一次函数考点分析及典型试题及答案

合集下载

一次函数中考试题及答案

一次函数中考试题及答案

一次函数中考试题及答案试题1:已知一次函数y=kx+b的图象经过点A(2,5)和点B(4,9),求该一次函数的解析式。

答案:首先,将点A(2,5)和点B(4,9)的坐标代入一次函数y=kx+b中,得到两个方程:\[ 5 = 2k + b \]\[ 9 = 4k + b \]解这个方程组,我们可以得到k和b的值。

将第一个方程从第二个方程中减去,得到:\[ 4 = 2k \]从而得出k=2。

将k=2代入第一个方程,得到:\[ 5 = 4 + b \]解得b=1。

因此,该一次函数的解析式为y=2x+1。

试题2:若直线y=-2x+3与x轴交于点C,求点C的坐标。

答案:直线y=-2x+3与x轴相交时,y的值为0。

将y=0代入方程,得到:\[ 0 = -2x + 3 \]解这个方程,得到x=1.5。

因此,点C的坐标为(1.5,0)。

试题3:已知一次函数y=kx+b的图象与y轴交于点D(0,4),且该函数的斜率为2,求该一次函数的解析式。

答案:已知斜率k=2,且图象与y轴交于点D(0,4),即当x=0时,y=4。

将这些信息代入一次函数y=kx+b中,得到:\[ 4 = 2*0 + b \]解得b=4。

因此,该一次函数的解析式为y=2x+4。

试题4:若一次函数y=kx+b经过第一、二、三象限,且斜率k大于0,求b的取值范围。

答案:一次函数y=kx+b经过第一、二、三象限,说明该函数的图象从左下方向右上方延伸。

由于斜率k大于0,函数图象在y轴上的截距b必须大于0,以确保函数图象能够经过第二象限。

因此,b的取值范围是b>0。

试题5:已知一次函数y=kx+b的图象与x轴交于点E,且该函数的斜率k=-1,求点E的横坐标。

答案:一次函数y=kx+b与x轴相交时,y的值为0。

已知斜率k=-1,将y=0代入方程,得到:\[ 0 = -1x + b \]由于题目没有给出b的具体值,我们无法求出点E的具体坐标,但可以确定点E的横坐标为b。

初中数学《一次函数变量与函数》典型例题及答案解析

初中数学《一次函数变量与函数》典型例题及答案解析
【详解】
解:由题意,得 ,
解得x≤3且x≠2,
故选:C.
【点睛】
本题考查了函数自变量的取值范围,利用被开方数是非负数,分母不能为零得出不等式组是解题关键.
10.下列各曲线中,不能表示y是x的函数的是( )
A. B. C. D.
【答案】D
【Hale Waihona Puke 析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.
【答案】C
【解析】
【分析】
根据函数定义:对于函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,解答即可.
【详解】
A项中,长方形的宽一定,是常量,而面积=长×宽,长与面积是两个变量,若长改变,则面积也变,是函数关系;
B项中,正方形的周长与面积是两个变量,给出一个周长的值C,边长即为 ,相应地面积为 ,是函数关系;
【答案】A
【解析】
【分析】
由三角形外角性质可得结论.
【详解】
∵三角形一个外角等于与它不相邻的两个内角和,
∴y=x+60.
故选:A.
【点睛】
考查了三角形外角的性质,解题关键是运用三角形一个外角等于与它不相邻的两个内角和得出关系式.
5.小明和他爸爸做了一个实验,小明由一幢245米高的楼顶随手放下一只苹果,由他爸爸测量有关数据,得到苹果下落的路程和下落的时间之间有下面的关系:
【详解】
解;观察表格,得
时间在变,人口在变,故C正确;
故选;C.
【点睛】
本题考查的知识点是常量与变量,解题关键是利用常量与变量的定义.
12.在圆周长计算公式C=2πr中,对半径不同的圆,变量有( )

考点10一次函数(解析版)

考点10一次函数(解析版)

