电大高等数学数学基础综合练习题解答
电大高等数学基础考试答案完整版

若,贝寸—9sin3x.
5-23.0.0下列积分计算正确的是(B).
ABCD
三、计算题
(
(1)利用极限的四则运算法则,主要是因式分解,消去零因子。
(2)利用连续函数性质:有定义,则极限 类型1:利用重要极限|,,|计算
1-1求.解:
1-2
1-3求解:=
类型2:因式分解并利用重要极限,化简计算。
1-1
解:
1-2
解:
1-3设,求.
解:
类型2:加减法与复合函数混合运算的求导,先加减求导,后复合求导
2-1,求解
2-2,求
解:
2-3,求,
解:
类型3:
乘积与复合函数混合运算的求导,先乘积求导,后复合求导
,求。
解:
其他:,求。
解:
0807.设,
求解:
0801.设,
求解:
0707.设,
求解:
0701.设,
核准通过,归档资 料。
未经允许,请勿外
传!
高等数学基础归类复习
、单项选择题
1-1下列各函数对中,(C)中的两个函数相等.
1-2.设函数的定义域为,则函数的图形关于(C)对称.
A.坐标原点轴轴
设函数的定义域为,则函数的图形关于(D)对称.
轴轴D.坐标原点
.函数的图形关于(A)对称.
(A)坐标原点(B)轴(C)轴(D)
1.函数的定义域是(3,+8).
函数的定义域是(2,3)U(3,4
函数的定义域是(—5,2)
若函数,则1.
2若函数,在处连续,则e.
.函数在处连续,则2函数的间断点是x=0.
函数的间断点是x=3^函数的间断点是x=2
2020电大高等数学数学基础综合练习题解答

高等数学基础综合练习题解答一.填空题1.函数ln(1)y x =-的定义域为 12x x >≠且 。
()40410121ln 1011x x x x x x x x +≥⎧≥-⎧⎪⎪->⇒⇒>≠>⎨⎨⎪⎪-≠-≠⎩⎩解:且2.函数y =的定义域是 12x -<< 。
2101122240x x x x x +>>-⎧⎧⇒⇒-<<⎨⎨-<<->⎩⎩解: 3.函数3y x =-的定义域是 23x x ≥-≠且 。
202303x x x x +≥≥-⎧⎧⇒⎨⎨-≠≠⎩⎩解: 4.设2(2)2f x x +=-,则)(x f 246x x -+ 。
解:设2x t +=,则2x t =-且原式2(2)2f x x +=-即()2()22f t t =--=242t t -+亦即()f x =242x x -+4.若函数4(1),0(),x x x f x k x ⎧⎪-≠=⎨⎪=⎩在0x =处连续,则k = 4e - 。
()()()()()()()4144004lim lim 1lim ,lim 1(0)xxx x x f x x x e f k k e -⨯--→→→→-=-=-==∴==x 0函数f x 在x=0连0 续x 则f f5.曲线x y e -=在0x =处的切线方程为 1y x -=- 。
曲线()y f x =在点()00,x y 处的切线方程为()000x y y y x x '-=-解:()001xx x y e-=='=-=-,00001x y e ===时,1(0)1y x y x -=--⇒-=-,6. 函数ln(3)1x y x +=+的连续区间为 ()()3,1,1,---+∞ 。
初等函数在其定义区间连续。
ln(3)1x y x +=+⇒3010x x +>⎧⎨+≠⎩⇒3x >-且1x ≠-⇒()()3,1,1,---+∞7.曲线ln y x =在点(1,0)处的切线方程为 1y x =- 。
电大高等数学基础考试答案完整版(整理)

核准通过,归档资料。
未经允许,请勿外传!高等数学基础归类复习一、单项选择题1-1下列各函数对中,( C )中的两个函数相等.A. 错误!未找到引用源。
,错误!未找到引用源。
B. 错误!未找到引用源。
,错误!未找到引用源。
C.错误!未找到引用源。
,错误!未找到引用源。
D. 错误!未找到引用源。
,错误!未找到引用源。
1-⒉设函数错误!未找到引用源。
的定义域为错误!未找到引用源。
,则函数错误!未找到引用源。
的图形关于(C )对称.A. 坐标原点B. 错误!未找到引用源。
轴C. 错误!未找到引用源。
轴D. 错误!未找到引用源。
设函数错误!未找到引用源。
的定义域为错误!未找到引用源。
,则函数错误!未找到引用源。
的图形关于(D )对称.A. 错误!未找到引用源。
B. 错误!未找到引用源。
轴C. 错误!未找到引用源。
轴D. 坐标原点.函数错误!未找到引用源。
的图形关于(A )对称.(A) 坐标原点(B) 错误!未找到引用源。
