高考数学公式总结归纳

合集下载

高考数学公式总结

高考数学公式总结

高考数学常用公式汇总一、函数1、 若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有非空真子集的个数是22-n 。

注:减一个真子集,减一个空集二次函数c bx ax y ++=2的图象的对称轴方程是a bx 2-=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac ab 4422, 二、 三角函数3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。

(正负看原来的三角比)函数Bx A y ++=)sin(ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是Tf 1=,相位是ϕω+x ,初相是ϕ; 13、在△ABC 中:-tanC B)+tan(A -cosC B)+cos(A sinC =B)+sin(A ==三、数列1、等差数列的通项公式是d n a a n )1(1-+=, 2)(1n n a a n S +=2、等比数列的通项公式是11-=n n q a a ,前n 项和公式是:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn3、若m 、n 、p 、q ∈N ,且q p n m +=+,那么: 当数列{}n a 是等差数列时,有q p n m a a a a +=+; 当数列{}n a 是等比数列时,有q p n m a a a a ⋅=⋅。

四、 排列组合1、 加法原理、乘法原理各适用于什么情形?有什么特点? 加法分类,类类加;乘法分步,步步乘。

2、排列数公式是:m n A =)1()1(+--m n n n =!!)(m n n -;组合数公式是:m n C =!m A mn 组合数性质:mn C =mn nC - m n C +1-m n C =mn C 1+五、解析几何1、 A B x x AB -=2、 数轴上两点间距离公式:A B x x AB -=3、 直角坐标平面内的两点间距离公式:22122121)()(y y x x P P -+-=4、 若点P 分有向线段21P P 成定比λ,则λ=21PP PP 5、 若点),(),(),(222111y x P y x P y x P ,,,点P 分有向线段21P P 成定比λ,则: =λλ++121x x =λλ++121y y若),(),(),(332211y x C y x B y x A ,,,则△ABC的重心G的坐标是⎪⎭⎫ ⎝⎛++++33321321y y y x x x ,。

高考数学必备的重要公式归纳大全

高考数学必备的重要公式归纳大全

高考数学必备的重要公式归纳大全进入高三,我们必须对自己所学的各科知识的有个全面的把握,作为高三学生熟记数学的每个公式,为你为期不久的高考作好准备。

下面是为大家整理的关于高考数学必备的重要公式归纳,希望对您有所帮助!高考数学万能公式概率公式定义:p(A)=m/n,全概率公式(贝页斯公式)某事件A是有B,C,D三种因素造成的`,求这一事件发生的概率p(A)=p(A/B)p(B)+p(A/C)p(C)+p(A/D)p(D)其中p(A/B)叫条件概率,即:在B发生的情况下,A发生的概率诱导公式弧度制下的角的表示:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)sec(2kπ+α)=secα (k∈Z)csc(2kπ+α)=cscα (k∈Z) 角度制下的角的表示: sin (α+k·360°)=sinα(k∈Z)cos(α+k·360°)=cosα(k∈Z)tan (α+k·360°)=tan α(k∈Z)cot(α+k·360°)=cotα (k∈Z)sec(α+k·360°)=secα (k∈Z)csc(α+k·360°)=cscα (k∈Z)对数的基本性质如果a0,且a≠1,M0,N0,那么:1.a^log(a)(b)=b2.log(a)(a)=13.log(a)(MN)=log(a)(M)+log(a)(N);4.log(a)(M÷N)=log(a)(M)-log(a)(N);5.log(a)(M^n)=nlog(a)(M)6.log(a)[M^(1/n)]=log(a)(M)/n 定积分形式为∫f(x) dx (上限a写在∫上面,下限b写在∫下面)。

高考必备数学公式知识点知识归纳

高考必备数学公式知识点知识归纳

高考必备数学公式知识点篇一-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1*x2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有两个不相等的个实根b2-4ac<0注:方程有共轭复数根高考必备数学公式知识点篇二圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h高考必备数学公式知识点篇三长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r高考必备数学公式知识点篇四性质:(1)奇函数的图象关于原点对称;(2)奇函数在x>0和x<0上具有相同的单调区间;(3)定义在R上的奇函数,有f(0)=0.偶函数:在前提条件下,若有f(-x)=f(x),则f(x)就是偶函数。