第四章一次函数考点类型大总结【知识点及考点类型梳理】一、正比例函数的概念一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做正比例系数.二、一次函数1.一次函数的定义一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做x的一次函数.特别地,当一次函数y=kx+b中的b=0时,y=kx(k是常数,k≠0).这时,y叫做x的正比例函数.2.一次函数的一般形式一次函数的一般形式为y=kx+b,其中k,b为常数,k≠0.一次函数的一般形式的结构特征:(1)k≠0,(2)x的次数是1;(3)常数b可以为任意实数. 3.注意(1)正比例函数是一次函数,但一次函数不一定是正比例函数.(2)一般情况下,一次函数的自变量的取值范围是全体实数.(3)判断一个函数是不是一次函数,就是判断它是否能化成y=kx+b(k≠0)的形式.三、一次函数的图象及性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线.k的符号函数图象图象的位置性质k>0图象经过第一、三象限y随x的增大而增大k<0图象经过第二、四象限y随x的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象一次函数的图象一次函数y=kx+b(k≠0)的图象是经过点(0,b)和(-bk,0)的一条直线图象关系一次函数y=kx+b(k≠0)的图象可由正比例函数y=kx(k≠0)的图象平移得到;b>0,向上平移b个单位长度;b<0,向下平移|b|个单位长度图象确定因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两点即可(2)一次函数的性质函数字母取值图象经过的象限函数性质y =kx +b (k ≠0)k >0,b >0一、二、三y 随x 的增大而增大k >0,b <0一、三、四y =kx +b (k ≠0)k <0,b >0一、二、四y 随x 的增大而减小k <0,b <0二、三、四3.k ,b 的符号与直线y =kx +b (k ≠0)的关系在直线y =kx +b (k ≠0)中,令y =0,则x =-b k ,即直线y =kx +b 与x 轴交于(–bk,0).①当–bk>0时,即k ,b 异号时,直线与x 轴交于正半轴.②当–bk=0,即b =0时,直线经过原点.③当–bk<0,即k ,b 同号时,直线与x 轴交于负半轴.4.两直线y =k 1x +b 1(k 1≠0)与y =k 2x +b 2(k 2≠0)的位置关系:①当k 1=k 2,b 1≠b 2,两直线平行;②当k 1=k 2,b 1=b 2,两直线重合;③当k 1≠k 2,b 1=b 2,两直线交于y 轴上一点;④当k 1·k 2=–1时,两直线垂直.四、待定系数法1.定义:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而得出函数解析式的方法叫做待定系数法.2.待定系数法求正比例函数解析式的一般步骤(1)设含有待定系数的函数解析式为y =kx (k ≠0).(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k 的一元一次方程.(3)解方程,求出待定系数k .(4)将求得的待定系数k的值代入解析式.3.待定系数法求一次函数解析式的一般步骤(1)设出含有待定系数k、b的函数解析式y=kx+b.(2)把两个已知条件(自变量与函数的对应值)代入解析式,得到关于系数k,b的二元一次方程组.(3)解二元一次方程组,求出k,b.(4)将求得的k,b的值代入解析式.五、一次函数与正比例函数的区别与联系正比例函数一次函数区别一般形式y=kx+b(k是常数,且k≠0)y=kx+b(k,b是常数,且k≠0)图象经过原点的一条直线一条直线k,b符号的作用k的符号决定其增减性,同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k,b的符号共同决定直线经过的象限求解析式的条件只需要一对x,y的对应值或一个点的坐标需要两对x,y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样,都是过两点画直线,但画一次函数的图象需取两个不同的点,而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时,y的值随x值的增大而增大;b.当k<0时,y的值随x值的增大而减小.六、一次函数与方程(组)、不等式1.一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k,b为常数,且k≠0)的形式.从函数的角度来看,解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑,解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.2.一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a,b为常数,且a≠0)的形式.从函数的角度看,解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.3.一次函数与二元一次方程组一般地,二元一次方程mx +ny =p (m ,n ,p 是常数,且m ≠0,n ≠0)都能写成y =ax +b (a ,b 为常数,且a ≠0)的形式.因此,一个二元一次方程对应一个一次函数,又因为一个一次函数对应一条直线,所以一个二元一次方程也对应一条直线.进一步可知,一个二元一次方程对应两个一次函数,因而也对应两条直线.从数的角度看,解二元一次方程组相当于考虑自变量为何值时,两个函数的值相等,以及这两个函数值是何值;从形的角度看,解二元一次方程组相当于确定两条直线的交点坐标,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.七、一次函数图象与图形面积解决这类问题的关键是根据一次函数解析式求出一次函数图象与坐标轴的交点的坐标,或两条直线的交点坐标,进而将点的坐标转化成三角形的边长,或者三角形的高.如果围成的三角形没有边在坐标轴上或者与坐标轴平行,可以采用“割”或“补”的方法.考点类型一、一次函数与正比例函数的定义1.在下列函数中:①8y x =-;②312y x =+;③1y =;④285y x =-+;⑤0.51y x =--,一次函数有()A .1个B .2个C .3个D .4个【答案】C 【分析】一般地,形如y =kx +b (k ≠0,k 、b 是常数)的函数,叫做一次函数,据此进行判断即可.【详解】解:①8y x =-属于一次函数;②312y x =+属于一次函数;③1y =不属于一次函数;④285y x =-+属于二次函数;⑤0.51y x =--属于一次函数;∴一次函数有3个,故选:C .2.下列问题中,两个变量之间是正比例函数关系的是()A .汽车以80km/h 的速度匀速行驶,行驶路程(km)y 与行驶时间(h)x 之间的关系B .圆的面积()2cm y 与它的半径(cm)x 之间的关系C .某水池有水315m ,现打开进水管进水,进水速度35m /h ,h x 后水池有水3m yD .有一个边长为x 的正方体,则它的表面积S 与边长x 之间的函数关系【答案】A 【分析】根据正比例函数的定义逐个判断即可求解【详解】选项A:y=80x,属于正比例函数,两个变量之间成正比例函数关系,符合题意;选项B:2y x π=属于二次函数,两个变量之间不是成正比例函数关系,不合题意;选项C:y=15+5x ,属于一次函数,两个变量之间不是成正比例函数关系,不合题意;选项D:S=6x 2,属于二次函数,两个变量之间不是成正比例函数关系,不合题意;故选:A 【点睛】本题考查正比例函数的定义,正确理解正比例函数的定义是关键3.在①8y x =-;②8y x=-;③1y =;④286y x =-+;⑤0.51y x =--,一次函数有()A .1个B .2个C .3个D .4个【答案】B 【分析】一般地,形如y =kx +b (k ≠0,k 、b 是常数)的函数,叫做一次函数,据此进行判断即可.【详解】解:①y =-8x 属于一次函数;②y =8x-属于反比例函数;③y不属于一次函数;④y =-8x 2+6属于二次函数;⑤y =-0.5x -1属于一次函数,∴一次函数有2个,故选:B .举一反三4.下列函数中是一次函数的是()A .y =2x B .2y x=C .y =x 2D .y =kx +b (k ,b 为常数)【答案】A 【分析】利用一次函数定义进行解答即可.【详解】解:A 、y =2x是一次函数,故此选项符合题意;B 、y =2x是反比例函数,不是一次函数,故此选项不合题意;C 、y =x 2是二次函数,故此选项不符合题意;D 、当k =0时,y =kx +b (k ,b 为常数)不是一次函数,故此选项不合题意;故选:A .5.下列函数是正比例函数的是()A .2x y =B .2y x=C .2y x =D .2(1)y x =+【答案】A 【分析】根据用x 表示成y 的函数后,若符合()0y kx k =≠的形式,是正比例函数解答即可.【详解】A 、2xy =是正比例函数;B 、2y x=是反比例函数;C 、2y x =是二次函数;D 、()21y x =+是一次函数.故选:A .考点类型二、一次函数的图像6.函数2y x =-的图象经过的象限是()A .第一,二,三象限B .第一,二,四象限C .第一,三,四象限D .第二,三,四象限【答案】C【分析】根据一次函数k=1>0,b=-2<0,即可得到答案.【详解】y x=-中,k=1>0,b=-2<0,解:∵函数2y x=-的图象经过的象限是:第一,三,四象限,∴2故选C.【点睛】本题主要考查一次函数图像所经过的象限,掌握一次函数图像与一次函数中的系数k,b的关系,是解题的关键.7.若一次函数y=(k﹣2)x+1的函数值y随x的增大而减小,则()A.k<2B.k>2C.k<0D.k>0【答案】A【分析】根据一次函数的性质,可得答案.【详解】解:由题意,得k-2<0,解得k<2,故选:A.【点睛】本题考查了一次函数的性质,y=kx+b,当k>0时,函数值y随x的增大而增大,当k<0时,函数值y随x 的增大而减小.8.若一次函数的y=kx+b(k<0)图象上有两点A(﹣2,y1)、B(1,y2),则下列y大小关系正确的是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【答案】B【分析】首先观察一次函数的x项的系数,当x项的系数大于0,则一次函数随着x的增大而增大,当x小于0,则一次函数随着x的减小而增大.因此只需要比较A、B点的横坐标即可.【详解】解:根据一次函数的解析式y =kx +b (k <0)可得此一次函数随着x 的增大而减小因为A (﹣2,y 1)、B (1,y 2),根据-2<1,可得12y y >故选B .9.已知直线32y x b =-+经过点A (1m ,-2),B (2m ,-1)两点,则1m ______2m 【答案】>【分析】根据一次函数增减性可得,k <0,y 随x 的增大而减小,k >0,y 随x 的增大而增大即可判断得出答案.【详解】解:∵直线的解析式为32y x b=-+∴k <0∴y 随x 的增大而减小∵直线32y x b =-+经过点A (1m ,-2),B (2m ,-1)两点,21-<-∴12m m >故答案为:>.10.在一次函数23y x =-+中,当05x ≤≤时,y 的最小值为________.【答案】-7【分析】根据一次函数的性质得y 随x 的增大而减小,则当x =5时,y 有最小值,然后计算x =-5时的函数值即可.【详解】解:∵k =-2<0,∴y 随x 的增大而减小,∴当x =5时,y 有最小值,把x =5代入y =-2x +3得y =-10+3=-7.故答案为:-7.11.关于一次函数y =﹣2x +4,下列结论正确的是()A .图象过点(0,-2)B .图象经过一、三、四象限C.y随x的增大而增大D.图象与x轴交于点(2,0)【答案】D【分析】根据一次函数的性质对各项进行逐一判断即可.【详解】A、当x=0时,y=4,过点(0,4),故A选项错误;B、因为k=-2<0,图象经过第一、二、四象限,故B错误;C、因为k=-2<0,y随x的增大而减小,故C错误;D、当y=0时,x=2,即图象与x轴交于点(2,0),故D正确.故选:D12.下图中表示一次函数y=mx+n与正比例函数y=nx(m,n是常数,且mn<0)图象的是()A.B.C.D.【答案】B解:A、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn<0,∴m>0,∴一次函数y =mx+n的图象经过第一、三、四象限;故本选项错误;B、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn<0,∴m<0,∴一次函数y=mx+n 的图象经过第一、二、四象限;故本选项正确;C、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn<0,∴m>0,∴一次函数y=mx+n 的图象经过第一、三、四象限;故本选项错误;D、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn<0,∴m<0,∴一次函数y=mx+n 的图象经过第一、二、四象限;故本选项错误;故选:B .【点睛】本题综合考查了正比例函数、一次函数图象与系数的关系.解题的关键是掌握一次函数(0)y kx b k =+≠的图象有四种情况:①当0k >,0b >,函数y kx b =+的图象经过第一、二、三象限;②当0k >,0b <,函数y kx b =+的图象经过第一、三、四象限;③当0k <,0b >时,函数y kx b =+的图象经过第一、二、四象限;④当0k <,0b <时,函数y kx b =+的图象经过第二、三、四象限.13.一次函数52y x =-的图象过点()11,x y ,()()12131,,2,x y x y ++,则()A .123y y y <<B .321y y y <<C .213y y y <<D .312y y y <<【答案】A 【分析】先根据一次函数的解析式判断出函数的增减性,再根据x 1<x 1+1<x 1+2即可得出结论.【详解】解:∵一次函数52y x =-中,k =5>0,∴y 随着x 的增大而增大.∵一次函数52y x =-的图象过点()11,x y ,()()12131,,2,x y x y ++,且x 1<x 1+1<x 1+2,∴123y y y <<,故选:A .14.若直线y =kx +b 不经过第一象限,则()A .k >0,b <0B .k <0,b ≤0C .k <0,b ≥0D .k <0,b >0【答案】B 【分析】由题意,结合一次函数图象特点,直线必过第二、三、四象限或经过原点和第二、四象限,由此讨论求解即可.【详解】解:由直线y kx b =+不经过第一象限,可分两种情况:当直线经过第二、三、四象限时,∵直线必过第二、四象限,∴k <0,∵直线还经过第三象限,即直线与y 轴的交点在y 轴的负半轴,∴b <0;当直线经过原点和第二、四象限时,k <0,b =0,综上,k <0,b ≤0,故选:B .【点睛】本题主要考查了一次函数的图象,熟练掌握一次函数的图象在直角坐标系中的位置与系数k 、b 的关系是解答的关键.15.将直线23y x =-向上平移2个单位长度,所得的直线解析式为________.【答案】y =2x -1【分析】根据k 值不变,b 值加2可得出答案.【详解】解:平移后的解析式为:y =2x -3+2=2x -1.故答案为:y =2x -1.【点睛】本题考查的是关于一次函数的图象与它平移后图象的变换的题目,在解题过程中只要抓住平移后直线方程的斜率不变这一性质,就能很容易解答了.16.在平面直角坐标系中,要得到函数y =2x ﹣1的图象,只需要将函数y =2x 的图象()A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位【答案】B【分析】根据“上加下减”的原则写出新直线解析式.【详解】解:由“上加下减”的原则可知,将函数2y x =的图象向下平移1个单位长度所得函数的解析式为21y x =-.故选:B .【点睛】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.17.点P (a ,b )在函数3y x =的图象上,则代数式622021a b -+的值等于_________.【答案】2021.【分析】把点P 的坐标代入一次函数解析式,得出3b a =,将3b a =代入622021a b -+中计算即可.【详解】解:∵点P (a ,b )在函数3y x =的图象上,∴3b a =,∴62202162320212021a b a a -+=-+= 故答案为:2021.【点睛】本题主要考查了一次函数的图像性质,结合代数式求值是解题的关键.18.已知函数y 1=(m +1)x ﹣m 2+1(m 是常数).(1)m 为何值时,y 1随x 的增大而减小;(2)m 满足什么条件时,该函数是正比例函数?(3)若该函数的图象与另一个函数y 2=x +n (n 是常数)的图象相交于点(m ,3),求这两个函数的图象与y 轴围成的三角形的面积.【答案】(1)m <﹣1;(2)m =1;(3)4【分析】(1)根据题意10+<m ,解得即可;(2)根据正比例函数的定义得到10m +≠,210m -+=,解得1m =;(3)由函数()2111y m x m =+-+经过点(),3m 求得2m =,得到交点为()2,3,根据交点坐标求得函数1y 的解析式,即可求得与y 轴的交点坐标,把交点坐标代入2y x n =+,求得解析式,即可求得与y 轴的交点坐标,然后根据三角形面积公式即可求得两个函数的图象与y 轴围成的三角形的面积.