轴(C) 错误!未找到引用源。
轴(D) 错误!未找到引用源。
1-⒊下列函数中为奇函数是(B ).A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
下列函数中为奇函数是(A ).A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
下列函数中为偶函数的是( D ).A 错误!未找到引用源。
B 错误!未找到引用源。
C 错误!未找到引用源。
D 错误!未找到引用源。
2-1 下列极限存计算不正确的是( D ).A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
2-2当错误!未找到引用源。
时,变量( C )是无穷小量.A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
当错误!未找到引用源。
时,变量( C )是无穷小量.A 错误!未找到引用源。
国家开放大学《高数基础形考》1-4答案

2020年国家开放大学《高等数学》基础形考1-4答案《高等数学基础》作业一第1章 函数第2章 极限与连续(一) 单项选择题⒈下列各函数对中,(C )中的两个函数相等. A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D. x y = ⒊下列函数中为奇函数是(B ).A. )1ln(2x y +=B. x x y cos =C. 2x x a a y -+= D. )1ln(x y +=⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -= C. 2x y = D. ⎩⎨⎧≥<-=0,10,1x x y ⒌下列极限存计算不正确的是(D ).A. 12lim22=+∞→x x x B. 0)1ln(lim 0=+→x xC. 0sin lim=∞→x x x D. 01sin lim =∞→xx x ⒍当0→x 时,变量(C )是无穷小量. A.xxsin B. x 1C. xx 1sin D. 2)ln(+x ⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。
A. )()(lim 00x f x f xx =→ B. )(x f 在点0x 的某个邻域内有定义C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(二)填空题 ⒈函数)1ln(39)(2x x x x f ++--=的定义域是 {}|3x x >.⒉已知函数x x x f +=+2)1(,则=)(x f x 2-x .⒊=+∞→xx x)211(lim 1122211lim(1)lim(1)22x x x x e x x ⨯→∞→∞+=+= ⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k e . ⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是 0x =.⒍若A x f xx =→)(lim 0,则当0x x →时,A x f -)(称为 x →x 0时的无穷小量.(二) 计算题⒈设函数 ⎩⎨⎧≤>=0,0,e )(x x x x f x 求:)1(,)0(,)2(f f f -.解:()22f -=-,()00f =,()11f e e == ⒉求函数21lgx y x-=的定义域.解:21lg x y x -=有意义,要求21x x x -⎧>⎪⎪⎨⎪≠⎪⎩解得1020x x x ⎧⎪⎪><⎨⎪≠⎪⎩或则定义域为1|02x x x ⎧⎫<>⎨⎬⎩⎭或⒊在半径为R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数.解:C设梯形ABCD 即为题中要求的梯形,设高为h ,即OE=h ,下底CD =2R直角三角形AOE 中,利用勾股定理得AE ==则上底=2AE =故((222hS R R h R =+=+ ⒋求xxx 2sin 3sin lim0→.解:000sin3sin33sin3333lim lim lim sin 2sin 2sin 22222x x x x xxx x x x x x xx x→→→⨯==⨯⨯=133122⨯= ⒌求)1sin(1lim 21+--→x x x .