黑龙江省齐齐哈尔市2016年初中学业考试模拟数学试题(含答案)

合集下载

历年黑龙江省齐齐哈尔市中考数学试卷(含答案)

历年黑龙江省齐齐哈尔市中考数学试卷(含答案)

2017年黑龙江省齐齐哈尔市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣2017的绝对值是()A.﹣2017 B.﹣C.2017 D.2.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.3.(3分)作为“一带一路”倡议的重大先行项目,中国,巴基斯坦经济走廊建设进展快、成效显著,两年来,已有18个项目在建或建成,总投资额达185亿美元,185亿用科学记数法表示为()A.1.85×109B.1.85×1010C.1.85×1011D.1.85×10124.(3分)下列算式运算结果正确的是()A.(2x5)2=2x10 B.(﹣3)﹣2= C.(a+1)2=a2+1 D.a﹣(a﹣b)=﹣b 5.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个6.(3分)若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣17.(3分)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D.8.(3分)一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b等于()A.10 B.11 C.12 D.139.(3分)一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角度数为()A.120°B.180°C.240° D.300°10.(3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A.4个 B.3个 C.2个 D.1个二、填空题(本大题共9小题,每小题3分,共27分)11.(3分)在某次七年级期末测试中,甲、乙两个班的数学平均成绩都是89.5分,且方差分别为S甲2=0.15,S乙2=0.2,则成绩比较稳定的是班.12.(3分)在函数y=+x﹣2中,自变量x的取值范围是.13.(3分)矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件,使其成为正方形(只填一个即可)14.(3分)因式分解:4m2﹣36=.15.(3分)如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为.16.(3分)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.17.(3分)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为.18.(3分)如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于.19.(3分)如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为.三、解答题(共63分)20.(7分)先化简,再求值:•﹣(+1),其中x=2cos60°﹣3.21.(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC关于y轴对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3)求(2)中线段OA扫过的图形面积.22.(8分)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;=4S△COE,求P点坐标.(3)若点P在第一象限内的抛物线上,且S△ABP注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)23.(8分)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.24.(10分)为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动,某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:(1)表中a=,b=;(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第组;(4)请估计该校七年级学生日阅读量不足1小时的人数.25.(10分)“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人再次选择自行车作为出行工具,小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:(1)a=,b=,m=;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.26.(12分)如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA的长是关于x的一元二次方程x2﹣12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;(2)求证:△ADE≌△COE,并求出线段OE的长;(3)直接写出点D的坐标;(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.2017年黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•齐齐哈尔)﹣2017的绝对值是()A.﹣2017 B.﹣C.2017 D.【分析】根据绝对值的定义即可解题.【解答】解:∵|﹣2017|=2017,∴答案C正确,故选C.【点评】本题考查了绝对值的定义,绝对值是指一个数在数轴上所对应点到原点的距离.2.