【详解】解:(1)由题意:10+<m ,1m ∴<-,即1m <-时,1y 随x 的增大而减小;(2)若该函数是正比例数,则10m +≠,210m -+=,1m ∴=,即1m =时,该函数是正比例数;(3) 两个的图象相交于点(),3m ,()2113m m m ∴+-+=,2m ∴=,∴交点坐标为()2,3,∴该点到y 轴的距离为2,将2m =代入()2111y m x m =+-+,得:133y x =-,将交点坐标()2,3代入2y x n =+,得:1n =,21y x ∴=+,∴两个函数图象与y 轴的交点坐标分别为()0,3-和()0,1,∴所围成的三角形的面积为:()13224--⨯÷=⎡⎤⎣⎦.【点睛】本题考查了一次函数的性质,一次函数图象上点的坐标特征,正比例函数的定义,一次函数图象与系数的关系,三角形的面积等,熟练掌握一次函数的性质以及求得交点坐标是解题的关键.考点类型三、求一次函数表达式19.已知3y +与x 成正比例,且2x =时,1y =.求y 关于x 的函数表达式;【答案】y 关于x 的函数表达式为23y x =-.【分析】设3y kx +=(0k ≠),再把2x =,1y =代入求出y 关于x 的关系式即可.【详解】设3y kx +=(k 是常数且0k ≠),把2x =,1y =代入,得132k +=,解得2k =,所以32y x +=,所以y 关于x 的函数表达式为23y x =-.【点睛】本题考查正比例函数的定义,根据题意求出k 的值是解题的关键.20.已知y ﹣2与x +1成正比例,且x =2时,y =8(1)写出y 与x 之间的函数关系式;(2)当x =﹣4时,求y 的值.【答案】(1)y =2x +4,(2)-4【分析】(1)设y ﹣2=k (x +1)(k 为常数,k≠0),把x =2,y =8代入求出k 即可;(2)把x =﹣4代入y =2x +4计算即可求出答案.【详解】解:(1)∵y ﹣2与x +1成正比例,∴设y ﹣2=k (x +1)(k 为常数,k≠0),把x =2,y =8代入得:8﹣2=k (2+1),解得:k =2,即y ﹣2=2(x +1),即y =2x +4,∴y 与x 之间的函数关系式是y =2x +4;(2)当x =﹣4时,y =2×(﹣4)+4=﹣4.21.某物流公司引进A 、B 两种机器人用来搬运某种货物.这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运,如图,线段OG 表示A 种机器人的搬运量y A (千克)与时间x (时)的函数图象,线段EF 表示B 种机器人的搬运量y B (千克)与时间x (时)的函数图象,根据图象提供的信息,解答下列问题:(1)P 点的含义是;(2)求y B 关于x 的函数解析式;(3)如果A 、B 两种机器人连续运5小时,那么B 种机器人比A 种机器人多搬运了多少千克?【答案】(1)A 种机器人搬运3小时时,A 、B 两种机器人的搬运量相等,且都为180千克;(2)y =90x ﹣90(1≤x ≤6);(3)如果A 、B 两种机器人连续运5小时,那么B 种机器人比A 种机器人多搬运了150千克【分析】(1)观察函数图象,根据点P 为线段OG 、EF 的交点结合题意即可找出点P 的含义;(2)根据点E 、P 的坐标利用待定系数法即可求出y B 关于x 的函数解析式;(3)根据工作总量=工作效率×工作时间,分别求出A 、B 两种机器人连续运5小时的云货量,二者做差即可得出结论.【详解】解:(1)P 点的含义是:A 种机器人搬运3小时时,A 、B 两种机器人的搬运量相等,且都为180千克.故答案为:A 种机器人搬运3小时时,A 、B 两种机器人的搬运量相等,且都为180千克.(2)设y B 关于x 的函数解析式为y B =kx +b ,将(1,0)、(3,180)代入y B =kx +b ,03180k b k b +=⎧⎨+=⎩,解得:9090k b =⎧⎨=-⎩,∴y B 关于x 的函数解析式为y =90x ﹣90(1≤x ≤6).(3)连续工作5小时,A 种机器人的搬运量为(180÷3)×5=300(千克),连续工作5小时,B 种机器人的搬运量为[180÷(3﹣1)]×5=450(千克),B 种机器人比A 种机器人多搬运了450﹣300=150(千克).答:如果A 、B 两种机器人连续运5小时,那么B 种机器人比A 种机器人多搬运了150千克.22.如图,在平面直角坐标系中,一次函数y kx b =+的图象与x 轴、y 轴分别交于A ,B 两点,且经过点()2,6D -,与正比例函数3y x =的图象相交于点C ,点C 的横坐标为1.(1)求一次函数y kx b =+的解析式(2)求BOC 的面积【答案】(1)4y x =-+;(2)2【分析】(1)求出点C 的坐标,将,C D 坐标代入到y kx b =+中,求出即可;(2)求出点B 的坐标,根据三角形的面积公式即可求出;【详解】解:(1)当1x =时,3y =设直线y kx b =+过()()1,32,6-,∴623k b k b=-+⎧⎨=+⎩解得:14k b =-⎧⎨=⎩∴函数解析式为4y x =-+(2)当0x =时,4y =∴14122BOC S =⨯⨯= 考点类型四、一次函数与一元一次方程23.画出函数33y x =-+的图象,根据图象回答下列问题:求方程330x -+=的解【答案】图像见详解;1x =.【分析】利用两点法画出函数的图象,然后令0y =,即直线与x 轴的交点的横坐标就是方程330x -+=的解.【详解】解:∵函数33y x =-+,令0y =,则1x =;令0x =,则3y =,33y x =-+的图像如图所示:由图可知,方程330x -+=的解是1x =;【点睛】本题考查了画一次函数的图像,由图像求一元一次方程的解,解题的关键是掌握一次函数的性质进行解题.考点类型五、一次函数的综合24.如图,在平面直角坐标系中,一次函数6y x =-+的图象与x 轴、y 轴分别交于B 、C 两点,与正比例函数12y x =的图象交于点A .(1)求A 、B 、C 三点的坐标;(2)求OAC 的面积;(3)若动点M 在射线AC 上运动,当OMC 的面积是OAC 的面积的12时,求出此时点M 的坐标.【答案】(1)()4,2A ,()6,0B ,()0,6C ;(2)12;(3)()2,4或()2,8-.【分析】(1)在一次函数6y x =-+中,分别令0y =,0x =,即可求出B 、C 的坐标,再联立一次函数和正比例函数即可求出交点A 的坐标;(2)利用(1)中,找到OC ,A x 的长即可求出OAC 的面积;(3)根据OMC 的面积是OAC 的面积的12时,求出M 的横坐标,再分情况讨论即可找到M 的坐标.【详解】解:(1)∵一次函数6y x =-+的图象与x 轴、y 轴分别交于B 、C 两点,∴令0x =,则6y =,故()0,6C ,令0y =,则6x =,故()6,0B ,而A 为一次函数6y x =-+和正比例函数12y x =图象的交点,联立方程得:612y x y x =-+⎧⎪⎨=⎪⎩,解得:42x y =⎧⎨=⎩,∴A 的坐标为()4,2.故答案为:()4,2A ,()6,0B ,()0,6C .(2)由(1)可知:6OC =,4A x =,∴12OAC A S OC x =⨯⨯△164122=⨯⨯=.故答案为:12.(3)由题意得:12OMC OAC S S =△△11262=⨯=,而116622OMC M M S OC x x =⨯⨯=⨯⨯=△∴2M x =|,∴2M x =±,分情况讨论:①当2M x =时,6264y x =-+=-+=,故此时M 点的坐标为()2,4,②若2M x =-时,6268y x =-+=+=,故此时M 点的坐标为()2,8-,综上,M 点的坐标为()2,4或()2,8-;故答案为:()2,4或()2,8-.25.如图,直线l 分别与x 轴,y 轴相交于点A (5,0),B (0,4),点E (2.5,m )在l 上,直线y =kx +b经过点E ,并与x 轴相交于点F .若EF 将△AOB 分割为左右两部分,且四边形OFEB 与△FEA 的面积之比为3:2,则线段OF 的长为()A .0.5B .1C .1.5D .2【答案】B【分析】利用待定系数法求直线AB 的解析式,然后根据一次函数图象上点的坐标特点求得E 点坐标,从而确定点E 为AB 的中点,从而结合三角形面积比计算求解.【详解】解:设直线AB 的解析式为y kx b =+,将(5,0)A ,(0,4)B 代入,504k b b +=⎧⎨=⎩,解得:454k b ⎧=-⎪⎨⎪=⎩,∴直线AB 的解析式为:4y x 45=-+,又 点(2.5,)E m 在AB 上,4 2.5425m ∴=-⨯+=,E ∴点坐标为(2.5,2),又 50 2.52+=,0422+=,∴点E 是线段AB 的中点,FEA FEB S S ∆∆∴=,又 四边形OFEB 与FEA ∆的面积之比为3:2,FBA S ∆∴与AOB S ∆的面积之比为4:5,∴45 AF OA=4 AF∴=,1OF OA AF∴=-=,故选:B.【点睛】本题考查一次函数的应用,掌握待定系数法求函数解析式的步骤,理解一次函数的性质,利用数形结合思想解题是关键.26.如图,已知一次函数y=12x+3的图象与x轴,y轴分别交于A,B两点.点C(4,n)在该函数的图象上,连接OC.(1)直接写出点A,B的坐标;(2)求△OAC的面积.【答案】(1)A(﹣6,0),B(0,3);(2)15【分析】(1)根据一次函数y=12x+3,分别令x=0,y=0即可求出A,B的坐标;(2)根据点C(4,n)在该函数的图象上,将之代入一次函数解析式求出C点的坐标,根据三角形的面积公式即可求得三角形面积.【详解】解:(1)∵一次函数y=12x+3的图象与x轴,y轴分别交于A,B两点,令x=0,则y=3,令y=0,则x=-6,∴A(﹣6,0),B(0,3);(2)把点C (4,n )代入y =12x +3得14352n =⨯+=,∴点C 的坐标为(4,5),∴11651522AOC C S OA y ∆=⨯⨯=⨯=.【点睛】本题考查了一次函数图象上点的坐标特征,三角形的面积的计算,正确的识别图形是解题的关键.27.如图,直线6y kx =+与x 轴、y 轴分别交于点E 、点F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-.(1)求一次函数的解析式;(2)若点(),P x y 是线段EF (不与点E 、F 重合)上的一点,试写出OPA ∆的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下探究:当点P 在什么位置时,OPA ∆的面积为278,并说明理由.【答案】(1)364y x =+;(2)9184s x =+;80x -<<;(3)当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278,见解析【分析】(1)把点E 的坐标为(-8,0)代入6y kx =+求出k 即可解决问题;(2)△OPA 是以OA 长度6为底边,P 点的纵坐标为高的三角形,根据1••2PAO y S OA P =,列出函数关系式即可;(3)利用(2)的结论,列出方程即可解决问题;【详解】解:(1)把()8,0E -代入6y kx =+中有086k =-+∴34k =∴一次函数解析式为364y x =+(2)如图:∵OPA ∆是以OA 为底边,P 点的纵坐标为高的三角形∵()6,0A -∴6OA =∴1139666182244s y x x ⎛⎫=⨯⨯=⨯+=+ ⎪⎝⎭自变量x 的取值范围:80x -<<(3)当OPA ∆的面积为278时,有9271848x +=解得132x =-把132x =-代入一次函数364y x =+中,得98y =∴当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为27828.如图,直线AB 的解析式为2y x =+,直线AC 的解析式为4y x =-+,两条直线交于点A ,且分别与x 轴交于点B 、点C .(1)求ABC 的面积;(2)点D 为线段AC 上一点,连接BD ,若BD =D 的坐标.【答案】(1)9ABC S = ;(2)()3,1D .【分析】(1)过点A 作AE x ⊥轴于点E ,联立两直线解析式求交点坐标()1,3A ,可得3AE =,再求直线与x 轴两交点坐标()2,0B -,()4,0C ,可求()426BC =--=,利用三角形面积公式求即可;(2)过点D 作DF x ⊥轴于点F ,设点D 的横坐标为m ,(),4D m m -+,根据勾股定理222BD DF BF =+,即()()22242m m =-+++解方程即可.【详解】解:(1)过点A 作AE x ⊥轴于点E ,由题意联立方程组24y x y x =+⎧⎨=-+⎩,解得:13x y =⎧⎨=⎩,∴()1,3A ,∴3AE =.当0y =时,20x +=,∴2x =-,∴()2,0B -,当0y =时,40x -+=,∴4x =,∴()4,0C ,∴()426BC =--=,∴1163922ABC S BC AE =⋅=⨯⨯=△;(2)过点D 作DF x ⊥轴于点F ,设点D 的横坐标为m ,∵点D 在直线AC 上,∴4y m =-+,∴(),4D m m -+,∴4DF m =-+,∴()22BF m m =--=+,在Rt DBF △中,90DFB ∠=︒,根据勾股定理222BD DF BF =+,∴()()22242m m =-+++,整理得2230m m --=,解得:13m =,21m =-(不合题意,舍去),∴()3,1D .29.如图,在平面直角坐标系中,▱ABCD 各顶点的坐标分别为A (1,﹣1),B (2,﹣3),C (4,﹣3),D(3,﹣1),若直线y =﹣3x +b 与▱ABCD 有交点,则b 的取值范围是()A .3≤b ≤8B .2≤b ≤8C .2≤b ≤9D .﹣3≤b ≤9【答案】C【分析】根据A 、B 的坐标求出直线AB 的解析式,然后与直线3y x b =-+进行比较k 的值,最后进行分析计算即可得到答案.【详解】解:设直线AB 解析式为y mx n=+∵A 点坐标为(1,-1),B 点的坐标为(2,-3)∴132m n m n-=+⎧⎨-=+⎩∴解得21m n =-⎧⎨=⎩∴直线AB 解析式为21y x =-+∵23->-∴直线3y x b =-+的倾斜程度比直线21y x =-+的倾斜程度更厉害即为下图所示的情况时,直线3y x b =-+与平行四边ABCD 有交点当直线3y x b =-+经过A (1,-1)时∴1131b -=-⨯+,解得12b =当直线3y x b =-+经过C (4,-3)时∴2334b -=-⨯+,解得29b =综上所述29b ≤≤故选C.【点睛】本题主要考查了一次函数图像与图形的交点问题,解题的关键在于能够找到临界直线进行求解计算.30.如图,在平面直角坐标系xOy 中,直线AB 与x 轴,y 轴分别交于点30A (,),点04B (,),点D 在y 轴的负半轴上,若将DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处.(1)直接写出结果:线段AB 的长__________,点C 的坐标__________;(2)求直线CD 的函数表达式;(3)点P 在直线CD 上,使得2PAC OAB S S = ,求点P 的坐标.【答案】(1)5AB =,()80,C ;(2)直线CD 的函数表达式为364y x =-;(3)P 点坐标为7224,55⎛⎫ ⎪⎝⎭或824,55⎛⎫- ⎪⎝⎭.【分析】(1)运用勾股定理即可求出线段AB 的长;根据折叠得AC AB =,可得点C 的坐标;(2)设点D 的坐标为:()0,m ,而CD BD =,根据222OC OD CD +=,即可求出点D 的坐标,运用待定系数法设直线CD 的表达式为y kx b =+,将点C 、点D 代入即可求出答案;(3))设ACP △边AC 上的高为h ,根据2PAC OAB S S = ,求出h ,即可知道点P 的纵坐标,最后代入直线CD 的函数表示式中,即可求出答案.【详解】解:(1)()3,0A ,()0,4B ,3OA ∴=,4OB =,90AOB ∠=︒Q ,5AB ∴==;由折叠得:5AC AB ==,358OC OA AC ∴=+=+=,∴点C 的坐标为()8,0;故答案为:5AB =,80C (,);(2)设点()0,D m ,则OD m =-,由折叠可知,4CD BD m ==-,在Rt OCD △中,222=+CD OD OC ,()222(4)8m m ∴-=-+,解得:6m =-,0,6D ∴-(),设直线CD 的函数表达式为y kx b =+,将()8,0C 、0,6D -()代入,得806k b b +=⎧⎨=-⎩,解得,34k =,6b =-,∴直线CD 的函数表达式为364y x =-.(3)设ACP △边AC 上的高为h ,则1134622OAB S OA OB =⋅⋅=⨯⨯= ,1522PAC S AC h h =⋅⋅= ,且2PAC OAB S S = ,245h ∴=,因此点P的纵坐标为245或245-,当245y=时,即324645x-=,解得725x=;当245y=-时,即324645x-=-,解得85x=,因此,点P坐标为7224,55⎛⎫⎪⎝⎭或824,55⎛⎫-⎪⎝⎭.【点睛】本题考查了待定系数法求一次函数解析式,折叠的性质,勾股定理,三角形面积公式等.课后巩固1.一次函数y=﹣3x﹣2的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【分析】k<0,函数一定经过第二,四象限,b<0,直线与y轴交于负半轴,所以函数图象过第三象限,所以函数图象不过第一象限.【详解】解:∵k=﹣3<0,b=﹣2<0,∴函数的图象不经过第一象限,故选:A.2.一次函数y=﹣2x+b的图象经过点A(2,y1),B(﹣1,y2),则y1与y2的大小关系正确的是()A.y1<y2B.y1>y2C.y1=y2D.无法确定【答案】A【分析】在y=kx+b中,当k<0时,y随x的增大而减小,当k>0时,y随x的增大而增大;利用一次函数的增减性进行判断即可.【详解】解:在一次函数y=-2x+b中,。

