析192.3.4 矢量控制原理19三. 总体模块设计 (22)3.1矢量控制结构框图223.2各子系统模块233.2.1求解磁链模块233.2.2 求解转子磁链角模块243.2.3 ids*求解模块243.2.4 iqs*求解模块253.2.5 ABC到DQ坐标变换模块253.2.6 DQ到ABC坐标变换模块263.3 电机参数设置263.4矢量控制环节模块283.5矢量控制的异步电动机调速系统模块28四. Simulink 仿真 (30)五. 结论 (36)致谢 (37)参考文献 (38)附录1 3s/2r 坐标变换 (41)附录2 ω*=100和ω*=150时的比较 (43)一.绪论1.1引言交流电机特别是鼠笼异步电机,由于结构简单、制造方便、价格低廉,而且坚固耐用、惯量小、运行可靠、很少需要维护、可用于恶劣环境等优点,在工农业生产中得到了广泛的应用。
异步电机矢量控制变频调速系统的研究与设计

异步电机矢量控制变频调速系统的研究与设计一、本文概述随着现代工业技术的快速发展,电机作为工业领域中广泛应用的驱动设备,其性能优化和效率提升成为了重要的研究课题。
异步电机作为一种常见的电机类型,在各类工业设备中发挥着重要作用。
传统的异步电机控制方式往往存在着调速范围有限、动态响应慢、能源利用效率不高等问题。
研究与设计异步电机矢量控制变频调速系统具有重要的理论价值和实际应用意义。
本文旨在深入研究异步电机矢量控制变频调速系统的基本原理、控制策略及其优化设计方法。
将对异步电机的工作原理进行简要介绍,为后续研究奠定基础。
将详细阐述矢量控制的基本原理和实现方法,包括空间矢量脉宽调制(SVPWM)技术和转子磁场定向控制(FOC)策略等。
在此基础上,本文将重点探讨变频调速系统的设计与实现,包括变频器的选择、控制算法的优化以及系统性能的仿真与实验验证等方面。
通过本文的研究,旨在提高异步电机调速系统的性能,实现更宽范围的调速、更快的动态响应以及更高的能源利用效率。
同时,本文还将为相关领域的科研人员和工程师提供有益的参考和借鉴,推动异步电机控制技术的进一步发展。
二、异步电机矢量控制理论异步电机矢量控制理论是现代电机控制技术的核心之一,它的主要目标是通过控制电机的磁通和转矩,实现电机的高效、稳定和精确控制。
矢量控制,又称为场向量控制,其基本思想是将异步电机的定子电流分解为相互垂直的磁场分量和转矩分量,从而实现对电机磁通和转矩的独立控制。
在异步电机矢量控制理论中,最为关键的是坐标变换。
通过坐标变换,可以将电机的三相电流和电压转换为两相正交坐标系(如dq 坐标系)下的直流分量,从而简化电机的数学模型和控制算法。
最为常用的是Clarke变换和Park变换。
Clarke变换将三相电流转换为两相正交坐标系下的电流,而Park变换则进一步将两相正交坐标系下的电流转换为同步旋转坐标系下的直流电流。
在矢量控制系统中,通常采用矢量控制器来实现对电机磁通和转矩的控制。
异步电动机转差频率矢量控制系统仿真

异步电动机转差频率矢量控制系统仿真摘要:异步电动机本身是一个非线性、强耦合、高阶次的控制对象,经典的交流电机理论和传统的控制系统分析方法不能完全适用于异步电动机分析。
采用矢量控制策略,按转子磁场准确定向控制,转速采取转差频率控制,电动机定子电流频率始终跟随转子的实际转速同步升降,使转速的调节更为平稳。
关键词:异步电动机矢量控制转差频率因其结构简单、体积小、重量轻、价格便宜、维护方便等特点,异步电动机在生产和生活中得到广泛的应用。
随着新型电力电子元件的出现,使得异步电动机的调速成为可能。
但异步电动机本身是一个非线性、强耦合、高阶次的控制对象,经典的交流电机理论和传统的控制系统分析方法不能完全适用于异步电动机分析。
本文将矢量控制与转差频率控制相结合,在转速变化过程中,电动机的定子电流频率始终跟随转子的实际转速同步升降,使转速的调节更加平滑。
1 异步电动机转差频率矢量控制系统转差频率控制的异步电动机矢量控制系统的原理如图1所示。