(3分)(2017•齐齐哈尔)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(3分)(2017•齐齐哈尔)作为“一带一路”倡议的重大先行项目,中国,巴基斯坦经济走廊建设进展快、成效显著,两年来,已有18个项目在建或建成,总投资额达185亿美元,185亿用科学记数法表示为()A.1.85×109B.1.85×1010C.1.85×1011D.1.85×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:185亿=1.85×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•齐齐哈尔)下列算式运算结果正确的是()A.(2x5)2=2x10 B.(﹣3)﹣2= C.(a+1)2=a2+1 D.a﹣(a﹣b)=﹣b【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,即可解题.【解答】解:A、(2x5)2=4x10,故A错误;B、(﹣3)﹣2==,故B正确;C、(a+1)2=a2+2a+1,故C错误;D、a﹣(a﹣b)=a﹣a+b=b,故D错误;故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.5.(3分)(2017•齐齐哈尔)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个【分析】设买篮球m个,则买足球(50﹣m)个,根据购买足球和篮球的总费用不超过3000元建立不等式求出其解即可.【解答】解:设买篮球m个,则买足球(50﹣m)个,根据题意得:80m+50(50﹣m)≤3000,解得:m≤16,∵m为整数,∴m最大取16,∴最多可以买16个篮球.故选:A.【点评】本题考查了列一元一次不等式解实际问题的运用,解答本题时找到建立不等式的不等关系是解答本题的关键.6.(3分)(2017•齐齐哈尔)若关于x的方程kx2﹣3x﹣=0有实数根,则实数k 的取值范围是()A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣1【分析】讨论:当k=0时,方程化为﹣3x﹣=0,方程有一个实数解;当k≠0时,△=(﹣3)2﹣4k•(﹣)≥0,然后求出两个中情况下的k的公共部分即可.【解答】解:当k=0时,方程化为﹣3x﹣=0,解得x=;当k≠0时,△=(﹣3)2﹣4k•(﹣)≥0,解得k≥﹣1,所以k的范围为k≥﹣1.故选C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•齐齐哈尔)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D.【分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.【解答】解:由题意得,2x+y=10,所以,y=﹣2x+10,由三角形的三边关系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式组的解集是2.5<x<5,正确反映y与x之间函数关系的图象是D选项图象.故选D.【点评】本题考查了一次函数图象,三角形的三边关系,等腰三角形的性质,难点在于利用三角形的三边关系求自变量的取值范围.8.(3分)(2017•齐齐哈尔)一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b等于()A.10 B.11 C.12 D.13【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,左边后排最多有3个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最多7块,结合主视图和俯视图可知,左边后排最少有1个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最少5块,a+b=12,故选:C.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.9.(3分)(2017•齐齐哈尔)一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角度数为()A.120°B.180°C.240° D.300°【分析】根据圆锥的侧面积是底面积的3倍得到圆锥底面半径和母线长的关系,根据圆锥侧面展开图的弧长=底面周长即可求得圆锥侧面展开图的圆心角度数.【解答】解:设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.由题意得S=πr2,底面面积l底面周长=2πr,S扇形=3S底面面积=3πr2,l扇形弧长=l底面周长=2πr.由S扇形=l扇形弧长×R得3πr2=×2πr×R,故R=3r.由l扇形弧长=得:2πr=解得n=120°.故选A.【点评】本题考查了圆锥的计算,通过圆锥的底面和侧面,结合有关圆、扇形的一些计算公式,重点考查空间想象能力、综合应用能力.熟记圆的面积和周长公式、扇形的面积和两个弧长公式并灵活应用是解答本题的关键.10.(3分)(2017•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A.4个 B.3个 C.2个 D.1个【分析】根据抛物线的对称轴可判断①,由抛物线与x轴的交点及抛物线的对称性可判断②,由x=﹣1时y>0可判断③,由x=﹣2时函数取得最大值可判断④,根据抛物线的开口向下且对称轴为直线x=﹣2知图象上离对称轴水平距离越小函数值越大,可判断⑤.【解答】解:∵抛物线的对称轴为直线x=﹣=﹣2,∴4a﹣b=0,所以①正确;∵与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴抛物线与y轴的交点在y轴的负半轴,即c<0,故②正确;∵由②知,x=﹣1时y>0,且b=4a,即a﹣b+c=a﹣4a+c=﹣3a+c>0,所以③正确;由函数图象知当x=﹣2时,函数取得最大值,∴4a﹣2b+c≥at2+bt+c,即4a﹣2b≥at2+bt(t为实数),故④错误;∵抛物线的开口向下,且对称轴为直线x=﹣2,∴抛物线上离对称轴水平距离越小,函数值越大,∴y1<y3<y2,故⑤错误;故选:B.