一次函数难题经典例题及答案

一次函数难题经典例题及答案

一次函数难题经典例题及答案知识点一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b ……①和y2=kx2+b ……②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

初中数学《一次函数的图像》典型例题及答案解析

初中数学《一次函数的图像》典型例题及答案解析
C.苹果下落的速度越来越快D.可以推测,苹果落到地面的时间不超过5秒
【答案】B
【解析】
由图表可知,苹果在下落过程中,越来越快,每秒之间速度增加依次为5、15、25、35、45等等,所以观察备选答案B错误.故选B.
15.下表是弹簧挂重后的总长度L(cm)与所挂物体重量x(kg)之间的几个对应值,则可以推测L与x之间的关系式是()
【解析】
【分析】
设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.
【详解】
分三种情况:
①当P在AB边上时,如图1,
设菱形的高为h,
y= AP•h,
∵AP随x的增大而增大,h不变,
∴y随x的增大而增大,
故选项C不正确;
初中数学《一次函数的图像》典型例题及答案解析
1.在某次试验中,测得两个变量m和v之间的4组对应数据如下表:
m
1
2
3
4
v
0.01
2.9
8.03
15.1
则m与v之间的关系最接近于下列各关系式中的( )
A.v=2m-1B.v=m2-1C.v=3m-3D.v=m+1
【答案】B
【解析】
【分析】
一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.
D.随着时间的变化,步行离家的距离变化慢,搭轻轨的距离变化快,符合题意,故D正确;
故选:D.
【点睛】
本题考查的是函数图像,熟练掌握图像是解题的关键.
9.函数y= 的图象为( )
A. B.
C. D.
【答案】D
【解析】
【分析】
分x 0和x 两种情况去掉绝对值符号,再根据解析式进行分析即可。

期末复习 《一次函数》常考题与易错题精选(50题)(解析版)

期末复习 《一次函数》常考题与易错题精选(50题)(解析版)

