定义法求极限
极限求法总结

极限求法总结极限是微积分中的一个重要概念,是研究函数变化趋势的基础。
在求解极限的过程中,我们常常会使用一些常用的技巧和方法。
下面我将对常见的极限求法进行总结,详细说明每种方法的步骤和应用场景。
一、直接代入法当函数在某个点有定义并且极限存在时,我们可以通过将变量直接代入函数中计算出极限的值。
例如,对于 f(x) = x^2 - 1,当 x -> 2 时,我们可以将 x 的值替换为 2,计算出 f(2) 的值。
这种方法适用于函数在该点有定义且不产生未定义结果的情况。
二、分子有理化法有些极限问题中,分子含有根式、分母含有分式等情况,为了便于计算,我们可以使用有理化方法。
主要有三种情况:有理化分母、有理化分子和有理化共轭。
1. 有理化分母:当分母中含有根式时,我们可以通过乘上分母的共轭形式,并利用差平方公式,将根式有理化为有理数。
例如,对于f(x) = 1/√x,当 x -> 4 时,我们可以乘上分母的共轭√x,得到f(x) = √x/√x^2,再利用 x^2 - a^2 = (x - a)(x + a) 的差平方公式,化简出分母为 (x - 4)。
接着我们可以直接代入计算。
2. 有理化分子:当分子中含有根式时,我们可以通过乘上分子的共轭形式,并利用和平方公式,将根式有理化为有理数。
例如,对于f(x) = √x + 1,当 x -> 2 时,我们可以乘上分子的共轭√x - 1,得到f(x) = (√x + 1)(√x - 1)/(√x - 1),再利用 a^2 -b^2 = (a - b)(a + b) 的和平方公式,化简后得到 f(x) = (x - 1)/(√x - 1)。
接着我们可以直接代入计算。
3. 有理化共轭:当分式中含有复杂的分母,我们可以根据分母的共轭形式,将分式有理化为分子和分母之间关于负号的组合。
例如,对于 f(x) = 1/(x + 3)^2,当 x -> -3 时,我们可以将分子和分母都乘上 (x + 3)^2 的共轭 (-x - 3)^2,然后化简分子和分母。
确定函数极限的常用方法

确定函数极限的常用方法内容摘要在数学分析中,极限思想贯穿于始末,求极限的方法也显得至关重要。
本文主要探讨、总结求函数极限的一般方法,并展示了利用积分求极限的特殊方法,而且把每一种方法的特点及注意事项作了重点说明,并以实例进行了具体注解,使方法更具针对性、技巧性和可操作性。
关键词:函数,求极限,基本方法Common method to determine the limit of functionAbstractIn mathematical analysis, the limit idea throughout the story, the limit methods are crucial. This paper mainly discussed, summed up the general method of seeking the limit of a function and demonstrated the use of special methods for Integral limit, and the characteristics of each method and precautions were highlighted, and specific examples to comment, make way more and targeted, skill and operability.keyword:Function, Limit, The basic method目录一、引言 (1)二、函数极限的基本知识 (1)(一)函数极限的定义 (1)(二)函数极限的性质 (1)三、函数极限的基本解法 (2)(一)定义法 (2)(二)利用极限四则运算法则 (2)(三)利用迫敛性定理求极限 (3)(四)利用两个重要极限求极限 (3)(五)利用左右极限求极限 (4)(六)幂指函数求极限 (4)四、函数极限的微积分解法. (5)(七)利用无穷小量求极限 (5)(八)利用洛比达法则求极限 (7)(九)利用单调有界准则求极限 (9)(十)利用中值定理求极限 (10)五、小结 (11)参考文献 (11)致谢 (11)确定函数极限的常用方法一、引言纵观整个高等数学体系我们可以发现极限问题一直贯穿始末。
高等数学极限求法总结