【点评】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本大题共9小题,每小题3分,共27分)11.(3分)(2017•齐齐哈尔)在某次七年级期末测试中,甲、乙两个班的数学平均成绩都是89.5分,且方差分别为S甲2=0.15,S乙2=0.2,则成绩比较稳定的是甲班.【分析】根据方差的意义判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立【解答】解:∵s甲2<s乙2,∴成绩相对稳定的是甲,故答案为:甲.【点评】本题考查方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.(3分)(2017•齐齐哈尔)在函数y=+x﹣2中,自变量x的取值范围是x ≥﹣4且x≠0.【分析】根据二次根是有意义的条件:被开方数大于等于0进行解答即可.【解答】解:由x+4≥0且x≠0,得x≥﹣4且x≠0;故答案为x≥﹣4且x≠0.【点评】本题考查了函数自变量的取值范围问题,掌握二次根是有意义的条件:被开方数大于等于0是解题的关键.13.(3分)(2017•齐齐哈尔)矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AB=BC(答案不唯一),使其成为正方形(只填一个即可)【分析】此题是一道开放型的题目答案不唯一,证出四边形ABCD是菱形,由正方形的判定方法即可得出结论.【解答】解:添加条件:AB=BC,理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是菱形,∴四边形ABCD是正方形,故答案为:AB=BC(答案不唯一).【点评】本题考查了矩形的性质,菱形的判定,正方形的判定的应用,能熟记正方形的判定定理是解此题的关键,注意:有一组邻边相等的矩形是正方形,对角线互相垂直的矩形是正方形.14.(3分)(2017•齐齐哈尔)因式分解:4m2﹣36=4(m+3)(m﹣3).【分析】原式提取4,再利用平方差公式计算即可得到结果.【解答】解:原式=4(m2﹣9)=4(m+3)(m﹣3),故答案为:4(m+3)(m﹣3)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.(3分)(2017•齐齐哈尔)如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为80°.【分析】根据切线的性质得出∠C=90°,再由已知得出∠ABC,由外角的性质得出∠COD的度数.【解答】解:∵AC是⊙O的切线,∴∠C=90°,∵∠A=50°,∴∠B=40°,∵OB=OD,∴∠B=∠ODB=40°,∴∠COD=2×40°=80°,故答案为80°.【点评】本题考查了切线的性质,掌握切线的性质、直角三角形的性质以及外角的性质是解题的关键.16.(3分)(2017•齐齐哈尔)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是10cm,2cm,4cm.【分析】利用等腰三角形的性质,进而重新组合得出平行四边形,进而利用勾股定理求出对角线的长.【解答】解:如图:,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10cm,BC=12cm,∴BD=DC=6cm,∴AD=8cm,如图①所示:可得四边形ACBD是矩形,则其对角线长为:10cm,如图②所示:AD=8cm,连接BC,过点C作CE⊥BD于点E,则EC=8cm,BE=2BD=12cm,则BC=4cm,如图③所示:BD=6cm,由题意可得:AE=6cm,EC=2BE=16cm,故AC==2cm,故答案为:10cm,2cm,4cm.【点评】此题主要考查了图形的剪拼以及勾股定理和等腰三角形的性质等知识,利用分类讨论得出是解题关键.17.(3分)(2017•齐齐哈尔)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为113°或92°.【分析】由△ACD是等腰三角形,∠ADC>∠BCD,推出∠ADC>∠A,即AC≠CD,分两种情形讨论①当AC=AD时,②当DA=DC时,分别求解即可.【解答】解:∵△BCD∽△BAC,∴∠BCD=∠A=46°,∵△ACD是等腰三角形,∵∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD,①当AC=AD时,∠ACD=∠ADC=(180°﹣46°)=67°,∴∠ACB=67°+46°=113°,②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°,故答案为113°或92°.【点评】本题考查相似三角形的性质、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.18.(3分)(2017•齐齐哈尔)如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于﹣24.=2S△CDO,再根据tan∠AOC的值即可求得菱形的边长,即【分析】易证S菱形ABCO可求得点C的坐标,代入反比例函数即可解题.【解答】解:作DE∥AO,CF⊥AO,设CF=4x,∵四边形OABC为菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴S=S△DEO,△ADO=S△CDE,同理S△BCD=S△ADO+S△DEO+S△BCD+S△CDE,∵S菱形ABCO∴S=2(S△DEO+S△CDE)=2S△CDO=40,菱形ABCO∵tan∠AOC=,∴OF=3x,∴OC==5x,∴OA=OC=5x,=AO•CF=20x2,解得:x=,∵S菱形ABCO∴OF=,CF=,∴点C坐标为(﹣,),∵反比例函数y=的图象经过点C,∴代入点C得:k=﹣24,故答案为﹣24.=2S 【点评】本题考查了菱形的性质,考查了菱形面积的计算,本题中求得S菱形ABCO是解题的关键.△CDO19.(3分)(2017•齐齐哈尔)如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为(0,()2016)或(0,21008).