期末复习- 《一次函数》常考题与易错题精选(52题)一.常量与变量(共2小题)1.在圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),常量与变量分别是( )A.常量是,变量是V,hB.常量是,变量是h,rC.常量是,变量是V,h,rD.常量是,变量是V,h,π,r【分析】根据圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),即可得常量与变量.【解答】解:由圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),可知:常量是,变量是V,h,r.故选:C.【点评】本题考查了常量与变量、认识立体图形,解决本题的关键是掌握常量与变量的概念.2.小李驾车以70km/h的速度行驶时,他所走的路程s(km)与时间t(h)之间可用公式s=70t来表示,则下列说法正确的是( )A.数70和s,t都是变量B.s是常量,数70和t是变量C.数70是常量,s和t是变量D.t是常量,数70和s是变量【分析】根据常量与变量的定义判断.【解答】解:由题意得:70是常数,其值恒定不变,是常量,行驶过程中时间不断增加,t的值不断变化,是变量,路程随时间t的不合而变化,s也是变量,∴A,B,D均不合题意,C合题意.故选:C.【点评】本题考查常量与变量,理解题意,搞清变与不变是求解本题的关键.二.函数的概念(共2小题)3.下列各图象中,不能表示y是x的函数的是( )A.B.C.D.【分析】根据函数的概念:对于自变量x的每一个值,因变量y都有唯一的值与它对应,逐一判断即可解答.【解答】解:A、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故A不符合题意;B、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故B不符合题意;C、对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所以不能表示y是x的函数,故C符合题意;D、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故D不符合题意;故选:C.【点评】本题考查了函数的概念,熟练掌握函数的概念是解题的关键.4.下列说法正确的是( )A.变量x,y满足,则y是x的函数B.变量x,y满足y2=x,则y是x的函数C.变量x,y满足|y|=x,则y是x的函数D.在中,常量是,r是自变量,V是r的函数【分析】根据函数的概念,对于自变量x的每一个值,y都有唯一的值与它对应,即可解答.【解答】解:A、变量x,y满足,对于自变量x的每一个值,y都有唯一的值与它对应,则y 是x的函数,故A符合题意;B、变量x,y满足y2=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故B不符合题意;C、变量x,y满足|y|=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故C不符合题意;D、在中,π是常量,r是自变量,对于自变量r的每一个值,V都有唯一的值与它对应,则V是r的函数,故D不符合题意,故选:A.【点评】本题考查了函数的概念,常量与变量,熟练掌握函数的概念是解题的关键.三.函数关系式(共3小题)5.物理学告诉我们,液体的压强只与液体的密度和深度有关,其公式为p=ρgh.已知水的密度为ρ=1×103kg/m3,g=9.8N/kg,水的压强p随水的深度h的变化而变化,则p与h之间满足的关系式为 p=9.8×103h .【分析】根据已知条件求出一次函数的系数,确定一次函数的解析式.【解答】解:∵ρ=1×103kg/m3,g=9.8N/kg,∴ρ×g=1×103×9.8=9.8×103,p=9.8×103h;故答案为:p=9.8×103h.【点评】考查一次函数解析式,关键掌握待定系数法求函数解析式.6.一艘轮船装载2800吨货物,写出平均卸货速度v(单位:吨/天)与卸货天数t之间的关系式为 v= .【分析】根据题中等量关系直接列出函数关系式.【解答】解:由题意得:2800=vt.∴v=.故答案为:v=.【点评】本题考查求函数关系式,理解题意,找到等量关系是求解本题的关键.7.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,求y关于x的函数解析式 y=x .【分析】根据组成圆柱后,底面圆的周长等于剩余长方形的长列出方程,再化成函数关系式即可.【解答】解:由题意得:=y﹣,∴y=,即y=x,故答案为:y=x.【点评】本题考查了函数关系式,展开图折叠成几何体,根据题目的已知条件并结合图形找到等量关系是解题的关键.四.函数自变量的取值范围(共3小题)8.函数y=﹣(x+1)0中自变量x的取值范围是( )A.x≥﹣2B.x>﹣2C.x>﹣2且x≠﹣1D.x≥﹣2且x≠﹣1【分析】根据二次根式(a≥0),以及a0=1(a≠0)可得x+2≥0且x+1≠0,然后进行计算即可解答.【解答】解:由题意得:x+2≥0且x+1≠0,∴x≥﹣2且x≠﹣1,故选:D.【点评】本题考查了函数自变量的取值范围,零指数幂,熟练掌握二次根式(a≥0),以及a0=1(a≠0)是解题的关键.9.在函数中,自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≥﹣3且x≠0D.x≠0且x≠﹣3【分析】根据分式有意义的条件和二次根式有意义的条件,可得,然后进行计算即可解答.【解答】解:根据题意可得:,解得:x≥﹣3且x≠0,故选:C.【点评】本题考查了函数自变量的取值范围,熟练掌握分式有意义的条件和二次根式有意义的条件是解题的关键.10.函数的自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≠0且x≠﹣3D.x≥﹣3且x≠0【分析】根据二次根式(a≥0)且分母不为0,可得x+3≥0且x≠0,然后进行计算即可解答.【解答】解:由题意得:x+3≥0且x≠0,解得:x≥﹣3且x≠0,故选:D.【点评】本题考查了函数自变量的取值范围,熟练掌握二次根式(a≥0)且分母不为0是解题的关键.五.函数值(共3小题)11.根据如图所示的程序计算函数y的值,若输入x的值是3,则输出y的值是﹣3.若输入x的值是﹣5,则输出y的值是( )A.5B.7C.13D.16【分析】根据题意把x=3,y=﹣3代入y=中,从而求出b的值,然后再把x=﹣5,b=﹣3代入y=﹣2x+b中,进行计算即可解答.【解答】解:由题意得:把x=3,y=﹣3代入y=中可得:﹣3=,解得:b=﹣3,把x=﹣5,b=﹣3代入y=﹣2x+b中可得:y=﹣2×(﹣5)+(﹣3)=10﹣3=7,故选:B.【点评】本题考查了函数值,根据题意把x=3,y=﹣3代入y=中求出b值是解题的关键.12.当x=﹣1时,函数y=的值是( )A.1B.﹣1C.D.【分析】把x=﹣1代入函数解析式求得相应的y值即可.【解答】解:当x=﹣1时,y===.故选:D.【点评】本题主要考查了函数值的求解,把自变量的值代入函数解析式计算即可,是基础题,比较简单.13.有下列四个函数:①y=x;②y=﹣x﹣5;③y=;④y=x2+4x﹣1.当自变量满足﹣4≤x≤﹣1时,函数值满足﹣4≤y≤﹣1的函数有( )A.①②B.①②③C.①③④D.①②③④【分析】根据一次函数的增减性,反比例函数的增减性以及二次函数的增减性分别作出判断即可得解.【解答】解:①y=x,x=﹣4时y取最小值﹣4,x=﹣1时,y取最大值﹣1,符合,②y=﹣x﹣5,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,③y=,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,④y=x2+4x﹣1=(x+2)2﹣5,对称轴是直线x=﹣2,x=﹣4时,y取最大值﹣1,x=﹣2时y取最小值﹣5,x=﹣1时y=﹣4,不是最小值,不符合.综上所述,符合条件的函数有①②③共3个.故选:B.【点评】本题考查了二次函数的性质,一次函数的性质,反比例函数的性质,熟练掌握各函数的增减性是解题的关键.六.函数的图象(共6小题)14.晚饭后彤彤和妈妈散步到小区旁边的公园,在公园中央的休息区聊了会天,然后一起跑步回家,下面能反映彤彤和妈妈离家的距离y与时间x的函数关系的大致图象是( )A.B.C.D.【分析】根据在每段中,离家的距离随时间的变化情况即可进行判断.【解答】解:图象应分三个阶段,第一阶段:散步到离家较远的公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:在公园中央的休息区聊了会天,这一阶段离家的距离不随时间的变化而改变.故D错误;第三阶段:跑步回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度大于第一阶段的速度,则B错误.故选:C.【点评】本题考查了函数的图象,解题的关键是理解路程y的含义,理解直线的倾斜程度与速度的关系,属于中考常考题型.15.将一圆柱形小水杯固定在大圆柱形容器底面中央,小水杯中有部分水,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致是( )A.B.C.D.【分析】根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象.【解答】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t的增大而增大,当水注满小杯后,小杯内水面的高度h不再变化.故选:B.【点评】本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.16.如图,图中折线表示张师傅在某天上班途中的情景:骑车离家行了一段路,由于车子出现故障,于是停下修车,修好车子后继续骑行,按时赶到单位.下列关于图中信息的说法中,错误的是( )A.张师傅修车用了15分钟B.张师傅的单位距他家2000米C.张师傅从家到单位共用了20分钟D.修车后的骑行速度是修车前的2倍【分析】根据题意和函数图象中的数据可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由图可得,张师傅修车用了15﹣10=5(分钟),故选项A符合题意;张师傅上班处距他家2000米,故选项B不合题意;张师傅路上耗时20分钟,故选项C不合题意,修车后张师傅骑车速度是修车前的:=2(倍),故选项D不合题意,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.某自行车厂甲、乙两名工人组装自行车,2小时后,甲的机器出现故障进行维修,乙加速组装.他们每人组装自行车y(辆)与生产时间t(小时)的关系如图所示.根据图象回答:(1)2小时后,乙每小时组装几辆自行车?当t为多少小时,乙组装自行车25辆?(2)甲维修好机器后,每小时组装几辆自行车?(3)甲维修好机器后,t的值为多少时,甲与乙组装的车辆一样多?【分析】(1)根据图象,用车辆数÷时间可得出每小时组装车辆;再根据车辆总数÷速度可得出时间;(2)根据图象,用车辆数÷时间可得出每小时组装车辆;(3)根据函数图象和图象中的数据可以求得甲乙对应的函数解析式,从而可以解答本题.【解答】解:(1)由图象可知:2小时后,乙每小时组装(40﹣4)÷(8﹣2)=6(辆)自行车,(25﹣4)÷6=3.5,∴t=3.5+2=5.5(小时).(2)甲维修好机器后,每小时组装(40﹣10)÷(7﹣5)=15辆.(3)设甲维修好机器后,经过x小时,甲与乙组装的车辆一样多.由题意可知,10+15x=4+6(3+x),10+15x=6x+22;解得:.此时,.【点评】本题考查一次函数的应用、函数图象,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.为迎接体质监测,小明和小军进行了1000米跑练习.如图是两人的路程s(米)与时间t(分钟)之间关系的图象,根据图象解答下列问题:(1)2分钟时,谁跑在前面?(2)谁先跑到终点?(3)小军的平均速度是多少?(4)起跑后两人第一次相遇时距离终点多少米?【分析】(1)由图象可直接得出结论.(2)根据图象可知,小明用的时间小,所以小明先跑到终点.(3)利用速度=路程÷时间,可得出小军的速度.(4)利用总路程﹣走过的路程=剩下的路程可得出结论.【解答】解:(1)由图象可知,2分钟时,小军跑在前面.(2)由图象可知,小明用时3.8分钟,小军用时4分钟,∴小明先跑到终点.(3)小军的平均速度为:1000÷4=250(米/分钟).∴小军的平均速度为:250米/分钟.(4)起跑后两人第一次相遇时距离终点:1000﹣250×3.4=150(米).∴起跑后两人第一次相遇时距离终点150米.【点评】本题考查函数图象的应用,借助函数图象表达题目中的信息,读懂图象是关键.注意图中的时间﹣路程的函数图象意义.19.甲、乙两人在笔直的公路AB上从起点A地以不同的速度匀速跑向终点B地,先到B地的人原地休息,已知A、B两地相距1500米,且甲比乙早出发,甲、乙两人之间的距离y(米)与甲出发的时间x(秒)的关系如图所示.(1)甲早出发 30 秒,乙出发时两人距离 75 米;(2)甲的速度是 2.5 米/秒,甲从A地跑到B地共需 600 秒;(3)乙出发 150 秒时追上了甲;(4)甲出发 420或552 秒时,两人相距120米.【分析】(1)根据图象解答即可;(2)根据题意和图象中的数据即可求出甲的速度,进而求出甲从A地跑到B地共需要的时间;(3)根据题意可知,当y=0时,乙追上甲,由图象可得出结果;(4)根据题意列方程解答即可.【解答】解:(1)由图象可知,甲早出发30秒,乙出发时两人距离75米;故答案为:30;75.(2)根据题意得,甲的速度为:75÷30=2.5米/秒,1500÷2.5=600(秒).即甲从A地跑到B地共需600秒.故答案为:2.5;600.