高三知识点归纳数学公式图片大全

高三知识点归纳数学公式图片大全

高三知识点归纳数学公式图片大全高三知识点归纳:数学公式图片大全数学公式是高中数学学习中不可或缺的一部分,它们以简练的语言表达了数学问题的解决方法和规律。

在高三阶段,学生需要掌握的数学公式更为复杂和多样化。

本文将为大家归纳总结一些高三数学知识点中常用的公式,并配上简洁明了的图片,以便帮助大家快速复习和记忆。

一、函数与方程1. 直线方程的一般形式:Ax + By + C = 0直线方程的一般形式是一条直线上所有点的坐标 (x, y) 满足Ax + By + C = 0。

其中,A、B和C是常数,A和B不同时为0。

2. 一次函数的标准型:y = kx + b一次函数的标准型是表示一条直线的函数,其中k是斜率,b 是截距。

3. 二次函数的顶点和判别式:二次函数的顶点公式:顶点的横坐标为 -b/2a,纵坐标为 f(-b/2a)。

二次函数的判别式:Δ = b^2 - 4ac,其中a、b和c分别是二次函数 y = ax^2 + bx + c 的系数。

4. 指数函数与对数函数的性质:指数函数:若 a > 0 且a ≠ 1,则指数函数 y = a^x 是递增函数;若 0 < a < 1,则指数函数是递减函数。

对数函数:若 a > 1,则对数函数 y = log_a⁡x 是递增函数;若 0 < a < 1,则对数函数是递减函数。

二、三角函数与三角恒等式1. 常见三角函数值:正弦函数:sin⁡θ = 对边 / 斜边 (简记为 soh)余弦函数:cos⁡θ = 临边 / 斜边 (简记为 cah)正切函数:tan⁡θ = 对边 / 临边 (简记为 toa)余切函数:cot⁡θ = 临边 / 对边 (简记为 cota)正割函数:sec⁡θ = 斜边 / 临边 (简记为 cah)余割函数:csc⁡θ = 斜边 / 对边 (简记为 soh)2. 三角恒等式:倍角公式:sin2θ = 2sin⁡θcos⁡θ,cos2θ = cos^2⁡θ - sin^2⁡θ,tan2θ = 2tan⁡θ / (1 - tan^2⁡θ)和差公式:sin(α ± β) = sin⁡αcos⁡β ± cos⁡αsin⁡β,cos(α ± β) = cos⁡αcos⁡β ∓ sin⁡αsin⁡β二倍角公式:sin2α = 2sin⁡αcos⁡α,cos2α = cos^2⁡α -sin^2⁡α,tan2α = 2tan⁡α / (1 - tan^2⁡α)积化和差公式:sin⁡αsin⁡β = (1/2) [cos(α - β) - cos(α + β)],cos⁡αcos⁡β = (1/2) [cos(α - β) + cos(α + β)]三、数列与数列极限1. 等差数列的通项公式:a_n = a_1 + (n - 1)d等差数列是一种公差为常数的数列,其中a_n 是第n 项的值,a_1 是首项的值,d 是公差。

(完整版)高考数学公式大全

(完整版)高考数学公式大全

1高考数学公式大全 一、集合1.集合的运算符号:交集“ ”,并集“ "补集“C ”子集“⊆”2.非空集合的子集个数:n 2(n 是指该集合元素的个数)3。

空集的符号为∅ 二、函数1。

定义域(整式型:R x ∈;分式型:分母0≠;零次幂型:底数0≠;对数型:真数0>;根式型:被开方数0≥)2.偶函数:)()(x f x f -= 奇函数:0)()(=-+x f x f 在计算时:偶函数常用:)1()1(-=f f奇函数常用:0)0(=f 或0)1()1(=-+f f3.单调增函数:当在x 递增,y 也递增;当x 在递减,y 也递减 单调减函数:与增函数相反4.指数函数计算:nm nmaa a +=⋅;nm n m aa a -=÷;nm n m aa ⋅=)(;m n mn a a =;10=a指数函数的性质:x a y =;当1>a 时,x a y =为增函数; 当10<<a 时,x a y =为减函数 指数函数必过定点)1,0(5。