【分析】根据等腰直角三角形的性质得到OA1=1,OA2=,OA3=()2,…,OA2017=()2016,再利用A1、A2、A3、…,每8个一循环,再回到y轴的正半轴的特点可得到点A2017在y轴的正半轴上,即可确定点A2017的坐标.【解答】解:∵等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,∴OA1=1,OA2=,OA3=()2,…,OA2017=()2016,∵A1、A2、A3、…,每8个一循环,再回到y轴的正半轴,2017÷8=252…1,∴点A2017在第一象限,∵OA2017=()2016,∴点A2017的坐标为(0,()2016)即(0,21008).故答案为(0,()2016)或(0,21008).【点评】本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的倍.也考查了直角坐标系中各象限内点的坐标特征.三、解答题(共63分)20.(7分)(2017•齐齐哈尔)先化简,再求值:•﹣(+1),其中x=2cos60°﹣3.【分析】根据分式的乘法和减法可以化简题目中的式子,然后将x的值代入即可解答本题.【解答】解:•﹣(+1)===,当x=2cos60°﹣3=2×﹣3=1﹣3=﹣2时,原式=.【点评】本题考查分式的化简求值、特殊角的三角函数值,解答本题的关键是明确分式化简求值的方法.21.(8分)(2017•齐齐哈尔)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C (﹣2,1).(1)画出△ABC关于y轴对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3)求(2)中线段OA扫过的图形面积.【分析】(1)分别作出各点关于y轴的对称点,再顺次连接即可;(2)根据图形旋转的性质画出旋转后的图形△A2B2C2即可;(3)利用扇形的面积公式即可得出结论.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)∵OA==5,∴线段OA扫过的图形面积==π.【点评】本题考查的是作图﹣旋转变换,熟知图形旋转不变性的性质是解答此题的关键.22.(8分)(2017•齐齐哈尔)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D 是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;=4S△COE,求P点坐标.(3)若点P在第一象限内的抛物线上,且S△ABP注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)【分析】(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数b、c 的值,进而可得到抛物线的对称轴方程;(2)令x=0,可得C点坐标,将函数解析式配方即得抛物线的顶点C的坐标;(3)设P(x,y)(x>0,y>0),根据题意列出方程即可求得y,即得D点坐标.【解答】解:(1)由点A(﹣1,0)和点B(3,0)得,解得:,∴抛物线的解析式为y=﹣x2+2x+3;(2)令x=0,则y=3,∴C(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4);(3)设P(x,y)(x>0,y>0),S△COE=×1×3=,S△ABP=×4y=2y,∵S=4S△COE,∴2y=4×,△ABP∴y=3,∴﹣x2+2x+3=3,解得:x1=0(不合题意,舍去),x2=2,∴P(2,3).【点评】此题主要考查了二次函数解析式的确定、抛物线的顶点坐标求法,图形=4S△COE列出方程是解决问题的关键.面积的求法等知识,根据S△ABP23.(8分)(2017•齐齐哈尔)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.【分析】(1)证明△BDG≌△ADC,根据全等三角形的性质、直角三角形的性质证明;(2)根据直角三角形的性质分别求出DE、DF,根据勾股定理计算即可.【解答】(1)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°,在△BDG和△ADC中,,∴△BDG≌△ADC,∴BG=AC,∠BGD=∠C,∵∠ADB=∠ADC=90°,E,F分别是BG,AC的中点,∴DE=BG=EG,DF=AC=AF,∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,∴∠EDG+∠FDA=90°,∴DE⊥DF;(2)解:∵AC=10,∴DE=DF=5,由勾股定理得,EF==5.【点评】本题考查的是全等三角形的判定和性质、直角三角形的性质以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.24.(10分)(2017•齐齐哈尔)为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动,某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:(1)表中a=70,b=0.40;(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第3组;(4)请估计该校七年级学生日阅读量不足1小时的人数.【分析】(1)根据“频数÷百分比=数据总数”先计算总数为200人,再根据表中的数分别求a和b;(2)补全直方图;(3)第100和第101个学生读书时间都在第3组;(4)前两组的读书时间不足1小时,用总数2000乘以这两组的百分比的和即可.【解答】解:(1)10÷0.05=200,∴a=200×0.35=70,b=80÷200=0.40,故答案为:70,0.40;(2)补全直方图,如下图:(3)样本中一共有200人,中位数是第100和101人的读书时间的平均数,即第3组:1~1.5小时;故答案为:3;(4)1200×(0.05+0.1)=1200×0.15=180(人),答:估计该校七年级学生日阅读量不足1小时的人数为180人.