解:21111(1)(1)111lim lim lim 2sin(1)sin(1)sin(1)11xx x x x x x x x x x →-→-→---+---====-++++ ⒍求xxx 3tan lim0→.解:000tan3sin31sin311limlim lim 3133cos33cos31x x x x x x x x x x x →→→==⨯⨯=⨯⨯=⒎求xx x sin11lim 20-+→. 解:20001lim sin x x x x→→→-== ()00lim 0sin 1111)x xx x→===+⨯⒏求xx x x )31(lim +-∞→. 解:1143331111(1)[(1)]1lim()lim()lim lim 33311(1)[(1)]3x x x x x x x x x x x e x x x e x e x x x----→∞→∞→∞→∞--+--=====++++ ⒐求4586lim 224+-+-→x x x x x . 解:()()()()2244442682422lim lim lim 54411413x x x x x x x x x x x x x →→→---+--====-+---- ⒑设函数⎪⎩⎪⎨⎧-<+≤≤->-=1,111,1,)2()(2x x x x x x x f讨论)(x f 的连续性,并写出其连续区间. 解:分别对分段点1,1x x =-=处讨论连续性 (1)()()()1111lim lim 1lim lim 1110x x x x f x x f x x →-+→-+→--→--==-=+=-+=所以()()11lim lim x x f x f x →-+→--≠,即()f x 在1x =-处不连续 (2)()()()()()221111lim lim 2121lim lim 111x x x x f x x f x x f →+→+→-→-=-=-====所以()()()11lim lim 1x x f x f x f →+→-==即()f x 在1x =处连续 由(1)(2)得()f x 在除点1x =-外均连续 故()f x 的连续区间为()(),11,-∞--+∞《高等数学基础》作业二第3章 导数与微分(一)单项选择题 ⒈设0)0(=f 且极限x x f x )(lim→存在,则=→xx f x )(lim 0( C ). A. )0(f B. )0(f ' C. )(x f ' D. 0 ⒉设)(x f 在0x 可导,则=--→hx f h x f h 2)()2(lim 000( D ).A. )(20x f '-B. )(0x f 'C. )(20x f 'D. )(0x f '- ⒊设x x f e )(=,则=∆-∆+→∆xf x f x )1()1(lim( A ). A. e B. e 2 C.e 21 D. e 41 ⒋设)99()2)(1()(---=x x x x x f ,则=')0(f ( D ). A. 99 B. 99- C. !99 D. !99- ⒌下列结论中正确的是( C ).A. 若)(x f 在点0x 有极限,则在点0x 可导.B. 若)(x f 在点0x 连续,则在点0x 可导.C. 若)(x f 在点0x 可导,则在点0x 有极限.D. 若)(x f 在点0x 有极限,则在点0x 连续. (二)填空题⒈设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x x x x f ,则=')0(f 0 . ⒉设x x x f e 5e )e (2+=,则=x x f d )(ln d xx x 5ln 2+. ⒊曲线1)(+=x x f 在)2,1(处的切线斜率是 21=k ⒋曲线x x f sin )(=在)1,4π(处的切线方程是 )41(2222π-==x y ⒌设x x y 2=,则 ='y )ln 1(22x x x + ⒍设x x y ln =,则 =''y x1(三)计算题⒈求下列函数的导数y ': ⑴x x x y e )3(+=解:x xe x e x y 212323)3(++='⑵x x x y ln cot 2+= 解:x x x x y ln 2csc 2++-='⑶xx y ln 2=解:xxx x y 2ln ln 2+=' ⑷32cos xx y x+= 解:4)2(cos 3)2ln 2sin (x x x x y x x +-+-='⑸xx x y sin ln 2-=解:xxx x x x x y 22sin cos )(ln )21(sin ---='⑹x