对数函数计算:1log =aa ;0log 1=a;nm an a m a ⋅=+log log log ;nm ana m a log log log =-;ma m an nlog log =;m a mannlog 1log =对数的性质:xa y log = ;当10<<a 时,xa y log =为减函数.当1>a 时,xa y log =为增函数 对数函数必过定点)0,1( 6.幂函数:a x y =7。

函数的零点:①)(x f y =的零点指0)(=x f②)(x f y =在),(b a 内有零点;则0)()(<•b f a f三、三角函数①计算:1cos sin 22=+αα;θθθtan cos sin =2②正负符号判断:“一全正,二正弦,三切,四余弦” ③和差公式:βαβαβαsin cos cos sin )sin(±=± βαββαsin sin cos cos )cos( a =± βαβαβαtan tan 1tan tan )tan(•±=±④二倍角公式:αααcos sin 22sin •=;ααααα2222sin cos sin 211cos 22cos -=-=-= ααα2tan 1tan 2)2tan(-=; ⑤特殊角⑥诱导公式口诀“奇变偶不变;符号看象限.”⑦如何将三角函数化为)sin()(ϕ+=wx A x f ;利用三角函数相关的公式三看:一看平方:)2cos 1(21cos );2cos 1(21sin 22αααα+=-=二看乘积:ααα2sin 21cos sin =•三看加减:)sin(cos sin 22ϕααα±+=±b a b a 其中a b =ϕtan ; 41πϕ=⇒=a b633πϕ=⇒=a b33πϕ=⇒=a b3特别强调当a<0时:)sin(cos sin 22ϕααα±+-=+b a b a ⑧三角函数 )sin(ϕ+=wx A y 的性质:⑴单调增减区间:⎥⎦⎤⎢⎣⎡+-22,22ππππk k ↑ ⎥⎦⎤⎢⎣⎡++232,22ππππk k ↓⑵对称轴方程: 2ππ+=k x ;对称中心:)0,(πk⑶周期: wT π2=④max y 时,22;22min ππππ-=+=k x y k x 时:⑸值域:[]A A ,- ⑥记死:两条相邻对称轴之间距离为2T 两条相邻对称中心距离为2T9.由图像求)sin(ϕ+=wx A y ,三步:第一步:由图找到振幅A第二步:由图找到周期T ,然后由wT π2=求出w 具体值 第三步:代“特殊点”利用特殊角求出ϕ的值10.)sin(ϕ+=wx A y −−−−−→−个单位向左右平移a []ϕ+±=)(sin a x w A y 11.wx A y sin =−−−→−如何变成)sin(ϕ+=wx A y 平移wϕ个单位四、正余弦定理①边与角之间的转化:用正弦定理R A a 2sin =;R B b 2sin =;R Cc2sin = A R a sin 2=, B R b sin 2=,C R c sin 2= (把边转化为角)R a A 2sin = ,R b B 2sin =,R cC 2sin = (把角转化成边)②余弦定理:夹边夹边对边夹边夹边•+=2-cos 222θ③面积公式:B ac A bc C ab S ABC sin 21sin 21sin 21===∆ ④诱导公式:C B A sin )sin(=+ C B A cos )cos(-=+五、向量①),(11y x a =→),(22y x b =→则),(2121y y x x b a ++=+→→,),(2121y y x x b a --=-→→4θcos 2121⋅•=+⋅=•→→→→b a y y x x b a②2121y x a += 212122y x a a +== →b 向量同理 ③→→b 与a 的夹角公式:222221212121cos yx yx y y x x +++=θ④002121=+⇒⊥=•⇒⊥→→→→y y x x b a b a b a 或者 ⑤0//1221=-⇒→→→→y x y x b a b a 共线与或者 ⑥()2wb a wb a ±=±λλ⑦单位向量指“模”为1:a a 则1=为单位向量 六、数列①后一项减去前一项的值为一个常数:d a a n n =--1 ②后一项除以前一项的值为一个常数:q a a n n=-1③等差数列通项公式:()d n a a n 11-+= 等比数列通项公式:11-=n n q a a ④等差数列求和公式:()()d n n nan a a s n n 21211-+=⨯+=等比数列求和公式:()qq a s nn --=111⑤111s a a s s n n n ==--且⑥等差数列中项公式:112-++=n n n a a a 等比数列中项公式:112-+•=n n n a a a ⑦求和公式:“分组求和 ”等比求和等差求和nn b b a a a a ++++++...b (21321)“裂项相消”⎪⎭⎫⎝⎛-•-=大小小大111n a“错位相减”:等比通项等差通项•七、统计以概率:①众数指“出现次数最多的那个数” 中位数指“从小排到大的中间那个数”②方差 []2212)(...)()(1x x x x x x ns n -++-+-=5标准方差:2s ③频率;总数频数概率==频率组距组距频率=⨯各组频率之和=1④极差:极差=-min max⑤学会认茎叶图⑥分层抽样:第一步求出各组的比例 第二步用样本总数⨯比例=分组频数 ⑦回归方程当0>∧b 时,x 与y 正相关 当0<∧b 时,x 与y 负相关⑧))()()(())((22d c b a d b c a bc ad d c b a k ++++-+++=;二联表总a bcd总八、命题①原命题:否命题(条件和结论都否定);逆命题(条件和结论互换位置);逆否命题(将逆命题进行否定)②“或"∨⇒ “且”∧⇒ “非”⌝⇒p一真全真 ↓ 一假全假 ↓ 真假互换 ↓③B A ⊆则A 是B 充分不必要6B A ⊇则A 是B 的必要不充分B A =则A 是B 的充要条件④全称量词:符号:∀ 存在量词:符号∃“ ∀”与 “ ∃" 相互否定,“所有” −−→←否定“存在 ” 九、导数①基本函数求导:1')(-•=m m nx m nx ;)0(1)(ln '>=x xx ;x x e e =')((本身) 0'=c (常数求导=0);x x cos )(sin '=;x x sin )(cos '-=②乘法求导:[])()()()()()('''x f x g x g x f x g x f ⋅+⋅=•;除法求导:)()()()()()()(2''x g x f x g x g x f x g x f -= ③复合求导:[][]→=)().()('''x g f x g x g f 这个公式记题型④斜率)(0'x f k = 切线方程:)(00x x k y y -=- ⑤在a x =处取极值⇒0)('=a f⑥求单调区间:令0)('>x f 求单调增区间 。