(3)180﹣30=150(秒),∴乙出发150秒时追上了甲.故答案为:150;(4)设甲出发x秒时,两人相距120米,根据题意得:3(x﹣30)﹣2.5x=120或2.5x=1500﹣120,解得x=420或552.即甲出发420秒或552秒时,两人相距120米.故答案为:420或552.【点评】本题考查函数图象的应用,解答本题的关键是明确题意,利用数形结合的思想和时间﹣距离图象进行解答.七.动点问题的函数图象(共3小题)20.小明在一个半圆形的花园的周边散步,如图1,小明从圆心O出发,按图中箭头所示的方向,依次匀速走完下列三条线路:(1)线段OA;(2)半圆弧AB;(3)线段BO后,回到出发点.小明离出发点的距离S(小明所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,请据图回答下列问题(圆周率π的值取3):(1)请直接写出:花园的半径是 100 米,小明的速度是 50 米/分,a= 8 ;(2)若沿途只有一处小明遇到了一位同学停下来交谈了2分钟,并且小明在遇到同学的前后,始终保持速度不变,请你求出:①小明遇到同学的地方离出发点的距离;②小明返回起点O的时间.【分析】(1)由t在2﹣a变化时,S不变可知,半径为100米,速度为50米/分,再求出在半圆上的运动时间即可;(2)①由(1)根据图象,第11分时,小明继续行走,则小明之前行走9分,可求出已经行走路北,用全程路程减去已走路程即可;②可求全程时间为500用时10分钟,再加上停留2分钟即可.【解答】解:(1)由图象可知,花园半径为100米,小明速度为100÷2=50米/分,半圆弧长为100π=300米,则a=2+=8故答案为:100,50,8.(2)①由已知,第11分时小明继续前进,则行进时间为9分钟,路程为450米全程长100+300+100=500米,则小明离出发点距离为50米;②小明返回起点O的时间为分【点评】本题为动点问题的函数图象探究题,考查了通过函数图象探究图象代表的实际意义,运用数形结合的数学思想.21.如图①所示,在△ABC中,AD是三角形的高,且AD=6cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②所示,已知BC=8cm(1)由图②,E点运动的时间为 2 s,速度为 3 cm/s(2)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(3)当E点停止后,求△ABE的面积.【分析】(1)根据图象解答即可;(2)根据三角形的面积公式,可得答案;(3)根据三角形的面积公式,可得答案.【解答】解:(1)根据题意和图象,可得E点运动的时间为2s,速度为3cm/s.故答案为:2;3;(2)根据题意得y=×BE×AD==9x,即y=9x(0<x≤2);(3)当x=2时,y=9×2=18.故△ABE的面积为18cm2.【点评】本题主要考查了动点问题的函数图象,涉及求函数解析式,求函数值问题,能读懂函数图象是解决问题的关键.22.已知动点P以2cm/s的速度沿图1所示的边框从B﹣C﹣D﹣E﹣F﹣A的路径运动,记△ABP的面积为S (cm2),S与运动时间t(s)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC= 8 cm,CD= 4 cm,DE= 6 cm(2)求出图1中边框所围成图形的面积;(3)求图2中m、n的值;(4)分别求出当点P在线段BC和DE上运动时S与t的关系式,并写出t的取值范围.【分析】(1)因为点P速度为2,所以根据右侧的时间可以求出线段BC,CD和DE的长度.(2)对多边形采取切割的方法求面积,将多边形切割为两个长方形即可.(3)m代表的是点P在C时对应图形面积,n代表的是点P运动到A时对应的时间,由图象都可以求出.(4)表示出点P到AB的水平距离作为高,以AB为底求出面积.【解答】解:(1)由右侧图象可知,点P在BC线段运动4秒,BC=8,点P在CD线段运动2秒,CD =4cm,点P在DE线段运动3秒,DE=6cm,(2)∵AB=6cm,CD=4cm,∴EF=2cm,∴图形的面积可以看作是两个长方形面积之和6×8+6×2=60(cm2)(3)当点P到C时,△ABP的面积为24(cm2)∴m=24BC+CD+DE+EF+AF=34cm∴n=34×=17cm(4)当点P在BC上运动时0≤t≤4S==6t(cm2)当点P在DE上运动时6≤t≤9S==6t﹣12(cm2)【点评】本题考查了数形结合的数学思维,通过图象找出对应图形的线段长度,很好的考查了学生分析问题和看图的能力.八.一次函数的定义(共2小题)23.已知函数y=(m+1)x2﹣|m|+4,y是x的一次函数,则m的值是( )A.1B.﹣1C.1或﹣1D.任意实数【分析】根据一次函数的定义:形如y=kx+b(k,b为常数且k≠0),可得2﹣|m|=1且m+1≠0,然后进行计算即可解答.【解答】解:由题意得:2﹣|m|=1且m+1≠0,∴m=±1且m≠﹣1,∴m=1,故选:A.【点评】本题考查了一次函数的定义,熟练掌握一次函数的定义是解题的关键.24.已知函数y=(m﹣2)+1是一次函数,则m的值为( )A.±B.C.±2D.﹣2【分析】根据一次函数的定义,自变量的次数为1列方程求出m的值,再根据比例系数k≠0求解得到m ≠2,从而得解.【解答】解:由题意得,m2﹣3=1且m﹣2≠0,解得m=±2且m≠2,所以m=﹣2.故选:D.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.九.正比例函数的定义(共2小题)25.若y关于x的函数y=(a﹣2)x+b是正比例函数,则a,b应满足的条件是( )A.a≠2B.b=0C.a=2且b=0D.a≠2且b=0【分析】直接利用正比例函数的定义分析求出答案.【解答】解:∵y=(a﹣2)x+b是y关于x的正比例函数,∴b=0,a﹣2≠0,解得:b=0,a≠2.故选:D.【点评】此题主要考查了正比例函数的定义,正确把握正比例函数一般形式是解题关键.26.若函数y=(k﹣2)x+2k+1是正比例函数,则k的值是( )A.k≠2B.k=2C.k=﹣D.k=﹣2【分析】根据正比例函数的定义得出k﹣2≠0且2k+1=0,再求出k即可.【解答】解:∵函数y=(k﹣2)x+2k+1是正比例函数,∴k﹣2≠0且2k+1=0,解得:k=﹣,故选:C.【点评】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b (k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数y=kx+b叫正比例函数.一十.一次函数的图象(共3小题)27.在平面直角坐标系中,已知m为常数,且m≠2,m≠3,则关于x的一次函数y=(m﹣3)x+4﹣2m 与y=(4﹣2m)x+m﹣3的图象可能是( )A.B.C.D.【分析】根据一次函数的图象和性质判断即可.【解答】解:当m﹣3>0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、三、四象限,y=(4﹣2m)x+m﹣3的图象过第一、二、四象限,无选项符合题意;当m﹣3<0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m与y=(4﹣2m)x+m﹣3的图象都过第二、三、四象限,选项D符合题意;当m﹣3<0,4﹣2m>0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、二、四象限,y=(4﹣2m)x+m﹣3的图象过第一、三、四象限,无选项符合题意.故选:D.【点评】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).28.在同一平面直角坐标系中,一次函数y=kx+b(k≠0)与y=bx﹣k(b≠0)的大致图象可以是( )A.B.C.D.【分析】根据一次函数经过的象限与系数的关系进行求解即可.【解答】解;当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,一次函数y=bx﹣k经过第一、三、四象限;当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,一次函数y=bx﹣k经过第二、三、四象限;当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,一次函数y=bx﹣k经过第一、二、三象限;当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限,一次函数y=bx﹣k经过第一、二、四象限;∴四个选项只有C符合题意.故选:C.【点评】本题主要考查了一次函数图象与系数的关系,熟知对于一次函数y=kx+b,当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限是解题的关键.29.在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是( )A.B.C.D.【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图象都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0时,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.一十一.一次函数的性质(共4小题)30.若一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,则a的值可以是( )A.4B.2C.﹣2D.﹣6【分析】由一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,可得出a﹣2>0,解之即可得出a的取值范围,再对照四个选项即可得出结论.【解答】解:∵一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,∴a﹣2>0,∴a>2.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.31.若点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,则a与b的大小关系是( )A.a>b B.a<bC.a=b D.与m的值有关【分析】由k=﹣2<0,利用一次函数的性质可得出y随x的增大而减小,结合﹣3<4,即可求出a>b.【解答】解:∵k=﹣2<0,∴y随x的增大而减小,又∵点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,且﹣3<4,∴a>b.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.32.直线y=﹣3x+2图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣3x+2中,k=﹣3<0,b=2>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.33.若a、b为实数,且,则直线y=ax+b不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】依据,即可得到a=,b=﹣5,进而得到直线y=x﹣5不经过的象限.【解答】解:∵,∴,解得a=,∴b=﹣5,∴直线y=x﹣5经过第一,三,四象限,∴不经过的象限是第二象限,故选:B.【点评】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.一十二.一次函数图象与系数的关系(共2小题)34.已知正比例函数y=(2m+1)x,y随x的增大而减小,则m的取值范围是( )A.m>﹣B.m C.m D.m【分析】根据正比例函数图象与系数的关系列出关于m的不等式2m+1<0,然后解不等式即可.【解答】解:∵正比例函数y=(2m+1)x中,y的值随自变量x的值增大而减小,∴2m+1<0,解得m<﹣,故选:B.【点评】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx 所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.35.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是( )A.B.C.D.【分析】根据一次函数的图象与系数的关系,逐一判断即可解答.【解答】解:A、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故A不符合题意;B、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故B符合题意;C、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故C不符合题意;D、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故D不符合题意;故选:B.【点评】本题考查了一次函数的图象与系数,熟练掌握一次函数的图象与系数的关系是解题的关键.一十三.一次函数图象上点的坐标特征(共2小题)36.一次函数y=2x+3的图象与y轴的交点是( )A.(2,3)B.(0,2)C.(0,3)D.(﹣,0)【分析】代入x=0,求出y值,进而可得出一次函数y=2x+3的图象与y轴的交点坐标.【解答】解:当x=0时,y=2×0+3=3,∴一次函数y=2x+3的图象与y轴的交点是(0,3).故选:C.【点评】本题考查了一次函数图象上点的坐标特征,牢记“直线上任意一点的坐标都满足函数关系式y=kx+b”是解题的关键.37.若点(﹣3,y1)、(2,y2)都在函数y=﹣4x+b的图象上,则y1与y2的大小关系( )。