x x y ln sin 4-= 解:x x xxx y ln cos sin 43--=' ⑺xx x y 3sin 2+=解:xx x x x x x y 2233ln 3)(sin )2(cos 3+-+='⑻x x y x ln tan e +=解:xx e x e y x x1cos tan 2++='⒉求下列函数的导数y ': ⑴21ex y -=解:2112xx ey x -='-⑵3cos ln x y =解:32233tan 33cos sin x x x xx y -=-=' ⑶x x x y =解:87x y = 8187-='x y⑷3x x y +=解:)211()(31213221--++='x x x y⑸x y e cos 2=解:)2sin(xxe e y -=' ⑹2e cos x y=解:22sin 2xx e xe y -='⑺nx x y n cos sin =解:)sin(sin cos cos sin 1nx x n nx x x n y n n -='- ⑻2sin 5x y =解:2sin 25cos 5ln 2x x x y ='⑼xy 2sin e=解:xxey 2sin 2sin ='⑽22ex x x y +=解:222)ln 2(x x xex x x x y ++='⑾xxx y e e e+=解:x e x x e e e x e xe xy x x++=')ln ( ⒊在下列方程中,y y x =()是由方程确定的函数,求:⑴y x y 2e cos =解:y e x y x y y '=-'22sin cosyex xy y 22cos sin -=' ⑵x y y ln cos =解:xy x y y y 1.cos ln .sin +'=')ln sin 1(cos x y x yy +='⑶yx y x 2sin 2=解:222sin 2.cos 2y y x yx y y y x '-=+' y yyxy x y x y sin 22)cos 2(222-=+'2020年国家开放大学《高等数学答案》22cos 2sin 22x y xy yy xy y +-='⑷y x y ln += 解:1+'='yy y 1-='y y y ⑸2e ln y x y =+ 解:y y y e xy '='+21)2(1y e y x y -='⑹y y x sin e 12=+解:x x e y y y e y y .sin .cos 2+'='ye y ye y x x cos 2sin -=' ⑺3e e y x y -= 解:y y e y e x y '-='2323y ee y y x+='⑻y x y 25+=解:2ln 25ln 5y x y y '+='2ln 215ln 5y x y -='⒋求下列函数的微分y d : ⑴x x y csc cot += 解:dx xxx dy )sin cos cos 1(22--= ⑵xxy sin ln =解:dx xx x x x dy 2sin cos ln sin 1-= ⑶xxy +-=11arcsin 解:dx x x x dx x x x xx dy 2222)1(11)1()1()1()11(11++-=+--+-+--=⑷311xxy +-= 解:两边对数得:[])1ln()1ln(31ln x x y +--=)1111(31xx y y +---=' )1111(11313xx x x y ++-+--=' ⑸x y e sin 2=解:dx e e dx e e e dy x x x x x )2sin(sin 23== ⑹3e tan x y =xdx e x dx x e dy x x 2222sec 33sec 33==⒌求下列函数的二阶导数: ⑴x x y ln = 解:x y ln 1=='xy 1='' ⑵x x y sin = 解:x x x y sin cos +='x x x y cos 2sin +-=''⑶x y arctan =解:211x y +=' 22)1(2x xy +-='' ⑷23x y = 解:3ln 322x x y =' 2233ln 23ln 3422x x x y ⋅+=''(四)证明题设)(x f 是可导的奇函数,试证)(x f '是偶函数. 证:因为f(x)是奇函数 所以)()(x f x f -=- 两边导数得:)()()()1)((x f x f x f x f =-'⇒'-=--' 所以)(x f '是偶函数。