高三知识点总结数学公式大全

高三知识点总结数学公式大全

高三知识点总结数学公式大全在高中数学学习过程中,我们接触到了许多重要的数学知识点和公式。

这些公式不仅在考试中发挥重要作用,也是我们理解和解决数学问题的基石。

下面是我对高三数学知识点的总结,包含了一些重要的数学公式,希望能够帮助大家复习和记忆。

一、代数与函数1. 二次函数的顶点坐标公式:对于二次函数 y=a(x-h)²+k,顶点坐标为(h,k)。

2. 常见因式分解公式:- 二次差分公式:a²-b²=(a+b)(a-b)- 二次和差公式:a²+2ab+b²=(a+b)²,a²-2ab+b²=(a-b)²- 立方和公式:a³+b³=(a+b)(a²-ab+b²)- 立方差公式:a³-b³=(a-b)(a²+ab+b²)3. 平方和公式:(a+b)²=a²+2ab+b²,(a-b)²=a²-2ab+b²4. 比例函数的性质:设 y=kx,当 k>0 时,函数图像上升;当k<0 时,函数图像下降。

5. 对数函数与指数函数的性质:y=logₐx 和y=aˣ 是互逆函数。

6. 分式函数的性质:当分母恒大于0时,函数图像在分母不等于0的区间连续。

7. 三角函数的性质:- sin(x±y)=sinx*cosy±cosx*siny- cos(x±y)=cosx*cosy∓sinx*siny- tan(x±y)=(tanx±tany)/(1∓tanxtany)二、几何与向量1. 相似三角形的性质:- AA相似:如果两个三角形的两个角分别相等,则它们相似。

- SAS相似:如果两个三角形的一个角相等,并且两个对应边的比值相等,则它们相似。

高考数学必备公式整理

高考数学必备公式整理

高考数学必备公式整理高考数学必备公式整理总结对于数学科目来说,高三一定少不了的就是要做题,因为高三考“三基”,基础知识、基本技能、基本方法,体现在平常的大量练习中对三基的把握。

下面是小编为大家整理的高考数学必备公式整理,希望对您有所帮助!高考数学必备公式整理椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。

常数为体,公式为用。

椭圆形物体体积计算公式椭圆的长半径·短半径·PAI·高弧长公式l=a·r a是圆心角的弧度数r 0 扇形面积公式s=1/2·l·r锥体体积公式V=1/3·S·H 圆锥体体积公式V=1/3·pi·r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式V=s·h 圆柱体V=pi·r2h图形周长面积体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)·(a+b-c)·1/4高考数学复习的方法1、高考数学的复习,不能就题目讲题目,要特别注意数学思想、数学方法的渗透。

比如,常见的“方程的思想、类比的思想、数形结合的思想、一般与特殊的思想、动定结合分析思想、分类分层分析思想、逐步译解思想”等等,结合题目分析,恰如其分地提出,有利于学生的数学思想和数学思维能力的升华。

数学高考知识点及公式总结

数学高考知识点及公式总结

数学高考知识点及公式总结在高中数学的学习过程中,我们需要掌握各种各样的知识点和公式。

这些知识点和公式是我们高考备考的重要基础,也是我们在数学考试中的得分点。

下面,我们就来总结一下数学高考中常见的知识点和公式,希望对大家备考有所帮助。

一、代数与函数1. 方程与不等式- 一元二次方程:$ax^2 + bx + c = 0$- 二次函数图像的特征:顶点、对称轴、开口方向- 一元二次不等式:$ax^2 + bx + c > 0$ 或 $< 0$ 的解集2. 数列与数列极限- 等差数列通项公式:$a_n = a_1 + (n-1)d$- 等比数列通项公式:$a_n = a_1 \cdot q^{n-1}$- 递推关系与通项公式的转化- 数列极限的概念与计算3. 函数与图像- 一次函数:$y = kx + b$- 二次函数:$y = ax^2 + bx + c$- 指数函数:$y = a^x\ (a > 0,\ a \neq 1)$- 对数函数:$y = \log_a{x}\ (a > 0,\ a \neq 1)$- 三角函数:正弦函数、余弦函数、正切函数等二、平面几何1. 图形的性质- 四边形性质:平行四边形、矩形、正方形、菱形等- 三角形性质:等边三角形、等腰三角形、直角三角形等- 圆的性质:圆的周长、面积、弦长、弧长等2. 相似与全等- 三角形相似的判定条件- 三角形全等的判定条件3. 向量与坐标- 向量的基本运算:加法、减法、数乘- 向量的模、平行、垂直等概念- 平面直角坐标系中的点与向量的关系三、空间几何1. 空间图形的性质- 空间几何体:球、圆柱、圆锥、棱柱、棱锥等- 空间图形的表面积和体积计算2. 空间直角坐标系- 空间直角坐标系的建立与应用- 斜率与二维、三维直线的关系3. 空间平面与直线- 空间平面的方程与性质- 空间直线的方程与性质四、概率与统计1. 随机事件与概率- 随机事件的概念与性质- 概率的基本性质及其计算方法- 排列与组合的概念与计算2. 数据处理与统计- 数据分布的统计指标:平均数、中位数、众数、极差等- 统计图表的绘制与分析以上就是数学高考中常见的知识点和公式的总结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学公式总结归纳一圆的公式1、圆体积=4/3(pi)(r^3)2、面积=(pi)(r^2)3、周长=2(pi)r4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。