一次函数经典测试题及答案解析

一次函数经典测试题及答案解析一、选择题1.如图1所示,A ,B 两地相距60km ,甲、乙分别从A ,B 两地出发,相向而行,图2中的1l ,2l 分别表示甲、乙离B 地的距离y (km )与甲出发后所用的时间x (h )的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地 【答案】C 【解析】 【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地. 【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩即1l 对应的函数解析式为13060y x =-+; 设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩即2l 对应的函数解析式为22010y x =-, 所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩ ∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意;D .根据图形即可得出乙出发3h 时到达A 地,故D 错误. 故选:C . 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.2.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( )A .0x >B .0x <C .2x >D .2x <【答案】C 【解析】 【分析】根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案. 【详解】解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0), 当x >2时,y<0. 故答案为:x >2. 故选:C. 【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.3.平面直角坐标系中,点(0,0)O 、(2,0)A 、(,2)B b b -+,当45ABO ∠<︒时,b 的取值范围为( ) A .0b < B .2b <C .02b <<D .0b <或2b >【答案】D 【解析】 【分析】根据点B 的坐标特征得到点B 在直线y=-x+2上,由于直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图,易得∠AQO=45°,⊙P 与直线y=-x+2只有一个交点,根据圆外角的性质得到点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,所以b <0或b >2. 【详解】解∵B点坐标为(b,-b+2),∴点B在直线y=-x+2上,直线y=-x+2与y轴的交点Q的坐标为(0,2),连结AQ,以AQ为直径作⊙P,如图,∵A(2,0),∴∠AQO=45°,∴点B在直线y=-x+2上(除Q点外),有∠ABO小于45°,∴b的取值范围为b<0或b>2.故选D.【点睛】本题考查了一函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(bk,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.4.已知点M(1,a)和点N(3,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.无法确定【答案】A【解析】【分析】根据一次函数的图像和性质,k<0,y随x的增大而减小解答.【详解】解:∵k=﹣2<0,∴y随x的增大而减小,∵1<3,∴a>b.故选A.【点睛】考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.5.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( ) A .图象经过第一、二、四象限 B .y 随x 的增大而减小 C .图象与y 轴交于点()0,b D .当bx k>-时,0y > 【答案】D 【解析】 【分析】由k 0<,0b >可知图象经过第一、二、四象限;由k 0<,可得y 随x 的增大而减小;图象与y 轴的交点为()0,b ;当bx k>-时,0y <; 【详解】∵()0,0y kx b k b =+<>, ∴图象经过第一、二、四象限, A 正确; ∵k 0<,∴y 随x 的增大而减小, B 正确;令0x =时,y b =, ∴图象与y 轴的交点为()0,b , ∴C 正确; 令0y =时,b x k=-, 当bx k>-时,0y <; D 不正确; 故选:D . 【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y kx b =+中,k 与b 对函数图象的影响是解题的关键.6.一列动车从甲地开往乙地, 一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y 与x 之间的函数关系,下列说法:①动车的速度是270千米/小时;②点B 的实际意义是两车出发后3小时相遇;③甲、乙两地相距1000千米;④普通列车从乙地到达甲地时间是9小时,其中不正确的有( )A .1个B .2个C .3个D .4个【答案】B 【解析】 【分析】由x=0时y=1000可判断③;由运动过程和函数图像关系可判断②;求出普通列车速度,设动车的速度为x 千米/小时,根据“动车3小时行驶的路程+普通列车3小时行驶的路程=1000”列方程求解可判断①;根据x=12时的实际意义可判断④. 【详解】解:③由x=0时,y=1000知,甲地和乙地相距1000千米,正确;②如图,出发后3小时,两车之间的距离为0,可知点B 的实际意义是两车出发后3小时相遇,正确;①普通列车的速度是100012=2503千米/小时, 设动车的速度为x 千米/小时,根据题意,得:3x+3×2503=1000, 解得:x=250,动车的速度为250千米/小时,错误; ④由图象知x=t 时,动车到达乙地, ∴x=12时,普通列车到达甲地,即普通列车到达终点共需12小时,错误; 故选B. 【点睛】本题主要考查一次函数的应用,根据题意弄懂函数图象中各拐点坐标的实际意义及行程问题中蕴含的相等关系是解题的关键.7.已知直线3y mx =+经过点(2,0),则关于x 的不等式 30mx +>的解集是( ) A .2x > B .2x <C .2x ≥D .2x ≤【答案】B 【解析】【分析】求出m 的值,可得该一次函数y 随x 增大而减小,再根据与x 轴的交点坐标可得不等式解集. 【详解】解:把(2,0)代入3y mx =+得:023m =+,解得:32m =-, ∴一次函数3y mx =+中y 随x 增大而减小,∵一次函数3y mx =+与x 轴的交点为(2,0), ∴不等式 30mx +>的解集是:2x <, 故选:B . 【点睛】本题考查了待定系数法的应用,一次函数与不等式的关系,判断出函数的增减性是解题的关键.8.一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行且经过点A (1,-3),则这个一次函数的图象一定经过( ) A .第一、二、三象限 B .第一、三、四象限 C .第一、二、四象限 D .第二、三、四象限【答案】C 【解析】 【分析】由一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行可得k=-6,把点A 坐标代入y=-6x+b 可求出b 值,即可得出一次函数解析式,根据一次函数的性质即可得答案. 【详解】∵一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行, ∴k=-6,∵一次函数6y x b =-+经过点A (1,-3), ∴-3=-6+b , 解得:b=3,∴一次函数的解析式为y=-6x+3, ∵-6<0,3>0,∴一次函数图象经过二、四象限,与y 轴交于正半轴, ∴这个一次函数的图象一定经过一、二、四象限, 故选:C . 【点睛】本题考查了两条直线平行问题及一次函数的性质:若直线y=k 1x+b 1与直线y=k 2x+b 2平行,则k 1=k 2;当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小;当b >0时,图象与y 轴交于正半轴;当b <0时,图象与y 轴交于负半轴.9.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A .33元B .36元C .40元D .42元【答案】C 【解析】分析:待定系数法求出当x≥12时y 关于x 的函数解析式,再求出x=22时y 的值即可. 详解:当行驶里程x ⩾12时,设y=kx+b , 将(8,12)、(11,18)代入,得:8121118k b k b +=⎧⎨+=⎩ , 解得:24k b =⎧⎨=-⎩, ∴y=2x −4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元. 故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.10.如图,矩形ABOC 的顶点坐标为()4,5-,D 是OB 的中点,E 为OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )A .40,3⎛⎫ ⎪⎝⎭B .50,3⎛⎫ ⎪⎝⎭C .()0,2D .100,3⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点. 【详解】解:作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长; ∵A 的坐标为(-4,5),D 是OB 的中点, ∴D (-2,0),由对称可知A'(4,5), 设A'D 的直线解析式为y=kx+b ,5402k b k b =+⎧∴⎨=-+⎩5653k b ⎧=⎪⎪∴⎨⎪=⎪⎩5563y x ∴=+ 当x=0时,y=5350,3E ⎛⎫∴ ⎪⎝⎭故选:B 【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE 的最短距离转化为线段A'D 的长是解题的关键.11.若一次函数y=kx+b 的图象经过一、二、四象限,则一次函数y=-bx+k 的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】根据一次函数y=kx+b 图象在坐标平面内的位置关系先确定k ,b 的取值范围,再根据k ,b 的取值范围确定一次函数y=-bx+k 图象在坐标平面内的位置关系,从而求解. 【详解】解:一次函数y=kx+b 过一、二、四象限, 则函数值y 随x 的增大而减小,因而k <0; 图象与y 轴的正半轴相交则b >0, 因而一次函数y=-bx+k 的一次项系数-b <0, y 随x 的增大而减小,经过二四象限, 常数项k <0,则函数与y 轴负半轴相交, 因而一定经过二三四象限, 因而函数不经过第一象限. 故选:A . 【点睛】本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <0;函数值y 随x 的增大而增大⇔k >0;一次函数y=kx+b 图象与y 轴的正半轴相交⇔b >0,一次函数y=kx+b 图象与y 轴的负半轴相交⇔b <0,一次函数y=kx+b 图象过原点⇔b=0.12.一次函数y=(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m ,n 的值为( ) A .m≠2,n=2 B .m=2,n=2C .m≠2,n=1D .m=2,n=1【答案】A 【解析】 【分析】直接利用一次函数的定义分析得出答案. 【详解】解:∵一次函数y=(m-2)x n-1+3是关于x 的一次函数,∴n-1=1,m-2≠0, 解得:n=2,m≠2. 故选A . 【点睛】此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.13.如图所示,已知()121,,2,2A y B y ⎛⎫ ⎪⎝⎭为反比例函数1y x=图象上的两点,动点(),0P x 在x 轴正半轴上运动,当AP BP -的值最大时,连结OA ,AOP ∆的面积是 ( )A .12B .1C .32D .52【答案】D 【解析】 【分析】先根据反比例函数解析式求出A ,B 的坐标,然后连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大,利用待定系数法求出直线AB 的解析式,从而求出P '的坐标,进而利用面积公式求面积即可. 【详解】 当12x =时,2y = ,当2x =时,12y = ,∴11(,2),(2,)22A B .连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大.设直线AB 的解析式为y kx b =+ , 将11(,2),(2,)22A B 代入解析式中得 122122k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩解得152k b =-⎧⎪⎨=⎪⎩ , ∴直线AB 解析式为52y x =-+. 当0y =时,52x =,即5(,0)2P ', 115522222AOP A S OP y '∴=⋅=⨯⨯=. 故选:D .【点睛】 本题主要考查一次函数与几何综合,掌握待定系数法以及找到AP BP -何时取最大值是解题的关键.14.函数()312y m x =+-中,y 随x 的增大而增大,则直线()12y m x =---经过( ) A .第一、三、四象限B .第二、三、四象限C .第一、二、四象限D .第一、二、三象限 【答案】B【解析】【分析】根据一次函数的增减性,可得310m +>;从而可得10m --<,据此判断直线()12y m x =---经过的象限.【详解】 解:函数()312y m x =+-中,y 随x 的增大而增大,310m ∴+>,则13m >- 10m ∴--<,∴直线()12y m x =---经过第二、三、四象限.故选:B .【点睛】本题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键.即一次函数y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大,图象经过一、三象限;当k <0时,y 随x 的增大而减小,图象经过二、四象限;当b >0时,此函数图象交y 轴于正半轴;当b <0时,此函数图象交y 轴于负半轴.15.函数12y x =-与23y ax =+的图像相交于点(),2A m ,则( )A .1a =B .2a =C .1a =-D .2a =-【答案】A【解析】【分析】将点(),2A m 代入12y x =-,求出m ,得到A 点坐标,再把A 点坐标代入23y ax =+,即可求出a 的值.【详解】 解:函数12y x =-过点(),2A m , 22m ∴-=,解得:1m =-,()1,2A ∴-,函数23y ax =+的图象过点A ,32a ∴-+=,解得:1a =.故选:A .【点睛】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.16.已知一次函数y =kx+k ,其在直角坐标系中的图象大体是( )A .B .C .D .【答案】A【解析】【分析】函数的解析式可化为y =k (x +1),易得其图象与x 轴的交点为(﹣1,0),观察图形即可得出答案.【详解】函数的解析式可化为y =k (x +1),即函数图象与x 轴的交点为(﹣1,0),观察四个选项可得:A 符合.故选A .【点睛】本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.17.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤ C .1122b -≤≤ D .112b -≤≤【答案】B【解析】【分析】 将A (1,1),B (3,1),C (2,2)的坐标分别代入直线y =12x+b 中求得b 的值,再根据一次函数的增减性即可得到b 的取值范围.【详解】解:直线y=12x+b 经过点B 时,将B (3,1)代入直线y =12x+b 中,可得32+b=1,解得b=-12; 直线y=12x+b 经过点A 时:将A (1,1)代入直线y =12x+b 中,可得12+b=1,解得b=12; 直线y=12x+b 经过点C 时:将C (2,2)代入直线y =12x+b 中,可得1+b=2,解得b=1. 故b 的取值范围是-12≤b≤1. 故选B .【点睛】考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.18.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.【答案】A【解析】【分析】∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定也无需确定).a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合.故选A.【详解】请在此输入详解!19.一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:①当G1与G2有公共点时,y1随x增大而减小;②当G1与G2没有公共点时,y1随x增大而增大;③当k=2时,G1与G2平行,且平行线之间的距离为.下列选项中,描述准确的是()A.①②正确,③错误B.①③正确,②错误C.②③正确,①错误D.①②③都正确【答案】D【解析】【分析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【详解】解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,N (﹣1,2),Q (2,7)为G 2的两个临界点,易知一次函数y 1=kx+1﹣2k (k≠0)的图象过定点M (2,1),直线MN 与直线MQ 为G 1与G 2有公共点的两条临界直线,从而当G 1与G 2有公共点时,y 1随x 增大而减小;故①正确;当G 1与G 2没有公共点时,分三种情况:一是直线MN ,但此时k =0,不符合要求;二是直线MQ ,但此时k 不存在,与一次函数定义不符,故MQ 不符合题意; 三是当k >0时,此时y 1随x 增大而增大,符合题意,故②正确;当k =2时,G 1与G 2平行正确,过点M 作MP ⊥NQ ,则MN =3,由y 2=2x+3,且MN ∥x 轴,可知,tan ∠PNM =2,∴PM =2PN ,由勾股定理得:PN 2+PM 2=MN 2∴(2PN )2+(PN )2=9,∴PN =, ∴PM =.故③正确.综上,故选:D .【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.20.已知直线4y x =-+与2y x =+的图象如图,则方程组y x 4y x 2=-+⎧⎨=+⎩的解为( )A .31x y ==,B .13x y ==,C .04x y ==,D .40x y ==,【答案】B【解析】【分析】 二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标.【详解】解:根据题意知,二元一次方程组y x 4y x 2=-+⎧⎨=+⎩的解就是直线y =−x +4与y =x +2的交点坐标,又∵交点坐标为(1,3),∴原方程组的解是:13x y ==,. 故选:B .【点睛】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.。

一次函数试题及答案

一次函数试题及答案一、选择题(每题3分,共30分)1. 若函数\( y = 2x + 3 \)是一次函数,则\( y \)与\( x \)的关系是:A. 正比关系B. 反比关系C. 无关D. 无法确定答案:A2. 一次函数\( y = 3x - 4 \)的斜率是:A. 3B. -3C. 4D. -4答案:A3. 函数\( y = -2x + 5 \)与\( y = 2x - 5 \)的交点坐标是:A. (0, 5)B. (0, -5)C. (1, 3)D. (-1, 7)答案:A4. 一次函数\( y = 5x + 1 \)的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:B5. 若一次函数\( y = 2x + 3 \)的图象经过点(2, 7),则\( x \)的值为:A. 2B. 1C. 3D. 4答案:B6. 已知一次函数\( y = 3x - 6 \),当\( y \)增加6时,\( x \)的值:A. 增加2B. 减少2C. 增加1D. 减少1答案:A7. 函数\( y = -x + 2 \)的图象与\( y = x - 2 \)的图象关于:A. 原点对称B. x轴对称C. y轴对称D. 直线y=x对称答案:C8. 一次函数\( y = 2x - 1 \)的图象经过点(1, 1),则该函数的解析式为:A. \( y = 2x - 1 \)B. \( y = 2x + 1 \)C. \( y = 2x \)D. \( y = 2x - 2 \)答案:A9. 函数\( y = 2x + 1 \)与\( y = -2x + 1 \)的图象是:A. 相交B. 平行C. 重合D. 无法确定答案:B10. 一次函数\( y = 4x - 5 \)的图象与x轴的交点坐标是:A. (0, -5)B. (5, 0)C. (0, 5)D. (-5, 0)答案:D二、填空题(每题4分,共20分)1. 一次函数\( y = 3x + 2 \)的图象与y轴的交点坐标是\( \boxed{(0, 2)} \)。