高等数学极限求法总结高等数学极限求法总结极限的判断定义是:单调递增有上界则有极限,单调递减有下界则有极限。
下面是小编整理的高等数学极限求法总结,希望对你有帮助!函数极限可以分成而运用ε-δ定义更多的见诸于已知的极极限值的证明题中。
掌握这类证明对初学者深刻理解运用极限定义大有裨益。
限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x时的极限。
1.利用极限的四则运算法则:极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。
方能利用极限四则运算法则进行求之。
不满足条件者,不能直接利用极限四则运算法则求之。
但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。
而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。
例 1 求 lim( x 2 3x + 5).x→ 2解: lim( x 2 3x + 5) = lim x 2 lim 3x + lim 5= (lim x) 2 3 lim x + lim 5= 2 2 3 2 + 5 = 3.x→2 x →2 x →2 x →2 x →2 x →2 x →22.利用洛必达法则洛必达(L Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。
一般用在求导后为零比零或无穷比无穷的类型。
利用洛必达求极限应注意以下几点:设函数f(x)和F(x)满足下列条件:(1)x→a时,lim f(x)=0,lim F(x)=0;(2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;(3)x→a时,lim(f(x)/F(x))存在或为无穷大则x→a时,lim(f(x)/F(x))=lim(f(x)/F(x))例1:1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2xsinx = 2xsin(x/2)cos(x/2)原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x对分子分母同时求导(洛必达法则)(tgx) = 1 / (cosx)^2(x) = 1原式 = lim 1/(cosx)^2当 x --> 0 时,cosx ---> 1原式 = 13.利用两个重要极限:应用第一重要极限时,必须同时满足两个条件:① 分子、分母为无穷小,即极限为 0 ;② 分子上取正弦的角必须与分母一样。
二元函数求极限的定义与基本性质

二元函数求极限的定义与基本性质在数学中,二元函数是指依赖于两个变量的函数。
求解二元函数的极限是研究其变化趋势和性质的重要手段之一。
本文将介绍二元函数求极限的定义,并探讨一些基本的性质。
一、二元函数求极限的定义对于给定的二元函数 f(x, y),当自变量 (x, y) 的取值趋近于某个点(a, b) 时,如果函数值 f(x, y) 的极限存在且唯一,那么我们称该函数在点 (a, b) 处有极限,记作:lim_(x,y)→(a,b) f(x,y) = L其中 L 为极限值。
二、二元函数极限的性质1. 唯一性:二元函数的极限值在同一点处只能有唯一的取值。
2. 有界性:如果函数在某点 (a, b) 处有极限,那么它在该点周围的某个邻域内是有界的。
3. 保号性:如果函数在某点 (a, b) 处的极限存在且大于零(或小于零),那么在该点附近的某个领域内,函数的取值也大于零(或小于零)。
4. 极限的四则运算性质:设二元函数 f(x, y) 和 g(x, y) 在点 (a, b) 处有极限,则它们的和、差、乘积以及商(当g(x, y) ≠ 0)仍在该点处有极限,并且有以下运算公式:lim_(x,y)→(a,b) (f+g)(x,y) = lim_(x,y)→(a,b) f(x,y) + lim_(x,y)→(a,b)g(x,y)lim_(x,y)→(a,b) (f-g)(x,y) = lim_(x,y)→(a,b) f(x,y) - lim_(x,y)→(a,b)g(x,y)lim_(x,y)→(a,b) (f*g)(x,y) = lim_(x,y)→(a,b) f(x,y) * lim_(x,y)→(a,b)g(x,y)lim_(x,y)→(a,b) (f/g)(x,y) = lim_(x,y)→(a,b) f(x,y) / lim_(x,y)→(a,b)g(x,y)5. 极限的复合性质:设函数 f(x, y) 在点 (a, b) 处有极限 L,函数 g(u) 在点 L 处有极限 M,则复合函数 g(f(x, y)) 在点 (a, b) 处也有极限 M。
用极限定义证明数列极限的几种方法