高考数学公式总结归纳二乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b||a|+|b||a-b||a|+|b||a|b=-bab|a-b||a|-|b|-|a|a|a|一元二次方程的解-b+(b2-4ac)/2a-b-(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1_2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac0注:方程有两个不等的实根b2-4ac0注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)倍角公式tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(a/2)=((1-cosa)/2)sin(a/2)=-((1-cosa)/2)cos(a/2)=((1+cosa)/2)cos(a/2)=-((1+cosa)/2)tan(a/2)=((1-cosa)/((1+cosa))tan(a/2)=-((1-cosa)/((1+cosa))ctg(a/2)=((1+cosa)/((1-cosa))ctg(a/2)=-((1+cosa)/((1-cosa))和差化积2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosbctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb某些数列前n项和1+2+3+4+5+6+7+8+9++n=n(n+1)/21+3+5+7+9+11+13+15++(2n-1)=n22+4+6+8+10+12+14++(2n)=n(n+1)12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+n3=n2(n+1)2/41_+2_+3_+4_+5_+6_++n(n+1)=n(n+1)(n+2)/3 正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+dx+ey+f=0注:d2+e2-4f0抛物线标准方程y2=2pxy2=-2p_2=2pyx2=-2py直棱柱侧面积s=c_斜棱柱侧面积s=c_正棱锥侧面积s=1/2c_正棱台侧面积s=1/2(c+c)h圆台侧面积s=1/2(c+c)l=pi(r+r)l球的表面积s=4pi_2圆柱侧面积s=c_=2pi_圆锥侧面积s=1/2__=pi__弧长公式l=a_a是圆心角的弧度数r0扇形面积公式s=1/2__锥体体积公式v=1/3__圆锥体体积公式v=1/3_i_2h斜棱柱体积v=sl注:其中,s是直截面面积,l是侧棱长柱体体积公式v=s_圆柱体v=pi_2h高考数学公式总结归纳三抛物线公式y = ax^2+bx+c 就是y等于ax的平方加上ba > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2pxx^2=2py x^2=-2py面积公式圆的体积公式 4/3(pi)(r^3)圆的面积公式 (pi)(r^2)圆的周长公式 2(pi)r正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c_ 斜棱柱侧面积 S=c'_正棱锥侧面积 S=1/2c_' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi_2圆柱侧面积 S=c_=2pi_ 圆锥侧面积 S=1/2__=pi__弧长公式 l=a_ a是圆心角的弧度数r>0 扇形面积公式 s=1/2__锥体体积公式 V=1/3__ 圆锥体体积公式V=1/3_i_2h斜棱柱体积 V=S'L 注:其中S'是直截面面积L是侧棱长柱体体积公式 V=s_ 圆柱体V=pi_2h高考数学公式总结归纳四高中数学公式顺口溜一、《集合与函数》内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

二、《三角函数》三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割; 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。

?nbsp;变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用; 1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围; 利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。

求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。

非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。

图形函数来帮助,画图建模构造法。

四、《数列》等差等比两数列,通项公式N项和。

两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。

数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。

归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。

还有数学归纳法,证明步骤程序化:首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。

五、《复数》虚数单位i一出,数集扩大到复数。

一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。

箭杆与X轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。

代数几何三角式,相互转化试一试。

代数运算的实质,有i多项式运算。

i的正整数次慕,四个数值周期现。

一些重要的结论,熟记巧用得结果。

虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。

几何运算图上看,加法平行四边形,减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。

利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和差是由积商得。

四条性质离不得,相等和模与共轭,两个不会为实数,比较大小要不得。

复数实数很密切,须注意本质区别。

六、《排列、组合、二项式定理》加法乘法两原理,贯穿始终的法则。

与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。

归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。

特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。

排列组合恒等式,定义证明建模试。

关于二项式定理,中国杨辉三角形。

两条性质两公式,函数赋值变换式。

七、《立体几何》点线面三位一体,柱锥台球为代表。

距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。

线线线面和面面、三对之间循环现。

相关文档
最新文档