电大高等数学数学基础综合练习题解答

高等数学基础综合练习题解答一.填空题1.函数y =的定义域为 12x x >≠且 。
()40410121ln 1011x x x x x x x x +≥⎧≥-⎧⎪⎪->⇒⇒>≠>⎨⎨⎪⎪-≠-≠⎩⎩解:且2.函数y =的定义域是 12x -<< 。
2101122240x x x x x +>>-⎧⎧⇒⇒-<<⎨⎨-<<->⎩⎩解: 3.函数3y x =-的定义域是 23x x ≥-≠且 。
202303x x x x +≥≥-⎧⎧⇒⎨⎨-≠≠⎩⎩解: 4.设2(2)2f x x +=-,则)(x f 246x x -+ 。
解:设2x t +=,则2x t =-且原式2(2)2f x x +=-即()2()22f t t =--=242t t -+亦即()f x =242x x -+4.若函数4(1),0(),x x x f x k x ⎧⎪-≠=⎨⎪=⎩在0x =处连续,则k = 4e - 。
()()()()()()()4144004lim lim 1lim ,lim 1(0)xxx x x f x x x e f k k e -⨯--→→→→-=-=-==∴==x 0函数f x 在x=0连0 续x 则f f5.曲线x y e -=在0x =处的切线方程为 1y x -=- 。
曲线()y f x =在点()00,x y 处的切线方程为()000xy y y x x '-=-解:()001xx x y e-=='=-=-,00001x y e ===时,1(0)1y x y x -=--⇒-=-,6. 函数ln(3)1x y x +=+的连续区间为 ()()3,1,1,---+∞ 。
初等函数在其定义区间连续。
ln(3)1x y x +=+⇒3010x x +>⎧⎨+≠⎩⇒3x >-且1x ≠-⇒()()3,1,1,---+∞7.曲线ln y x =在点(1,0)处的切线方程为 1y x =- 。
电大高等数学数学基础综合练习题解答

高等数学基础综合练习题解答一.填空题1.函数ln(1)y x =-的定义域为 12x x >≠且 。
()40410121ln 1011x x x x x x x x +≥⎧≥-⎧⎪⎪->⇒⇒>≠>⎨⎨⎪⎪-≠-≠⎩⎩解:且2.函数y =的定义域是 12x -<< 。
2101122240x x x x x +>>-⎧⎧⇒⇒-<<⎨⎨-<<->⎩⎩解: 3.函数y =的定义域是 23x x ≥-≠且 。
202303x x x x +≥≥-⎧⎧⇒⎨⎨-≠≠⎩⎩解: 4.设2(2)2f x x +=-,则)(x f 246x x -+ 。
解:设2x t +=,则2x t =-且原式2(2)2f x x +=-即()2()22f t t =--=242t t -+亦即()f x =242x x -+4.若函数4(1),0(),x x x f x k x ⎧⎪-≠=⎨⎪=⎩在0x =处连续,则k = 4e - 。
()()()()()()()4144004lim lim 1lim ,lim 1(0)xxx x x f x x x e f k k e -⨯--→→→→-=-=-==∴==x 0函数f x 在x=0连0 续x 则f f5.曲线x y e -=在0x =处的切线方程为 1y x -=- 。
曲线()y f x =在点()00,x y 处的切线方程为()000x y y y x x '-=-解:()001xx x y e-=='=-=-,00001x y e ===时,1(0)1y x y x -=--⇒-=-,6. 函数ln(3)1x y x +=+的连续区间为 ()()3,1,1,---+∞ 。
初等函数在其定义区间连续。
ln(3)1x y x +=+⇒3010x x +>⎧⎨+≠⎩⇒3x >-且1x ≠-⇒()()3,1,1,---+∞7.曲线ln y x =在点(1,0)处的切线方程为 1y x =- 。
国开电大《高等数学基础》形考任务一国家开放大学试题答案

国开电大《高等数学基础》形考任务一国家开放大学试题答案一、选择题(每题5分,共25分)1. 函数y = 3x^3 - 4x^2 + 1的导数为:A. 9x^2 - 8xB. 9x^2 - 4xC. 9x^2 + 8xD. 9x^2 + 4x答案:A2. 函数y = e^x 的反函数为:A. y = ln(x)B. y = lnxC. y = xlnxD. y = ln(e^x)答案:B3. 极限lim(x→0) (sinx)/x 的值为:A. 1B. 0C. πD. 无极限答案:A4. 函数y = x^3 - 3x + 2 的极值点为:A. x = 0B. x = 1C. x = -1D. x = 3答案:B5. 定积分∫(0→1) (x^2 + 1)dx 的值为:A. 1/3B. 2/3C. 1/2D. 3/2答案:B二、填空题(每题5分,共25分)1. 函数y = x^2 + 2x + 1 的导数为______。
