8.脂类代谢

合集下载

脂类代谢的合成与分解

脂类代谢的合成与分解
1分子软脂酸彻底氧化共生成: (1.5×7)+(2.5×7)+(10×8)=108分子ATP
减去脂肪酸活化时消耗 ATP 的 2 个高能磷酸键 净生成 106 分子ATP。
45
.
β- 氧化小结
1. 脂肪酸的β-氧化主要在线粒体中进行。 2. 脂肪酸仅需一次活化,其代价是消耗2分子ATP。(活化在线
磷酸甘油的生物合成 脂肪酸的生物合成 脂肪的生物合成
14
.
一、磷酸甘油的生物合成
15
.
二、脂肪酸的生物合成
饱和脂肪酸的从头合成 脂肪酸碳链延长 去饱和生成不饱和脂肪酸
16
.
(一)饱和脂肪酸的从头合成
脂肪酸合成的原料:乙酰CoA(主要来自线粒体内的丙 酮酸氧化脱羧、脂肪酸β-氧化和氨基酸氧化等反应);
粒体外) 3. 除脂酰CoA合成酶外,其余所有酶都属于线粒体酶(即β-氧化
的酶系存在于线粒体)。 4. β-氧化起始于脂酰CoA,包括氧化(脱氢)、水化、氧化(脱
氢)、硫解等重要步骤。 5. 每循环一次,生成一分子FADH2,一分子NADH,一分子乙
酰CoA和一分子减少两个碳原子的脂酰CoA。
46
.
生物素在羧化反应中起固定CO2 (以HCO3-形式) 和转移羧基的作用。
20
.
3. 脂肪酸合成循环
脂肪酸合成时碳链的缩合延长过程是一循环反 应过程。每经过一次循环反应(缩合、还原、 脱水、再还原),延长两个碳原子。合成反应 由脂肪酸合成酶系催化。
21
.
• 在低等生物中,脂肪酸合成酶系是一种由1分子酰基载体蛋 白(acyl carrier protein, ACP)和6种酶单体所构成的多酶 复合体。

生物化学之脂类代谢

生物化学之脂类代谢
1、是生物机体内重要的贮能和供能物质:脂肪完全氧 化产能9.3千卡/g;蛋白质完全氧化产能4千卡/g;糖 完全氧化产能大约4千卡/g。 但不是主要贮能和供能物质:脂肪少而糖类多,则 对机体无大碍,但脂肪多而糖类少,则对机体有碍 。这是因为TCA中乙酰CoA和草酰乙酸是起始物质 ,而草酰乙酸则主要由糖生成,故脂肪的生物氧化 需要有糖类生物氧化配合。 2、是良好的脂溶剂 3、供给人和动物营养必需的不饱和脂肪酸:亚油酸、 亚麻酸、花生四烯酸是机体必须的,缺少时会产生 一些疾病。亚油酸:治心血管病。
第七章 脂类代谢
第一节 第二节 第三节 第四节 第五节 第六节 脂类的消化和吸收 甘油三酯的分解代谢 甘油三酯的合成代谢 磷脂的代谢 胆固醇代谢 血浆脂蛋白代谢
脂类
脂肪:甘油三酯 脂类
胆固醇 胆固醇酯 磷脂 糖脂
类脂
是动、植物细胞原生质的主要成分 分子中除C、H、O外,还有P和N
一、脂肪的生理功能
乙酰乙酸硫激酶(肾脏)
(3)乙酰乙酰CoA硫解,生成2分子乙酰CoA
CH3CHOHCH 2COOH
β -羟丁酸
β -羟丁酸脱氢酶
NAD+ NADH+H +
CH2 CH2
COOH COSCoA
HSCoA+ATP 乙酰乙酰硫激酶 AMP+PPi
(肾脏)
CH2COCH2COOH 乙酰乙酸 CH3COCH2COSCoA
步骤1:脱氢
步骤2:加水(水化)
步骤3:再脱氢
步骤4:硫解
由此产生2碳的乙酰CoA,剩下少掉2个碳的脂酰CoA,再 进入β-氧化循环。一个16碳的软脂酸经过完全分解总共可产生 129个ATP。
O
脂肪酸
RCH2CH2C 脂酰CoA 合成酶