【点评】本题主要考查频率分布直方图和频率分布表的知识和分析问题以及解决问题的能力,解题的关键是能够读懂统计图,并从中读出有关信息.25.(10分)(2017•齐齐哈尔)“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人再次选择自行车作为出行工具,小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:(1)a=10,b=15,m=200;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.【分析】(1)根据时间=路程÷速度,即可求出a值,结合休息的时间为5分钟,即可得出b值,再根据速度=路程÷时间,即可求出m的值;(2)根据数量关系找出线段BC、OD所在直线的函数解析式,联立两函数解析式成方程组,通过解方程组求出交点的坐标,再用3000去减交点的纵坐标,即可得出结论;(3)根据(2)结论结合二者之间相距100米,即可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(4)分别求出当OD过点B、C时,小军的速度,结合图形,利用数形结合即可得出结论.【解答】解:(1)1500÷150=10(分钟),10+5=15(分钟),(3000﹣1500)÷(22.5﹣15)=200(米/分).故答案为:10;15;200.(2)线段BC所在直线的函数解析式为y=1500+200(x﹣15)=200x﹣1500;线段OD所在的直线的函数解析式为y=120x.联立两函数解析式成方程组,,解得:,∴3000﹣2250=750(米).答:小军在途中与爸爸第二次相遇时,距图书馆的距离是750米.(3)根据题意得:|200x﹣1500﹣120x|=100,解得:x1==17.5,x2=20.答:爸爸自第二次出发至到达图书馆前,17.5分钟时和20分钟时与小军相距100米.(4)当线段OD过点B时,小军的速度为1500÷15=100(米/分钟);当线段OD过点C时,小军的速度为3000÷22.5=(米/分钟).结合图形可知,当100<v<时,小军在途中与爸爸恰好相遇两次(不包括家、图书馆两地).【点评】本题考查了一次函数的应用、解含绝对值符号的一元一次方程以及解二元一次方程组,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系找出线段BC、OD所在直线的函数解析式;(3)结合(2)找出关于x的含绝对值符号的一元一次方程;(4)画出图形,利用数形结合解决问题.26.(12分)(2017•齐齐哈尔)如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA的长是关于x的一元二次方程x2﹣12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;。

2023年黑龙江省齐齐哈尔市数学中考真题(含答案)

2023年黑龙江省齐齐哈尔市数学中考真题(含答案)

二〇二三年齐齐哈尔市初中学业考试数学试卷考生注意:1. 考试时间120分钟2. 全卷共三道大题,总分120分3. 使用答题卡的考生,请将答案填写在答题卡的指定位置一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1. -9的相反数是()A. -9B. 9C.D.2. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3. 下列计算正确的是()A. B. C. D.4. 如图,直线,分别与直线l交于点A,B,把一块含角的三角尺按如图所示的位置摆放,若,则的度数是()A. B. C. D.5. 如图,若几何体是由六个棱长为1的正方体组合而成的,则该几何体左视图的面积是()A. 2B. 3C. 4D. 56. 如果关于x的分式方程的解是负数,那么实数m的取值范围是()A. B. 且 C. D. 且7. 某校举办文艺汇演,在主持人选拔环节中,有一名男同学和三名女同学表现优异.若从以上四名同学中随机抽取两名同学担任主持人,则刚好抽中一名男同学和一名女同学的概率是()A. B. C. D.8. 如图,在正方形ABCD中,,动点M,N分别从点A,B同时出发,沿射线AB,射线BC的方向匀速运动,且速度的大小相等,连接DM,MN,ND.设点M运动的路程为,的面积为S,下列图象中能反映S与x之间函数关系的是()A. B. C. D.9. 为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为150cm的导线,将其全部截成10cm和20cm两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共有()A. 5种B. 6种C. 7种D. 8种10. 如图,二次函数图象的一部分与x轴的一个交点坐标为,对称轴为直线,结合图象给出下列结论:①;②;③;④关于x的一元二次方程有两个不相等的实数根;⑤若点,均在该二次函数图象上,则.其中正确结论的个数是()A. 4B. 3C. 2D. 1二、填空题(每小题3分,满分21分)11. 中国经济韧性强、潜力大、活力足.据文化和旅游部统计,2023年春节假期全国国内旅游出游达到308000000人次,同比增长了23.1%.将308000000用科学记数法表示为______.12. 如图,在四边形ABCD中,,于点O.请添加一个条件:______,使四边形ABCD成为菱形.13. 在函数中,自变量x的取值范围是______.14. 若圆锥的底面半径长2cm,母线长3cm,则该圆锥的侧面积为______(结果保留).15. 如图,点A在反比例函数图象的一支上,点B在反比例函数图象的一支上,点C,D在x轴上,若四边形ABCD是面积为9的正方形,则实数k的值为______.16. 矩形纸片ABCD中,,,点M在AD边所在的直线上,且,将矩形纸片ABCD折叠,使点B与点M重合,折痕与AD,BC分别交于点E,F,则线段EF的长度为______.17. 如图,在平面直角坐标系中,点A在y轴上,点B在x轴上,,连接AB,过点O作于点,过点作轴于点;过点作于点,过点作轴于点;过点作于点,过点作轴于点;…;按照如此规律操作下去,则点的坐标为______.