答案:2x + 22. 极限lim(x→∞) (1/x^2) 的值为______。
答案:03. 定积分∫(0→π) sinx dx 的值为______。
答案:24. 函数y = x^3 - 6x^2 + 9x + 1 的单调递增区间为______。
答案:(0, 3)5. 函数y = ln(x^2) 的反函数为______。
答案:y = e^x/2三、解答题(每题25分,共75分)1. 已知函数f(x) = 2x^3 - 3x^2 + 4x + 1,求f'(x)。
解:f'(x) = 6x^2 - 6x + 4。
2. 求极限lim(x→0) (1 - cosx)/x^2。
解:lim(x→0) (1 - cosx)/x^2 = lim(x→0) (1 - cosx)/x^2 (1 + cosx)/(1 + cosx) = lim(x→0) (1 -cos^2x)/x^2(1 + cosx) = lim(x→0) sin^2x/x^2(1 + cosx) = 1/2。
电大高等数学基础考试答案完整版

电大高等数学基础考试答案完整版高等数学基础复一、单项选择题1.下列各函数中,(C)中的两个函数相等。
A。
f(x) = x^2.g(x) = xB。
f(x) = x^2.g(x) = x^2C。
f(x) = ln(x^3)。
g(x) = 3ln(x)D。
f(x) = x+1.g(x) = (x-1)/(x-1)2.设函数f(x)的定义域为(-∞,+∞),则函数f(x)+f(-x)的图形关于(C)对称。
A。
坐标原点B。
x轴C。
y轴D。
y=x3.下列函数中为奇函数是(B)。
A。
y=ln(1+x^2)B。
y=xcosxC。
y=ax+a^-xD。
y=ln(1+x)4.下列函数中为偶函数的是(D)。
A。
y=(1+x)sinxB。
y=x^2C。
y=xcosxD。
y=ln(1+x^2)^(2-1)5.下列极限计算不正确的是(D)。
A。
lim(x^2/(x^2+2))=1B。
lim(ln(1+x))=xC。
lim(sin(x)/x)=1D。
lim(xsin(x))=1 (应为无穷大)6.当x→0时,变量(C)是无穷小量。
A。
sinx/xB。
1/xC。
xsin(1/x)D。
ln(x+2)7.下列变量中,是无穷小量的为(B)。
A。
sin(1/x) (x→0)B。
ln(x+1) (x→0)C。
e^x (x→∞)D。
(x-2)/(x^2-4) (x→2)二、XXX答题1.求函数f(x)=x^3-3x的单调区间和极值。
答:f'(x)=3x^2-3,令f'(x)=0,得x=±1,f''(x)=6x,f''(1)>0,故x=1是极小值点,f(1)=-2;f''(-1)0,故f(x)在(-1,1)单调递增;当x>1时,f'(x)>0,故f(x)在(1,+∞)单调递增。
2.求函数f(x)=x^3-3x的图像的拐点和凹凸性。
答:f''(x)=6x,令f''(x)=0,得x=0,f'''(x)=6,故x=0是拐点;当x0时,f''(x)>0,故f(x)在(0,+∞)上是上凸的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学基础综合练习题解答一.填空题1.函数ln(1)y x =-的定义域为 12x x >≠且 。
()40410121ln 1011x x x x x x x x +≥⎧≥-⎧⎪⎪->⇒⇒>≠>⎨⎨⎪⎪-≠-≠⎩⎩解:且2.函数y =的定义域是 12x -<< 。
2101122240x x x x x +>>-⎧⎧⇒⇒-<<⎨⎨-<<->⎩⎩解: 3.函数y =的定义域是 23x x ≥-≠且 。
202303x x x x +≥≥-⎧⎧⇒⎨⎨-≠≠⎩⎩解: 4.设2(2)2f x x +=-,则)(x f 246x x -+ 。
解:设2x t +=,则2x t =-且原式2(2)2f x x +=-即()2()22f t t =--=242t t -+亦即()f x =242x x -+4.若函数4(1),0(),x x x f x k x ⎧⎪-≠=⎨⎪=⎩在0x =处连续,则k = 4e - 。