脂类代谢

脂类代谢
10 ~ 20
主要功能
储能、供能
脂库
类脂
(基本脂) (固定脂)
生物膜
5
生物膜基本成分
第三节 血脂
一、 血脂的组成与含量
包括:三酰甘油 磷脂 胆固醇及其酯
游离脂肪酸
6
二、 血脂的来源和去路
食物中脂类 体内合成脂类 脂库动员释放
氧化供能
血脂
(400700mg/dl)
进入脂库储存 构成生物膜 转变成其他物质
CH2OH
甘油
(三)甘油三酯的合成
• 部位:肝、脂肪组织
•直接原料:α-磷酸甘油、脂酰CoA
主要来自糖代谢
43
脂肪的合成过程
2HSCoA 2RCO~SCoA Pi CH2OH CH2-O-C-R1 H2O CHOH CH-O-C-R2 磷脂酸磷酸酶 α 磷酸甘油脂酰基转移酶 CH2-O- P CH2-O- P
合成
FA
线粒体
胞质
2、 合成过程
(1)乙酰CoA的羧化
CO2 + ATP Pi + ADP O
O
Mn2+ 生物素
乙酰CoA羧化酶
CH3 - C~SCoA
乙酰CoA
HOOC - CH2 - C~SCoA
(关键酶) 丙二酸单酰CoA ( +)
( -)
胰高血糖素
胰岛素
(2)软脂酸的合成
乙酰CoA+7 丙二酸单酰CoA+14 NADPH+H+
甘油 脂肪酸 胆盐 水溶性混合微团 吸收入肠黏膜细胞
单酰甘油
胆固醇 脂肪酸 脂肪酸
改造
重新合成
胆固醇酯 胆固醇酯酶
胆盐

脂类的代谢

脂类的代谢

D 脱氢,加水,再脱氢和硫解
2. (第四军医大学2002年) 胞质中合成脂肪酸的限速酶是-------A -酮脂酰合成酶
B 水化酶
C 乙酰CoA羧化酶 D 脂酰转移酶 E 软脂酸脱酰酶 3. (四川大学2002年)在磷脂的生物合成中所需要的核苷酸是---------A ATP B GTP C CTP D UTP
S-CoA S-CoA
以上生成的比原来少2个碳原子的脂酰 CoA, 再进行脱氢、加水、再脱氢及硫解反应。如此反 复进行,直至最后生成丁酰CoA,后者再进行一 次β-氧化,即完成脂酸的β-氧化。 脂酸经β-氧化后生成大量的乙酰CoA。乙 酰CoA一部分在线粒体内通过三羧酸循环彻底 氧化,一部分在线粒体中缩合生成酮体,通过 血液运送至肝外组织氧化利用。
脂酸合成的各步反应 均在ACP的辅基上进行。
乙酰基通过脂酰转移酶的作 用转移到多酶体系的周围SH基上(β-酮脂酰ACP合成 酶活性部位半胱氨酸-SH 基),而丙二酰基则通过丙 二酰转移酶的作用转移到 ACP的辅基-泛酰巯基乙胺4 磷酸的-SH基上。
然后通过β-酮脂酰ACP合成酶作用,将乙 酰基转移到脱羧后的丙二酰残基中的次甲基 上形成乙酰乙酰-ACP、经还原、脱水、再 还原形成相应的饱和脂酰基-ACP。
E 胰岛素水平增高时
5 (华中农业大学2002年)计算1mol 14碳饱和脂肪 酸完全氧化成H2O和CO2,所产生ATP的mol数(包 括计算过程)
产生ATP摩尔数为:
10 X 7+ 4 X6 = 94(mol)
除去脂肪酸活化消耗的2mol ATP, 净生成数为:
94 – 2 = 92(mol)
概念: β-氧化; 酮体
第五章
脂 类 代 谢