三、解答题(本题共7道大题,共69分)18.(本题共2个小题,第(1)题6分,第(2)题4分,共10分)(1)计算:(2)分解因式:19.(本题满分5分)解方程:20.(本题满分8分)为了解学生完成书面作业所用时间的情况,进一步优化作业管理,某中学从全校学生中随机抽取部分学生,对他们一周平均每天完成书面作业的时间t(单位:分钟)进行调查.将调查数据进行整理后分为五组:A组“”;B组“”;C组“”;D组“”;E组“”.现将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次调查的样本容量是______,请补全条形统计图;(2)在扇形统计图中,A组对应的圆心角的度数是______°,本次调查数据的中位数落在______组内;(3)若该中学有2000名学生,请你估计该中学一周平均每天完成书面作业不超过90分钟的学生有多少人?21.(本题满分10分)如图,在中,,AD平分交BC于点D,点E是斜边AC上一点,以AE为直径的经过点D,交AB于点F,连接DF.(1)求证:BC是的切线;(2)若,,求图中阴影部分的面积(结果保留).22.(本题满分10分)一辆巡逻车从A地出发沿一条笔直的公路匀速驶向B地,小时后,一辆货车从A地出发,沿同一路线每小时行驶80千米匀速驶向B地,货车到达B地填装货物耗时15分钟,然后立即按原路匀速返回A地.巡逻车、货车离A地的距离y(千米)与货车出发时间x(小时)之间的函数关系如图所示,请结合图象解答下列问题:(1)A,B两地之间的距离是______千米,______;(2)求线段FG所在直线的函数解析式;(3)货车出发多少小时两车相距15千米?(直接写出答案即可)23. 综合与实践(本题满分12分)数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在和中,,,,连接BE,CF,延长BE交CF于点D.则BE与CF的数量关系:______,______°;(2)类比探究:如图2,在和中,,,,连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及的度数,并说明理由;(3)拓展延伸:如图3,和均为等腰直角三角形,,连接BE,CF,且点B,E,F在一条直线上,过点A作,垂足为点M.则BF,CF,AM之间的数量关系:______;(4)实践应用:正方形ABCD中,,若平面内存在点P满足,,则______.24. 综合与探究(本题满分14分)如图,抛物线上的点A,C坐标分别为,,抛物线与x轴负半轴交于点B,点M为y轴负半轴上一点,且,连接AC,CM.(1)求点M的坐标及抛物线的解析式;(2)点P是抛物线位于第一象限图象上的动点,连接AP,CP,当时,求点P的坐标;(3)点D是线段BC(包含点B,C)上的动点,过点D作x轴的垂线,交抛物线于点Q,交直线CM于点N,若以点Q,N,C为顶点的三角形与相似,请直接写出点Q的坐标;(4)将抛物线沿x轴的负方向平移得到新抛物线,点A的对应点为点,点C的对应点为点,在抛物线平移过程中,当的值最小时,新抛物线的顶点坐标为______,的最小值为______.二〇二三年齐齐哈尔市初中学业考试数学试题参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)12345678910B DC B CD A A C B二、填空题(每小题3分,满分21分)11.12. (或或等)(只需写出一个条件即可,正确即得分)13. 且14. 15. -616. 或(只有一个答案且正确得2分,出现错误答案不得分)17. (形式可以不同,正确即得分)三、解答题(满分69分)18.(本题共2个小题,满分10分)(1)解:原式……每式正确得1分,共4分……2分(2)解:原式……2分……2分19. 解:……3分,……2分(各种方法均可,若只解出一个正确答案得2分)20.(本题满分8分)(1)50……1分(2)如图所示……2分(说明:画图正确得1分,标记数字正确得1分)(3)36……1分C……2分(4)(人)或(人)……1分答:估计该中学一周平均每天完成书面作业不超过90分钟的学生有1920人.……1分21.(本题满分10分)(1)证明:连接OD……1分∵OA,OD是的半径,∴,∴,∵AD平分,∴,∴,∴……2分∴,∴于点D,又∵OD为的半径,∴BC是的切线.……2分(2)解:连接OF,DE……1分∵在中,,,∴,,∵,∴,∵AE是的直径,∴,∵AD平分,∴,在中,,∴,∴……2分∵AD平分,∴,∵,∴是等边三角形,∴……1分∵,∴,∴……1分22.(本题满分10分)(1)60,1……2分(2)设线段FG所在直线的解析式为……1分将,……2分代入,得……1分解得,∴线段FG所在直线的函数解析式为……1分(3)小时,小时,小时……3分(只要有1个正确答案得1分;只要有2个正确答案得2分;只有3个正确答案得3分;除3个正确答案外,还有其它错误答案得2分)23. 综合与实践(本题满分12分)(1),30……2分(2)答:,……2分证明:∵,∴,即,又∵,,∴……1分∴,……1分∵,,∴……1分∴……2分(3)……1分(4)或……2分(只要有1个正确答案得1分;只有2个正确答案得2分;除2个正确答案外,还有其它错误答案得1分)24. 综合与探究(本题满分14分)(1)解:∵点M在y轴负半轴且,∴……1分将,代入,得……1分解得……1分∴抛物线的解析式为……1分(2)解:过点P作轴于点F,交线段AC于点E,……1分设直线AC的解析式为,将,代入,得,解得,∴直线AC的解析式为……1分设点P的横坐标为……1分则,,∴……1分∵,∴,解得……1分∴……1分(3),……2分(只要有1个正确答案得1分;只有2个正确答案得2分;除2个正确答案外,还有其它错误答案得1分)(4),……2分说明:以上各题,若用其它方法作答,只要正确,依据步骤可酌情给分.。

2024年黑龙江省齐齐哈尔市中考数学试卷及答案解析

2024年黑龙江省齐齐哈尔市中考数学试卷及答案解析