《一次函数》专项练习和中考真题(含答案解析及点睛)

《1.等腰三角形底角与顶角之间的函数关系A .正比例函数 B .一次函数【答案】B【分析】根据一次函数的定义,可得答案【解析】设等腰三角形的底角为y ,顶角为所以,y=﹣12x+90°,即等腰三角形底角与【点睛】本题考查了实际问题与一次函数2.已知y 关于x 成正比例,且当x 时A .3 B .3-【答案】B【分析】先利用待定系数法求出y =【详解】设y kx =,Q 当2x =时,3y x ∴=-,∴当1x =时,3y =-【点睛】本题考查了待定系数法求正比例函点的坐标代入求出k 即可.3. 已知函数y =kx +b 的部分函数值如表所示A .x =2 B .x =3 C 【答案】A【解析】∵当x =0时,y =1,当x =1,y 当y =–3时,–2x +1=–3,解得:x =2,4.如图,直线y=kx+3经过点(2,0,A .x >2B .x <2 《一次函数》专项练习数关系是( ) C .反比例函数D .二次函数答案.顶角为x ,由题意,得x+2y=180, 底角与顶角之间的函数关系是一次函数关系,故选函数,根据题意正确列出函数关系式是解题的关键2=时,6y =-,则当1x =时,y 的值为 C .12D .12-3x -,然后计算1x =对应的函数值. 6y =-,26k ∴=-,解得3k =-,13⨯=-.故选B .比例函数的解析式:设正比例函数解析式为y kx k =表所示,则关于x 的方程kx +b +3=0的解是x … –2 –1 01… y…531 –1….x =–2 D .x =–3 =–1,∴,解得:,∴y =–,故关于x 的方程kx +b +3=0的解是x =2,故选A ),则关于x 的不等式kx+3>0的解集是( )C .x≥2 D .x≤211b k b =+=-⎧⎨⎩21k b =-=⎧⎨⎩故选B . 关键. ()0≠,然后把一个已知2x +1,.【答案】B【分析】直接利用函数图象判断不等式【解析】由一次函数图象可知:关于x的不【点睛】本题考查了一次函数的图象与性质等式之间的内在联系.5.如图,在平面直角坐标系中,直线l与直线l1在第一象限交于点C.若∠BOCAB【答案】B【分析】过C作CD⊥OA于D,利用直线3.依据CD∥BO,可得OD13=AOk的值.【解析】如图,过C作CD⊥OA于D.即A(,0),B(0,1),∴Rt△∵∠BOC=∠BCO,∴CB=BO=1,∵CD∥BO,∴OD13=AO=,得:23=,即k =B式kx+3>0的解集在x轴上方,进而得出结果.的不等式kx+3>0的解集是x<2;故选B.与性质和一元一次不等式及其解法,解题的关键是掌1:y=x+1与x轴,y轴分别交于点A和点BOC=∠BCO,则k的值为( )C D.直线l1:y=+1,即可得到A(,0),B(0=CD23=BO23=,进而得到C23,),.直线l1:y=+1中,令x=0,则y=1,令AOB中,AB==3.AC=2.CD23=BO23=,即C23,),把C23,.键是掌握一次函数与一元一次不B,直线l2:y=kx(k≠0),1),AB==,代入直线l2:y=kx,可得令y=0,则x=,)代入直线l2:y=kx,可【点睛】本题考查了两直线相交或平行问题组成的二元一次方程组的解.6.已知点A (-5,a ),B (4,b )在直线y =-3x 【答案】>【分析】先根据一次函数的解析式判断出函【解析】∵直线y=-3x+2中,k=-3<0,∵-5<4,∴a >b ,故答案为>.【点睛】本题考查了一次函数的性质,根据如果k>0,直线就从左往右上升,y 随7.如图,四边形ABCD 的顶点坐标分别ABCD 分成面积相等的两部分时,直线A .116105y x =+ B .23y =【答案】D【分析】由已知点可求四边形ABCD 分成y=-x+3,设过B 的直线l 为y=kx+b ,并求1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪⎪+⎝⎭⎝⎭,即可【解析】解:由()()4,0,2,1,A B ---∴四边形ABCD 分成面积(12AC =⨯设过B 的直线l 为y kx b =+,将点B 代入∴直线CD 与该直线的交点为45,k k -⎛+⎝∴1125173121k k k k --⎛⎫⎛=⨯-⨯+ ⎪ +⎝⎭⎝,∴直线解析式为5342y x =+;故选:【点睛】本题考查一次函数的解析式求法式的方法是解题的关键.行问题,两条直线的交点坐标,就是由这两条直线相+2上,则a ________b .(填“>”“<”或“=”号 断出函数的增减性,再比较出-5与4的大小即可解答,∴此函数是减函数, 根据题意判断出一次函数的增减性是解答此题的关x 的增大而增大,如果k<0,直线就从左往右下降分别()()()()4,0,2,1,3,0,0,3A B C D ---,当过点直线l 所表示的函数表达式为( ) 13x + C .1y x =+ D .54y x =+分成面积()113741422B AC y =⨯⨯+=⨯⨯=;并求出两条直线的交点,直线l 与x 轴的交点坐标即可求k 。

一次函数经典例题20题

一次函数经典例题20题(最新版)目录1.题目概述2.一次函数的基本概念3.一次函数的性质4.例题解析5.总结正文一次函数经典例题 20 题一次函数是数学中的基本概念之一,它在各个领域的数学问题中都有广泛的应用。

本文将通过 20 个经典例题,介绍一次函数的基本概念和性质,并解析如何解决一次函数的题目。

一、一次函数的基本概念一次函数是指形如 y=ax+b 的函数,其中 a 和 b 是常数,且 a 不等于 0。

在这个函数中,x 的次数为 1,因此称为一次函数。

其中,y 表示函数的输出,x 表示函数的输入,a 表示斜率,b 表示截距。

二、一次函数的性质1.斜率斜率是指函数图像在坐标系中的倾斜程度。

在一次函数 y=ax+b 中,斜率 a 表示函数图像的倾斜程度。

当 a>0 时,函数图像是向上倾斜的;当 a<0 时,函数图像是向下倾斜的。

2.截距截距是指函数图像与坐标轴的交点。

在一次函数 y=ax+b 中,截距 b表示函数图像与 y 轴的交点。

当 b>0 时,函数图像与 y 轴的交点在 y 轴的正半轴上;当 b<0 时,函数图像与 y 轴的交点在 y 轴的负半轴上。

3.函数的单调性一次函数的单调性是指函数值随着自变量的增大或减小而单调增加或单调减少的性质。

当斜率 a>0 时,函数图像是向上倾斜的,函数值随着 x 的增大而单调增加;当斜率 a<0 时,函数图像是向下倾斜的,函数值随着 x 的增大而单调减少。

三、例题解析以下是 20 个一次函数的经典例题及其解析:1.已知函数 y=2x+3,求当 x=2 时的函数值。

解:将 x=2 代入函数 y=2x+3 中,得到 y=2×2+3=7。

2.已知函数 y=-x+7,求当 x=5 时的函数值。

解:将 x=5 代入函数 y=-x+7 中,得到 y=-5+7=2。

3.已知函数 y=3x-2,求函数的斜率。

解:函数的斜率是 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数考点分析及典型试题及答案
一次函数的图象和性质
正比例函数的图象和性质
二、考点讲析
1.一次函数的意义及其图象和性质
⑴.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k ≠0)的形式,则称y是x 的一次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.
⑵.一次函数的图象:一次函数y=kx+b的图象是经过点(0,b),(-,0 )的一条直线,正比例函数y=kx的图象是经过原点(0,0)的一条直线,如下表所示.
⑶.一次函数的性质:y=kx+b(k、b为常数,k ≠0)当k >0时,y的值随x的值增大而增大;当k<0时,y
的值随x值的增大而减小.
⑷.直线y=kx+b(k、b为常数,k ≠0)时在坐标平面内的位置与k在的关系.
①直线经过第一、二、三象限(直线不经过第四象限);
②直线经过第一、三、四象限(直线不经过第二象限);
③直线经过第一、二、四象限(直线不经过第三象限);
④直线经过第二、三、四象限(直线不经过第一象限);
2.一次函数表达式的求法
⑴.待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知系数也称为待定系数。

⑵.用待定系数法求出函数表壳式的一般步骤:⑴写出函数表达式的一般形式;⑵把已知条件(自变量与函数的对应值)公共秩序函数表达式中,得到关于待定系数的议程或议程组;⑶解方程(组)求出待定系数的值,从而写出函数的表达式。

⑶.一次函数表达式的求法:确定一次函数表达式常用待定系数法,其中确定正比例函数表达式,只需一对x与y的值,确定一次函数表达式,需要两对x与y的值。

三、典型例题讲析
例1 选择题
(1)下面图像中,不可能是关于x的一次函数的图象的是()
(2)已知:,那么的图像一定不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
(3)已知直线与x轴的交点在x轴的正半轴,下列结论:①;②;
③;④,其中正确结论的个数是( )
A.1 B.2 C.3 D.4
(4)正比例函数的图象如图所示,则这个函数的解析式是()
A. B. C. D.
解:(1)由A可得故,∴A可能;
由B可得故,∴B可能;
由C可得此不等式组无解.故C不可能,答案应选C.
(2)由已知得三式相加得:

∴,故直线即为.
此直线不经过第四象限,故应选D.
(3)直线与x轴的交点坐标为:
即异号,
∴②、③正确,故应选B.
(4)∵正比例函数经过点(1,-1),
∴,故应选B.
说明:一次函数中的的符号决定着直线的大致位置,题(3)还可以通过的符号画草图,来判断各个结论的正确性,这类题型历来都是各地中考中的热点题型,同学们一定要熟练掌握.
例2 求下列一次函数的解析式:
(1)图像过点(1,-1)且与直线平行;
(2)图像和直线在y轴上相交于同一点,且过(2,-3)点.
解:(1)把变形为.
∵所求直线与平行,且过点(1,-1).
∴设所求的直线为,将代入,解得.
∴所求一次函数的解析式为.
(2)∵所求的一次函数的图像与直线在y轴上的交点相同.
∴可设所求的直线为.
把代入,求得.
∴所求一次函数的解析式为.
说明:如果两直线平行,则;如果两直线在
y轴上的交点相同,则.掌握以上两点,在求一次函数解析式时,有时很方便.
例3:已知一次函数.求:(1)m为何值时,y随x的增大而减小;(2)m,n满足什么条件时,函数图像与y轴的交点在x轴下方;(3)m,n分别取何值时,函数图像经过原点;(4)m,n满足什么条件时,函数图像不经过第二象限.
解:(1)∵y随x的增大而减小.
∴,即.
∴当时,y随x的增大而减小.
(2)令即
∴当时,函数图像与y轴交点在x轴下方.。

相关文档
最新文档