()()()()()()()4144004lim lim 1lim ,lim 1(0)xxx x x f x x x e f k k e -⨯--→→→→-=-=-==∴==x 0函数f x 在x=0连0 续x 则f f5.曲线x y e -=在0x =处的切线方程为 1y x -=- 。
曲线()y f x =在点()00,x y 处的切线方程为()000x y y y x x '-=-解:()001xx x y e-=='=-=-,00001x y e ===时,1(0)1y x y x -=--⇒-=-,6. 函数ln(3)1x y x +=+的连续区间为 ()()3,1,1,---+∞ 。
初等函数在其定义区间连续。
ln(3)1x y x +=+⇒3010x x +>⎧⎨+≠⎩⇒3x >-且1x ≠-⇒()()3,1,1,---+∞7.曲线ln y x =在点(1,0)处的切线方程为 1y x =- 。
()()1111ln 1,0111x x x y x xy x y x ===''===∴-=-⇒=-解:8. 设函数(ln 2)y f x =可导,则=dy1'(ln 2)f x dx x。
解:'dy y dx ==[](ln 2)'f x dx =()'(ln 2)ln 2'f x x dx =()1'(ln 2)2'2f x x dx x=()1'(ln 2)2'2f x x dx x =1'(ln 2)f x dx x9.(判断单调性、凹凸性)曲线321233y x x x =-+在区间()2,3内是 单调递减且凹 。
解:()()24331,230y x x x x x y ''=-+=--<<<⇒当时,曲线下降20y x y ''''=⇒>⇒-4曲线是凹的10.设2()1f x x =+,则'))((x f f 241x + 。
解:()2'()1'2f x x x =+=,()()22(())22141f f x f x x x '==+=+,11.131(1cos )x x dx --=⎰0 。
解:3x 是奇函数;1cos x 和是偶函数,由于偶+偶=偶,则1cos x -是偶函数, 因为奇⨯偶=奇,所以3x ()1cosx -是奇函数,[]1,1-是对称区间奇函数在对称区间上的积分为零12.11(x x dx-=⎰ 23。
解:11(x x dx -=⎰121(x dx --=⎰11211x dx ---⎰⎰⨯偶=奇),故110-=⎰;而2x 是偶函数,故11122301022233x dx x dx x -===⎰⎰13.设()()F x f x '=,则(ln 3)f x dx x=⎰()ln3F x C + 。
解:()()11ln 3ln 3ln 3x dx x dx d x x x ''=∴== ()()1(ln 3)ln 3ln 3ln 3f x dx f x d x F x C x==+⎰⎰14.已知()()F x f x '=,则2(1)xf x dx -=⎰()2112F x C -+ 。
解:()()()()()22222111(1)12111222xf x dx f x xdx f x d x F x C -=-=--=-+⎰⎰⎰ 15.设()F x 为()f x 的原函数,那么(sin )cos f x xdx =⎰ ()sin F x C + 。
分析:()F x 为()f x 的原函数⇒()()f u du F u C =+⎰,cos sin xdx d x =解:()()(sin )cos sin sin sin f x xdx f x d x F x C ==+⎰⎰16.设()f x 的一个原函数是sin x , 则()f x ' sin x - 。
解:()f x 的一个原函数为()F x ⇒()f x ='()F x ⇒()f x '=()sin ''x =()cos 'x =sin x - 17.0()cos 2xF x t t dt =⎰,那么()F x ' cos 2x x - 。
解:()()()xaf t dt f x '=⎰()()cos 2cos 2xF x t t dt x x ''⇒=-=-⎰18.()02t xdt e dt dx-=⎰_______2x x e --__________。
解:()02t xd te dt dx-=⎰()20x t d t e dt dx--=⎰2x x e --19.设sin 0()xtF x e dt -=⎰,则()2F π'= 1e - 。