用极限定义证明数列极限的几种方法作者:***来源:《科技风》2019年第28期摘要:在高等数学中,极限是一个非常重要的概念,是研究微积分的必备工具,也是我们的教学中的重难点之一。
本文简单介绍了数列极限定义证明数列极限的四种方法:直接法、适当放缩法、适当放大条件法、反证法。
关键词:极限;放缩;反证我们知道初等数学的研究对象基本上是不变的量,而高等数学的研究对象则是变动的量。
所谓函数关系就是变量之间的依赖关系,极限方法是研究变量的一种基本方法。
极限概念是在探求某些实际问题的精确解答过程中产生的。
我国古代数学家刘徽(公元3世纪)利用圆内接正六边形的面积来推算圆面积的方法——割圆术[1],就是极限思想在几何上的应用。
在本文中主要介绍了几种不同的方法来加深对数列极限定义的理解和掌握.但在实际的教学中我们看到,学生在运用数列极限定义证明极限存在还是有一定的困难,这是由于学生对极限ε-N 定义中的“任意”、“存在N”、“使得xn-a<ε”等术语及它们之间的关系了解的还不够完整,深刻。
首先介绍数列极限ε-N的定义[2]:设xn为以数列,如果存在常数a,对于任意给定的正数ε(无论它多么小),总存在正整数N,使得当n>N时,不等式|xn-a|<ε都成立,那么就称常数a是数列xn的极限,或者称数列xn收敛SymboleB@ xn=aε>0,正整数N,当n>N时,有|xn-a|<ε。
我们应该注意到:定义中的正整数N是与任意给定的正数ε有关的,它随着ε的给定而选它。
那么,要如何根据ε来确定N?N的取值是唯一的吗?这些问题都将是在解题过程中遇到的。
接下来简单介绍几种常用的解题方法。
一、直接法对常见的一些简单的极限问题可以直接由不等式|xn-a|<ε解出N。
其过程如下:首先对ε>0,从|xn-a|<ε分析出n>φ(ε),然后取N=[φ(ε)]。
SymboleB@ 1n2=0。
极限的定义和常用方法

极限的定义和常用方法极限在数学中是一个重要的概念,它是微积分学的基础。
极限是一个数列或函数趋于某个值时的极端状态,它是微积分的理论基础,也是许多重要定理的前提条件,如泰勒公式、微分中值定理等。
极限的定义极限的定义是指数列或函数在某一个点内的行为趋于特定值的过程。
具体来说,对于一个数列 {an},若存在一个实数 a,使得对于任意小的正实数ε,都存在正整数 N,使得当 n>N时,满足|an − a|<ε,那么就称 a 是数列 {an} 的极限。
同样地,对于一个函数 f(x),若存在一个实数 a,使得对于任意小的正实数ε,都存在正实数δ,满足|f(x) − a|<ε,当0<|x-a|<δ 时,我们就说 a 是函数f(x) 在点 x=a 处的极限。
常用方法下面介绍一些常用的求极限的方法。
1. 代入法当极限表达式可以通过直接代入计算的时候,我们可以使用代入法。
这种方法虽然简单易用,但是只有在表达式比较简单或已经简化的情况下才能使用。
2. 差分法差分法是一种计算无穷小量的方法。
对于一个函数 f(x),若存在 a∈R,那么 a+h 与 a 之间的差值可以表示为 f(a+h) − f(a)。
如果这个差值可以表示为 h 乘以无穷小量,则我们称该函数在 a 点上是可导的。
3. 极限换元法当直接计算极限比较困难的时候,可以使用极限换元法。
这种方法常常运用到一些常用极限关系式,如sinx/x→1,ln(1+x)/x→1等等。
4. 夹逼定理夹逼定理也是一种比较常见的求极限的方法,它是利用数列的单调有界性来求极限。
具体来说,对于一列数 {an},若对于所有的 n,满足a1≤an≤b1,同时 b1、b2 等都收敛到同一个实数 b,则有 lim a_n = b。
5. L'Hôpital 规则除了以上方法之外,当求解极限结果为 0/0 或∞/∞ 时,我们可以使用 L'Hôpital 规则。
用极限定义证明极限的几种方法