该系统主电路采用SPWM电压型逆变器,这是通用变频器常用的方案。
转速采用转差频率控制,即异步电动机定子角频率由转子角频率和转差角频率组成,即:(如图1)由式(2)~式(4)可以看到,保持不变时,定子电流的转矩分量可以控制电动机转矩,同时也可以控制;定子电流的励磁分量可以控制转子磁链的大小。
如保证磁通不变,则,由式(4)可得:2 仿真系统模型系统的控制部分由给定、PI调节器、函数运算、二相/三相坐标变换、PWM脉冲发生器等环节组成。
其中给定环节有定子电流励磁分量和转子速度。
3 控制系统仿真电动机和变频器的参数如表1所示。
由表1知,电动机定子绕组自感Ls= Lm+L1s=(0.069+0.002)mH=0.071mH;电动机转子绕组自感Lr=Lm+L1r=0.071mH;电动机漏磁系数=0.056;转子时间常数=0.071/.816=0.087。
电动机给定转速1400r/min。
在启动后0.45s加载TL=65N·m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 引言1.1 概述矢量变换技术的产生奠定了现代交流调速系统高性能的基础。
交流电动机是一个多变量、非线性、强耦合的被控对象,采用参数重构和状态重构的现代控制理论的概念,从而可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦过程,实现了将交流电动机的控制过程等效成为直流电动机的控制过程,进而使交流调速系统的动态性能得到了很大的改善和提高,进一步使交流调速取代直流调速成为一种可能。
目前对调速性能要求较高的生产工艺已广泛地采用了矢量控制的变频调速装置。
经过实践证明,采用矢量控制技术控制的交流调速系统[1]的优越性明显高于直流调速系统。
现代交流调速系统由交流电动机、电力电子功率变换器、控制器和检测器这四大部分构成。
现代交流调速系统根据被控的对象—交流电动机种类不同,从而可分为异步电机调速系统和同步电动机调速系统两类,矢量控制的方式是目前交流电动机的先进控制的一种方式,本篇文章对异步电动机的动态数学模型、转差频率矢量控制的基本原理[26] 和概念做了详细简要的阐述,并且结合Matlab的Simulink仿真软件包构建了异步电动机转差频率矢量控制系统的仿真模型,并进行了试验的验证和仿真结果的显示,同时对不同参数下的仿真结果进行了对比研究和分析。
这种方法不仅简单、控制精度高,而且能够较好地分析异步电动机调速系统的各项性能。
因为交流异步电动机是一个高阶、非线性、多变量、强耦合的系统。
该数学模型比较复杂,所以将其简化成单变量线性系统进行控制可能就达不到理想的性能。
为了实现高动态的性能,提出了矢量控制的方法。
矢量变换控制技术的产生为现代交流调速系统高性能化奠定了坚实的基础。
一般情况下,将含有矢量变换的交流电动机控制称为矢量控制。
Matlab是一种面向工程计算的高级语言,它的Simulink仿真的环境是一种非常优秀的系统仿真工具软件,使用它可以很大程度的提高系统仿真的效率和可靠性。
此文在Matlab的Simulink基础上构造了一个矢量控制的交流电机矢量控制调速系统,包含了给定、PI调节器、函数运算、二相/三相坐标变换、PWM脉冲发生器等许多环节,并给出了仿真的实验结果和分析。
1.2 课题研究目的与意义在19世纪先后诞生了直流电力的拖动和交流电力的拖动。
在20世纪的上半叶,鉴于直流调速系统具有十分优越的调速性能,高性能的可调速拖动一般都采用直流电动机,大约占了电力拖动总容量的80%以上的不变速拖动系统则采用了交流电动机。
交流电机调速系统的性能由于当时的条件限制却始终无法与直流电机相抗衡。
一直到20世纪的六、七十年代,随着电力电子技术的快速发展,使得采用电力电子变换器的交流拖动系统得以实现,特别是在大规模集成电路和计算机控制中的首次出现,从而使高性能的交流调速系统应运而生,交直流拖动按调速性能分工的格局终于被彻底地打破。