解:()()sinsin sin 1202x txF x e dt eF e e ππ----'⎛⎫''==⇒== ⎪⎝⎭⎰20.02cos x d t dt dx ⎰= 2cos x - 。
解:02cos x d t dt dx ⎰=-20cos x d t dt dx ⎰=2cos x - 二.选择题1. 下列函数中( B )的图像关于坐标原点对称。
A .x ln B . cos x x C .sin x x D . xa 规律:(1)1.奇偶函数定义:()()()()()()是奇函数,是偶函数;-=--=f x f x f x f x f x f x,;(2).常见的偶函数:2243,,...,,cos ,,x x x x x 常数常见的奇函数:(135311,,,...,,sin ,ln ,ln,ln 11x xx x x x x x x x+-+-+ 常见的非奇非偶函数:,,,,ln x x x x a e a e x --;(3).奇偶函数运算性质:奇±奇=奇;奇±偶=非;偶±偶=偶;奇×奇=偶;奇×偶=奇;偶×偶=偶; (4).奇函数图像关于原点对称;偶函数图像关于y 轴对称。
解:A .非奇非偶; B .奇×偶=奇(原点); C .奇×奇=偶(y 轴); D .非奇非偶 2.下列函数中( B )不是奇函数。
A .x xe e --; B .sin(1)x +; C .x x cos sin ; D .(ln x解:A .奇函数(定义); B .非奇非偶(定义);C .奇函数(奇×偶);D .奇函数(定义) 3.下列函数中,其图像关于y 轴对称的是( A )。
A .2sin(1)x -B .cos xe x C . xx+-11lnD .cos(1)x - 解:A .偶函数(y 轴); B .非奇非偶(定义);C .奇函数(常见);D .非奇非偶(定义) 4.下列极限正确的是( B )。
A .01lim 0x x e x→-= B . 3311lim 313x x x →∞-=+ C. sin lim1x x x →∞= D . 01lim(1)x x e x→+=解:A 错。
∵0x →,1xe -~x ∴01lim x x e x→-=0lim 1x x x →=;B 正确。
分子分母最高次幂前的系数之比;C 错。
∵x →∞,10x →即1x 是无穷小,sin 1x ≤即sin x 是有界变量,∴sin lim 0x xx→∞=;D 错。
第二个重要极限应为1lim(1)x x e x→∞+=或10lim(1)x x x e →+=,其类型为1∞。
5.当1x →-时,( D )为无穷小量。
A .211x x +- B .1sin 1x + C .cos(1)x + D . ln(2)x + 解:A . 211lim 1x x x →-+-0011lim 2x x →-=102-≠;B .1x →-,10x +→,11x →∞+, 11lim sin 1x x →-+不存在;C .1x →-,cos(1)cos01x +→=;D .1x →-,ln(2)ln10x +→=。
6. 下列等式中,成立的是(B)。
A .222xx edx de --=- B . 3313x x e dx de --=-C=. 1ln 33dx d x x =解:A .错,正确的应为222xx edx de ---= B 。
正确,333x x e dx de ---=即3313x x e dx de --=-C=.错,正确的应为13ln 33d x d x x= 7.设)(x f 在点0x x =可微,且0()0f x '=,则下列结论成立的是( C )。
A . 0x x =是)(x f 的极小值点 B . 0x x =是)(x f 的极大值点 ; C .0x x =是)(x f 的驻点; D . 0x x =是)(x f 的最大值点;解:驻点定义:设()f x 在点0x x =可微,且0()0f x '=,则0x x =是()f x 的驻点。
驻点为可能的极值点。
8..函数()ln f x x =,则 3()(3)lim3x f x f x →-=-( D )。
A . 3 ;B .ln 3 ;C . 1x ;D .13解一:3()(3)lim3x f x f x →-=-()()()3331'3'l 1n 3'x x x f f x x x =======解二: 3()(3)lim3x f x f x →-=-3ln ln 3lim 3x x x →--0031113lim x x →= 9.设()sin f x x =,则0()limx f x x→=( B )。