脂类代谢

脂类代谢

氧化修饰低密度脂蛋白与动脉粥样硬化(AS)
★ 血浆LDL的磷脂C2位多不饱和脂肪酸容易过氧 化,其脂质过氧化产物丙二醛(MDA)与LDL的 ApoB100上的Lys残基共价交联形成氧化修饰LDL (oxidized LDL,ox-LDL)。 ★ Ox-LDL不能被ApoB100 E受体识别(LDL受体途 径),易通过清道夫受体(修饰LDL受体)被巨噬细 胞识别、内吞,且此途径无反馈调节,形成载胆 (泡沫细胞,AS早期特征). 固醇酯细胞 ★ Ox-LDL还削弱LDL介导的Ch逆向转运;直接引 起血小板聚集,促进血栓形成(致AS脂蛋白).
HDL代谢过程 CM、 小肠
VLDL Ch
肝 外 细 胞 Ch不断 得到 Ch Apo E
CM、 VLDL 残粒
新 生 H LCAT HDL3 LCAT HDL2 LCAT HDL1 D HL选择作用 HDL 循环 CE CETP CE ChE HDL 水解 肝外 L LDL VLDL TG、PL
乳糜微粒(CM)代谢过程
ApoC、E
HDL
部分ApoA
新生的CM
经淋巴循环, 进入血液循环
LPL将CM中的 TG水解
CM
Apo CⅡ+
成熟CM
HDL
CM残粒
FFA、Gly
½ 被LRP清除
迅速被肝清除
Apo B100、 E受体清除
3清除方式: 迅速被肝脏清除,一半通过LRP, 另一半则通过ApoB100E受体。
HDL2与CM、VLDL的脂解(LPL活性)密切相关。 如缺乏Apo CⅡ,则LPL活性降低,CM、VLDL脂 解减弱,HDL2含量降低。如冠心病、糖尿病时,血浆 HDL2 /HDL3比值(临床评价AS和冠心病的危险性)下降。 HDL2再增加CE并从肝外组织获得ApoE,成为 HDL1, 另HL选择性作用于HDL2 ,水解TG和PL(兼),使HDL2 转 变成为HDL3。故正常人血浆HDL1中极少,仅摄入高Ch 时增加, HDL1又称HDLc 。 3清除方式: HDL主要被肝脏的HDL受体清除。 4 生 理 功 能 : 胆 固 醇 的 逆 向 转 运 ( reverse cholesterol transport,RCT)。被认为是抗AS性脂蛋白。

脂代谢

脂代谢

脂蛋白代谢一般说来, 人体内血浆脂蛋白代谢可分为外源性代谢途径和内源性代谢途径。

外源性代谢途径是指饮食摄入的胆固醇和甘油三酯在小肠中合成CM及其代谢过程;而内源性代谢途径则是指由肝脏合成VLDL, 后者转变为IDL和LDL,LDL 被肝脏或其它器官代谢的过程。

此外, 还有一个胆固醇逆转运途径, 即HDL的代谢。

一、外源性代谢途径CM是在十二指肠和空肠的粘膜细胞内合成。

小肠粘膜吸收部分水解的食物中所含甘油三酯、磷脂、脂肪酸和胆固醇后, 肠壁细胞能将这些脂质再酯化, 合成自身的甘油三酯和胆固醇酯; 此外, 肠壁细胞还能合成Apo B48和ApoAI; 在高尔基体内脂质和载脂蛋白组装成乳糜微粒, 然后分泌入肠淋巴液。

原始的CM不含有Apo C, 由Apo B48、Apo AI和Apo AII与极性游离胆固醇、磷脂组成单分子层外壳, 包住非极性脂质核心。

在淋巴液中原始CM接受来自于HDL 的Apo E 和Apo C后逐渐变为成熟, 然后经由胸导管进入血液循环。

因为Apo CII是LPL的辅酶, CM获得Apo C后, 则可使LPL激活。

CM的分解代谢是发生在肝外组织的毛细血管床,在此LPL水解CM中的甘油三酯, 释放出游离脂肪酸。

从CM中水解所产生的脂肪酸被细胞利用, 产生能量或以能量的形式贮存。

在脂解的过程中, CM所含Apo AI和Apo C大量地转移到HDL, 其残余颗粒──CM残粒则存留在血液中, 其颗粒明显变小, 甘油三酯含量显著减少, 而胆固醇酯则相对丰富。