0≤k≤√
z的变化范 围相 比较 ,最后 取 z 的最 大值 或 最 小 值 而得 到所 要证 明 的结果 。
于是有l≤n =1+k≤l+√
例 3 求 证 lim z = 4
证 :因为 z一一2.所 以不妨设 Iz一(-2)l— Iz+2I<1.从而有 Iz一2I<5
于 是 l 一4I= I.r一2】· Iz+2I< 5
例 l 证明lim ̄-=l,其中 “>1
n ∞
证 :令 a÷一l=a,则 a>0.由伯努 利不 等式推 得
Ⅱ= (1+n) ≥ l+ 一 l+ (Ⅱ 一 1)或 ÷一 l< a- 1
口
对
V E> O,总Leabharlann ]~(取N-
E"-
1 3) ,
则
当
n>
E
N 时 .就有 a 一l<e,即 I“÷一l I<e
第 22卷 第 2期
Vol_22 No.2
湖 北 农 学 院 学 报 Journal of H ubei Agricultural-College
文 章 编 号 :1004—3888(2002)02— 0170-03
用极限定义证明极限的几种方法’
2002年 4月
A Dr. 2002
就 叫 函数 Y一,( ),当 一 。。时 的极 限 ,记 作 limf
…
( )一 A
定 义 3:设 ,( )在 点 xo的某 个 空 心 领 域 内
有定 义 ,如 果 VE>O,总存在 > 0,对 于遥 台 不 等
式 0< I 一 如 < 的一 切 所对 应 的 函 数值 恒 有不等式 If(x)一AI<E成立 ,则常数 A就叫做
高数上极限知识点总结

高数上极限知识点总结
高数上极限是一门比较重要的学科,本文将对极限学科的知识点进行总结。
极限的定义:定义极限的本质是无限,极限的定义为某个函数的值,当函数的变量的值趋
于某一特定的值时,函数的值也趋于一个特定的值,此时称该特定的值为函数的极限。
求极限的方法:
(1)指定极限法:采用指定极限法时,必须先观察函数f(x)在x趋近某一特定值c时,函数f(x)的变化趋势,即当夹着c来看时,函数f(x)是否以c为界限,左易右难或右
易左难,亦或有任何其他的趋势。
(2)量化极限法:在量化极限法中,将函数的表达式改写为形如分母项加1的形式,然
后用幂级数来对其进行展开,再将n无限次方相邻项折叠出,可以把极限证明问题,转换
成求解一系列多项式极限问题,进而求解待证明函数极限。
(3)唯一有理极限法:当等式中存在分子分母中各有两个不同幂次或以上的多项式,而
又这两者有共同的系数幂次时,就可以利用唯一有理极限法来求解该多项式的极限。
以上是极限学科的知识点的总结,其中的概念和方法的应用非常重要,是高数的重要组成
部分。
为高数的学习和理解提供了重要的基础,希望学生们能够仔细学习,把握极限的知识点,加深认识,从而充分发挥函数在高数中的重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义法求极限
极限是微积分中最重要的概念之一,它是描述函数在某一点附近的变化趋势的工具。
在微积分中,我们需要使用极限来定义导数和积分,因此理解极限的概念和方法是学习微积分的关键。
极限的定义法是求解极限的基本方法之一。
它通过对函数在某一点附近的变化进行分析,来确定函数在该点的极限值。
这种方法对于一些特殊的函数,比如三角函数、指数函数和对数函数等,可以非常有效地求解极限。
定义法求极限的基本思路是:首先确定函数在某一点的极限值,然后根据这个值来确定函数在其他点的极限值。
具体来说,我们可以通过以下步骤来进行定义法求极限:
步骤一:确定函数在某一点的极限值
首先,我们需要确定函数在某一点的极限值。
这个点通常是函数的极限点,也就是函数在这个点处的值趋近于无穷大或无穷小。
我们可以通过对函数在这个点附近进行分析,来确定函数在这个点的极限值。
步骤二:确定函数在其他点的极限值
确定了函数在某一点的极限值之后,我们就可以根据这个值来确定函数在其他点的极限值。
具体来说,我们可以利用函数的连续性和单调性来确定函数在其他点的极限值。
如果函数在某个区间内是单调递增或递减的,那么它在这个区间内的极限值就可以通过这个点的极限值来确定。
步骤三:检验结果
最后,我们需要检验我们求解的极限值是否正确。
我们可以通过利用函数的性质和极限的定义来检验结果。
如果我们求解的极限值符合函数的性质和极限的定义,那么我们就可以认为它是正确的。
总结
定义法求极限是一种非常重要的方法,它可以帮助我们求解一些特殊函数的极限值。
通过对函数在某一点附近的变化进行分析,我们可以确定函数在这个点的极限值,并根据这个值来确定函数在其他点的极限值。
在求解极限时,我们需要注意函数的连续性和单调性,并检验结果的正确性。
理解并掌握定义法求极限的方法,对于学习微积分和数学分析等相关学科都是非常有帮助的。