与此同时,直流电动机和交流电动机相比的缺点日益显露出来,例如具有电刷和换向器的直流电动机必须进行经常性的检查和维修,这就会浪费很多的人力、物力和财力,换向能力限制了直流电动机的容量和速度等缺点。
交流调速系统发展迅速很大的一部分原因是交流电动机本身的优点,例如没有电刷和换向器,结构简单,寿命长等。
近年来随着大功率半导体器件,大规模集成电路,电子计算机技术的迅猛发展,加上交流电动机本身的优越特性,为交流调速提供了广泛的应用前景。
因此,研究转差频率矢量控制的异步电动机仿真系统的课题就显得意义重大。
一般交流电动机是可以通过调压来进行调速的,也就是调节电流(因为降压后电流肯定会下降),它所有的调压器通常情况下都是自耦变压器,像老式的吊扇就是用自耦变压器来调速的。
直流电机也可以调压调速,一般用调电枢电压的方法来调速,用串电阻的方法或者可调电源都可以。
它的作用为:(1)跟随作用-作为内环的调节器,在外环转速的调节过程中,它的作用是使电流紧紧跟随其给定电压(即外环调节器的输出量)变化。
(2)抗扰作用-对电网电压的波动起及时抗扰的作用。
(3)加快动态过程-在转速动态过程中,保证获得电机允许的最大电流,从而加快动态过程。
(4)过流自动保护作用-当电机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。
一旦故障消失,系统立即自动恢复正常。
这个作用对系统的可靠运行来说是十分重要的。
变频调速技术是近年来交流调速中最活跃、发展最快的。
交流调速的基础和主干内容是变频调速。
上个世纪变压器的出现使改变电压变得很容易,从而造就了一个十分庞大的电力行业。
长期以来,交流电的频率一直是固定不变的,因此变频调速技术的出现和发展使频率变为一种可以被充分使用的资源。
1.3 国内外发展状况综合国内外的发展现状来看,交流变频调速技术的现状具有如下的特点:(1)功率器件发展的方面:由于近年来高电压、大电流的晶闸管、IGBT、IGCT等器件的生产以及串并联技术的发展应用,使得高电压、大功率变频器产品的生产和应用成为了现实。
IGBT已经全面取代了电力晶体管成为一种通用变频器的逆变电路的主流开关器件,而综合了IGBT和GTO优点的IGCT在高压领域的应用也有显著的优势。
(2)微电子技术方面:16位和32位的高速微处理器以及DSP和专用集成电路技术的快速发展,为实现变频器高精度、多功能化奠定了硬件的基础。
(3)控制理论方面:矢量控制、磁通控制、转矩控制、非线性控制等新的控制理论为研制高性能变频器的发展提供了相关的理论基础。
(4)产品生产方面:基础工业和各种制造业的发展,促进了变频器相关配套件的社会化以及专业生产化。
我国电力半导体器件虽然经过很长时间的发展,但总体水平却依然很低,几乎不具备独立开发新产品的能力,IGBT、GTO器件的生产虽然引进了国外先进的技术,但一直未形成大规模的经济效益,变频器产品使用的半导体功率器件的制造也没取得成就。
总而言之,我国的电气传动技术水平较国际先进水平仍有很大的差距。
特别是在中小功率变频技术的方面,国内大多数的产品通常情况下都是采用最普通的/U f控制,只有少数的产品是采用矢量进行控制的,品种和质量还不能满足市场的需求,大量进口的产品仍然充斥着整个国内的市场。
1.4 本文研究的主要内容,主要分为六个部本文主要研究的是转差频率控制的异步电动机矢量控制系统[711]分进行详细的阐述和研究设计:坐标变换及数学动态模型、矢量控制系统的基本结构、转子磁链观测器的设计与构想、电机的自适应控制[12]和参数的设置、数字化矢量控制系统的设计、系统仿真、结果分析。
转差频率控制的异步电动机系统在很大程度上改善了系统的静态和动态性能,还可以消除稳态误差,同时它又比矢量控制的方法更简便,具有结构简单、容易实现和控制精度高等特点。
采用转差频率控制的异步电机变频调速系统是一项性能非常好的控制策略。