CM残粒是由肝脏中的Apo E受体分解代谢。

CM在血液循环中很快被清除, 半寿期小于1小时。

由于Apo B48始终存在于CM 中, 所以Apo B48可视为CM及其残粒的标致, 以便与肝脏来源的VLDL(含Apo B100)相区别。

图1-1-1. 外源性脂蛋白代谢示意图由上可见, CM的生理功能是将食物来源的甘油三酯从小肠运输到肝外组织中被利用。

生物化学习题-第八章:脂质代谢

生物化学习题-第八章:脂质代谢

第八章脂质代谢一、知识要点(一)脂肪的生物功能:脂类是一类在化学组成和结构上有很大差异,但都有一个共同特性,即不溶于水而易溶于乙醚、氯仿等非极性溶剂的物质。

通常按不同的组成将脂类分为五类,即(1)单纯脂、(2)复合脂、(3)萜类、类固醇及其衍生物、(4)衍生脂类以及(5)结合脂类。

脂类物质具有重要的生物功能。

脂肪是生物体的能量提供者。

脂肪也是组成生物体的重要成分,如磷脂是构成生物膜的重要组分,油脂是机体代谢所需燃料的贮存和运输形式。

脂类物质也可为动物机体提供必需脂肪酸和脂溶性维生素。

某些萜类及类固醇类物质,如维生素A、D、E、K、胆酸及固醇类激素,都具有营养、代谢及调节的功能。

有机体表面的脂类物质有防止机械损伤与防止热量散发等保护作用。

脂类作为细胞的表面物质,与细胞识别、种特异性和组织免疫等生理过程关系密切。

(二)脂肪的降解在脂肪酶的作用下,脂肪水解成甘油和脂肪酸。

甘油经过磷酸化及脱氢反应,转变成磷酸二羟丙酮,进入糖代谢途径。

脂肪酸与ATP和CoA在脂酰CoA合成酶的作用下,生成脂酰CoA。

脂酰CoA在线粒体内膜上的肉毒碱-脂酰CoA转移酶系统的帮助下进入线粒体基质,经β-氧化降解成乙酰CoA,再通过三羧酸循环彻底氧化。

β-氧化过程包括脱氢、水合、再脱氢和硫解这四个步骤,每进行一次β-氧化,可以生成1分子FADH2、1分子NADH+H+、1分子乙酰CoA以及1分子比原先少两个碳原子的脂酰CoA。

此外,某些组织细胞中还存在α-氧化生成α−羟脂肪酸或CO2和少一个碳原子的脂肪酸;经ω-氧化生成相应的二羧酸。

萌发的油料种子和某些微生物拥有乙醛酸循环途径。

可利用脂肪酸β-氧化生成的乙酰CoA合成苹果酸,作为糖异生和其它生物合成代谢的碳源。

乙醛酸循环的两个关键酶是异柠檬酸裂解酶和苹果酸合成酶,前者催化异柠檬酸裂解成琥珀酸和乙醛酸,后者则催化乙醛酸与乙酰CoA缩合生成苹果酸。

(三)脂肪的生物合成脂肪的生物合成包括三个方面:饱和脂肪酸的从头合成,脂肪酸碳链的延长和不饱和脂肪酸的生成。

生物化学 脂类代谢

生物化学 脂类代谢

脂类代谢Metabolism of lipids概论脂类(lipid)是脂肪(fat)及类脂(lipoid)的总称,是一类不溶于水而易溶于有机溶剂,并能为机体利用的有机化合物。

主要生理功能是储存能量及氧化供能。

基本特点不溶于水能溶解于一种或一种以上的有机溶剂分子中常含有脂肪酸或能与脂肪酸起酯化反应能被生物体所利用分类:脂肪(甘油三酯),类脂(固醇,固醇脂,磷脂,糖脂)脂肪酸(fatty acids):包括饱和脂酸(saturated fatty acid)和不饱和脂酸(unsaturated fatty acid),其中多不饱和脂酸多为营养必须脂酸(亚油酸,亚麻酸,花生四烯酸)。

基本构成:甘油磷脂(两个羟基接脂肪酸,一个接磷酸,磷酸一个羟基被X取代,如胆碱,水,乙醇胺,丝氨酸etc)胆固醇脂(胆固醇羟基接脂肪酸)鞘脂(鞘氨醇接一个脂肪酸)鞘磷脂(鞘脂下在一个羟基接取代磷酸基)鞘糖脂(鞘脂下一个羟基接糖)脂蛋白:脂质基本转运形式,分为细胞内脂蛋白和血浆脂蛋白第一节脂质的消化吸收Digestion and absorption of lipids人体内脂类来源自身合成饱和脂肪酸或单不饱和脂肪酸食物供给各种,特别是不饱和脂酸维持机体脂质平衡小肠:介于机体内外脂质间的选择性屏障,通过过多体内脂质堆积,通过过少会有营养障碍。

消化吸收能力有可塑性,脂质介导小肠脂质消化吸收能力增加脂消化酶及胆汁酸盐脂类在小肠上段,被乳化剂(胆汁酸盐,甘油一脂,甘油二脂)乳化成微团(micelles)再经酶催化消化。

甘油三酯被胰脂酶和辅酯酶消化成2-甘油一脂,磷脂被磷脂酶A2分解为溶血磷脂+1FFA,胆固醇脂被胆固醇酯酶分解成胆固醇脂肪与类脂的消化产物形成混合微团(mixed micelles),被肠粘膜细胞吸收。

胆汁酸盐:强乳化作用脂质消化酶:◆胰脂酶(pancreatic lipase):特异水解甘油三酯1位及3位酯键◆辅脂酶(colipase):胰脂酶发挥脂肪消化作用的蛋白质辅因子◆磷脂酶A2(phospholipase A2)水解磷脂◆胆固醇酯酶(cholesteryl esterase)水解胆固醇辅酯酶进入肠腔后酶原激活,它有与脂肪及酯酶结合的结构域,与胰脂酶结合是通过氢键进行的;它与脂肪通过疏水键进行结合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档