2024年黑龙江省齐齐哈尔市中考数学试卷一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.(3分)﹣的相反数是()A.5B.﹣5C.D.﹣2.(3分)下列美术字中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)下列计算正确的是()A.4a2+2a2=6a4B.5a•2a=10a C.a6÷a2=a3D.(﹣a2)2=a44.(3分)将一个含30°角的三角尺和直尺如图放置,若∠1=50°,则∠2的度数是()A.30°B.40°C.50°D.60°5.(3分)如图,若几何体是由5个棱长为1的小正方体组合而成的,则该几何体左视图与俯视图的面积和是()A.6B.7C.8D.96.(3分)如果关于x的分式方程﹣=0的解是负数,那么实数m的取值范围是()A.m<1且m≠0B.m<1C.m>1D.m<1且m≠﹣17.(3分)六月份,在“阳光大课间”活动中,某校设计了“篮球、足球、排球、羽毛球”四种球类运动项目,且每名学生在一个大课间只能选择参加一种运动项目,则甲、乙两名学生在一个大课间参加同种球类运动项目的概率是()A.B.C.D.8.(3分)校团委开展以“我爱读书”为主题的演讲比赛活动,为奖励表现突出的学生,计划拿出200元钱全部用于购买单价分别为8元和10元的两种笔记本(两种都要购买)作为奖品,则购买方案有()A.5种B.4种C.3种D.2种9.(3分)如图,在等腰Rt △ABC 中,∠BAC =90°,AB =12,动点E ,F 同时从点A 出发,分别沿射线AB 和射线AC 的方向匀速运动,且速度大小相同,当点E 停止运动时,点F 也随之停止运动,连接EF ,以EF 为边向下做正方形EFGH ,设点E 运动的路程为x (0<x <12),正方形EFGH 和等腰Rt △ABC 重合部分的面积为y .下列图象能反映y 与x 之间函数关系的是()A .B .C .D .10.(3分)如图,二次函数y =ax 2+bx +2(a ≠0)的图象与x 轴交于(﹣1,0),(x 1,0),其中2<x 1<3.结合图象给出下列结论:①ab >0;②a ﹣b =﹣2;③当x >1时,y 随x 的增大而减小;④关于x 的一元二次方程ax 2+bx +2=0(a ≠0)的另一个根是﹣;⑤b 的取值范围为1<b <.其中正确结论的个数是()A .2B .3C .4D .5二、填空题(每小题3分,满分21分)11.(3分)共青团中央发布数据显示:截至2023年12月底,全国共有共青团员7416.7万名.将7416.7万用科学记数法表示为.12.(3分)如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴正半轴于点M,交y 轴正半轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第一象限交于点H,画射线OH,若H(2a﹣1,a+1),则a=.13.(3分)在函数y=+中,自变量x的取值范围是.14.(3分)若圆锥的底面半径是1cm,它的侧面展开图的圆心角是直角,则该圆锥的高为cm.15.(3分)如图,反比例函数y=(x<0)的图象经过平行四边形ABCO的顶点A,OC在x轴上,若点B(﹣1,3),S▱ABCO=3,则实数k的值为.16.(3分)已知矩形纸片ABCD,AB=5,BC=4,点P在边BC上,连接AP,将△ABP沿AP所在的直线折叠,点B的对应点为B′,把纸片展平,连接BB′,CB′,当△BCB′为直角三角形时,线段CP 的长为.17.(3分)如图,数学活动小组在用几何画板绘制几何图形时,发现了如“花朵”形的美丽图案,他们将等腰三角形OBC置于平面直角坐标系中,点O的坐标为(0,0),点B的坐标为(1,0),点C在第一象限,∠OBC=120°.将△OBC沿x轴正方向作无滑动滚动,使它的三边依次与x轴重合,第一次滚动后,点O的对应点为O′,点C的对应点为C′,OC与O′C′的交点为A1,称点A1为第一个“花朵”的花心,点A2为第二个“花朵”的花心;……;按此规律,△OBC滚动2024次后停止滚动,则最后一个“花朵”的花心的坐标为.三、解答题(本题共7道大题,共69分)18.(10分)(1)计算:+|﹣4cos60°|﹣(π﹣5)0+()﹣2;(2)分解因式:2a3﹣8ab2.19.(5分)解方程:x2﹣5x+6=0.20.(8分)为提高学生的环保意识,某校举行了“爱护环境,人人有责”环保知识竞赛,对收集到的数据进行了整理、描述和分析.【收集数据】随机抽取部分学生的竞赛成绩组成一个样本.【整理数据】将学生竞赛成绩的样本数据分成A,B,C,D四组进行整理.(满分100分,所有竞赛成绩均不低于60分)如表:组别A B C D成绩(x/分)60≤x<7070≤x<8080≤x<9090≤x≤100人数(人)m94n16【描述数据】根据竞赛成绩绘制了如下两幅不完整的统计图.【分析数据】根据以上信息,解答下列问题:(1)填空:m=,n=;(2)请补全条形统计图;(3)扇形统计图中,C组对应的圆心角的度数是°;(4)若竞赛成绩80分以上(含80分)为优秀,请你估计该校参加竞赛的2000名学生中成绩为优秀的人数.21.(10分)如图,△ABC内接于⊙O,AB为⊙O的直径,CD⊥AB于点D,将△CDB沿BC所在的直线翻折,得到△CEB,点D的对应点为E,延长EC交BA的延长线于点F.(1)求证:CF是⊙O的切线;(2)若sin∠CFB=,AB=8,求图中阴影部分的面积.22.(10分)领航无人机表演团队进行无人机表演训练,甲无人机以a米/秒的速度从地面起飞,乙无人机从距离地面20米高的楼顶起飞,甲、乙两架无人机同时匀速上升,6秒时甲无人机到达训练计划指定的高度停止上升开始表演,完成表演动作后,按原速继续飞行上升,当甲、乙无人机按照训练计划准时到达距离地面的高度为96米时,进行了时长为t秒的联合表演,表演完成后以相同的速度大小同时返回地面.甲、乙两架无人机所在的位置距离地面的高度y(米)与无人机飞行的时间x(秒)之间的函数关系如图所示.请结合图象解答下列问题:(1)a=米/秒,t=秒;(2)求线段MN所在直线的函数解析式;(3)两架无人机表演训练到多少秒时,它们距离地面的高度差为12米?(直接写出答案即可)23.(12分)综合与实践如图1,这个图案是3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,受这幅图的启发,数学兴趣小组建立了“一线三直角模型”.