该系统不仅结构简单,而且调速过程平滑,还易于稳定,因此这项控制策略已成为当前各高校授课的重点,为了进一步让学生更好的掌握这一原理,本设计致力于开发一套采用转差频率控制的变频调速实验系统,让我们能够全面的进行学习。
针对上述的研究内容,本文的内容将作如下的安排:第1章:概述课题研究目的与意义和国内外发展概况;第2章:转差频率的基本概述;第3章:阐述转差频率控制系统的原理以及系统的组成;第4章:阐述异步电动机的动态模型;第5章:详细阐述转差频率控制的异步电动机系统的原理;第6章:对转差频率控制的异步电动机系统的仿真分析,其中包括参数的设置、电路调试以及实验的结果;第7章:结束语,对本论文进行笼统的概括,得到相应的结论。
2 转差频率控制矢量控制的基本思想是以转子磁场为定向,通过转子磁场定向的旋转坐标变换实现励磁和转矩的解藕,达到和直流电机一样的控制效果。
转子磁场定向有两种方法:一种是通过设置观测器估计的转子磁场空间角;另一种是通过对转差角频率和转子角频率积分得到转子磁链的空间角位置。
第二种方法为转差矢量控制的依据。
转差频率矢量控制不必检测磁通,简单易行,受到人们的普遍重视,被广泛地应用于许多方面。
转差频率矢量控制不需要进行复杂的磁通检测和繁琐的坐标变换,只要在保证转子磁链大小不变的前提下,通过检测定子电流和转子角速度,经过数学模型的运算就可以实现间接控制磁场的定向。
要提高调速系统的动态性能,主要依靠控制转速的变化率,显然,通过控制转差角频率就能达到控制的目的。
转差频率矢量控制就是通过控制转差角频率进而来控制转速的变化率,从而达到间接控制电动机转速的目的。
2.1 转差频率矢量控制概述异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量的系统。
20世纪70年代西门子工程师F.Blaschke首先提出使用异步电机矢量控制理论来解决交流电机的转矩控制问题。
矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到[1315]控制异步电动机转矩的目的。
具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。
简单的说,矢量控制就是将磁链与转矩解耦,有利于分别设计两者的调节器,以实现对交流电机的高性能调速。
矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。
这样就可以将一台三相异步电机等效为直流电机来控制,因而获得与直流调速系统同样的静、动态性能。
矢量控制算法已被广泛地应用在Siemens,ABB,GE,Fuji等国际化大公司变频器上。
采用矢量控制方式的通用变频器不仅可在调速范围上与直流电动机相匹配,而且可以控制异步电动机产生的转矩。
由于矢量控制方式依据的是准确的被控异步电动机的参数,有的通用变频器在使用时需要准确地输入异步电动机的参数,有的通用变频器则需要使用速度传感器和编码器。
鉴于电动机的参数有可能毁会随时发生变化,进而会影响变频器对电动机的控制性能。
目前新型矢量控制通用变频器中已经具备异步电动机参数的自动检测、自动辨识和自适应功能,带有这些功能的通用变频器在驱动异步电动机在进行正常的运转之前可以自动地对异步电动机的参数进行辨识,并根据辨识的结果调整控制算法中的相关参数,从而对普通的异步电动机进行有效的矢量控制。
2.1.1异步电动机的矢量控制它首先通过电动机的等效电路来得出一系列的磁链方程,包括定子磁链、气隙磁链和转子磁链,其中的气隙磁链是连接定子和转子。
一般的感应电动机的转子电流不易测量,所以通过气隙来进行中转,把它变成了定子电流。
然后,有一些坐标的变换,首先通过3/2变换,变成静止的d-q坐标,然后通过前面的磁链方程产生的单位矢量可以得到旋转坐标下的类似于直流电动机的转矩电流分量和磁场电流分量,这样就实现了解耦的控制,加快了系统的响应速度。