如图2,在△ABC中,∠A=90°,将线段BC绕点B顺时针旋转90°得到线段BD,作DE⊥AB交AB的延长线于点E.(1)【观察感知】如图2,通过观察,线段AB与DE的数量关系是;(2)【问题解决】如图3,连接CD并延长交AB的延长线于点F,若AB=2,AC=6,求△BDF的面积;(3)【类比迁移】在(2)的条件下,连接CE交BD于点N,则=;(4)【拓展延伸】在(2)的条件下,在直线AB上找点P,使tan∠BCP=,请直接写出线段AP的长度.24.(14分)综合与探究如图,在平面直角坐标系中,已知直线y=x﹣2与x轴交于点A,与y轴交于点C,过A,C两点的抛物线y=ax2+bx+c(a≠0)与x轴的另一个交点为点B(﹣1,0),点P是抛物线位于第四象限图象上的动点,过点P分别作x轴和y轴的平行线,分别交直线AC于点E,点F.(1)求抛物线的解析式;(2)点D是x轴上的任意一点,若△ACD是以AC为腰的等腰三角形,请直接写出点D的坐标;(3)当EF=AC时,求点P的坐标;(4)在(3)的条件下,若点N是y轴上的一个动点,过点N作抛物线对称轴的垂线,垂足为M,连接NA,MP,则NA+MP的最小值为.2024年黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.【分析】根据相反数的定义,即可解答.【解答】解:﹣的相反数是,故选:C.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.2.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A.是轴对称图形,不是中心对称图形.故本选项不合题意;B.是轴对称图形,不是中心对称图形.故本选项不合题意;C.是轴对称图形,不是中心对称图形.故本选项不合题意;D.既是轴对称图形又是中心对称图形.故本选项符合题意.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【分析】根据合并同类项、单项式乘单项式、同底数幂相除及幂的乘方与积的乘方进行计算,逐一判断即可.【解答】解:A.4a2+2a2=6a2,故本选项不符合题意;B.5a•2a=10a2,故本选项不符合题意;C.a6÷a2=a4,故本选项不符合题意;D.(﹣a2)2=a4,故本选项符合题意;故选:D.【点评】本题主要考查合并同类项、单项式乘单项式、同底数幂相除及幂的乘方与积的乘方,熟练掌握以上知识点是解题的关键.4.【分析】由对顶角的性质得到∠3=∠1=50°,∠2=∠4,求出∠4=90°﹣∠3=40°,即可得到∠2的度数.【解答】解:∵∠3=∠1=50°,∴∠4=90°﹣∠3=40°,∴∠2=∠4=40°.故选:B.【点评】本题考查对顶角,关键是掌握对顶角的相等.5.【分析】左视图是从物体的左面看得到的视图;俯视图是从上面看得到的视图.【解答】解:左视图的底层是两个正方形,上层的左边是一个正方形,故左视图的面积为3;俯视图的底层是一个正方形,上层是三个正方形,故俯视图的面积为4;所以该几何体左视图与俯视图的面积和是7.故选:B.【点评】此题主要考查了简单组合体的三视图,利用三视图的定义是解题关键.6.【分析】先解分式方程,然后根据关于x的分式方程﹣=0的解是负数,分母不为0,列出关于m 的不等式,解不等式即可.【解答】解:,x+1﹣mx=0,x﹣mx=﹣1,(1﹣m)x=﹣1,,∵关于x的分式方程﹣=0的解是负数,∴m﹣1<0且m﹣1≠﹣1,解得:m<1且m≠0,故选:A.【点评】本题主要考查了分式方程的解和解一元一次不等式,解题关键是熟练掌握解分式方程和一元一次不等式的一般步骤.7.【分析】列表可得出所有等可能的结果数以及甲、乙两名学生在一个大课间参加同种球类运动项目的结果数,再利用概率公式可得出答案.【解答】解:列表如下:篮球足球排球羽毛球篮球(篮球,篮球)(篮球,足球)(篮球,排球)(篮球,羽毛球)足球(足球,篮球)(足球,足球)(足球,排球)(足球,羽毛球)排球(排球,篮球)(排球,足球)(排球,排球)(排球,羽毛球)羽毛球(羽毛球,篮球)(羽毛球,足球)(羽毛球,排球)(羽毛球,羽毛球)共有16种等可能的结果,其中甲、乙两名学生在一个大课间参加同种球类运动项目的结果有4种,∴甲、乙两名学生在一个大课间参加同种球类运动项目的概率为.故选:C.【点评】本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.8.【分析】设购买8元的笔记本x件,10元的笔记本y件,根据计划拿出200元钱全部用于购买单价分别为8元和10元的两种笔记本(两种都要购买)作为奖品,列出二元一次方程,求出正整数解即可.【解答】解:设购买8元的笔记本x件,10元的笔记本y件,依题意得:8x+10y=200,整理得:y=20﹣x,∵x、y均为正整数,∴或或或,∴购买方案有4种,故选:B.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.9.【分析】在解题之前我们一定要对此类面积问题的动点函数图象有判断方法,切不可小题大作,去把每一个解析式求出来再判断,那是此类题型最不优先考虑的解法,面积问题函数图象判断方法:①底和高一个是定值一个是变量,则图象是一次函数,如果变量是增加的,则是y随x增大而增大的一次函数;如果变量是减小的,则是y随x增大而减小的一次函数;②边底和高两个都是变量,则函数图象一定是二次函数,两个变量同增或同减,则是开口向上的二次函数;两个变量一增一减,则是开口向下的二次函数.再运用以上方法基本上可以快速定位答案.【解答】解:在解题之前我们一定要对此类面积问题的动点函数图象有判断方法,切不可小题大作,去把每一个解析式求出来再判断,那是此类题型最不优先考虑的解法,面积问题函数图象判断方法:①底和高一个是定值一个是变量,则图象是一次函数,如果变量是增加的,则是y随x增大而增大的一次函数;如果变量是减小的,则是y随x增大而减小的一次函数;②边底和高两个都是变量,则函数图象一定是二次函数,两个变量同增或同减,则是开口向上的二次函数;两个变量一增一减,则是开口向下的二次函数.运用:本题中正方形EFGH与等腰Rt△ABC的重合部分主要分两部分,①当重合部分全部在等腰Rt△ABC内部时,我们发现重合部分实际就是正方形EFGH的面积,此时正方形边长在增大,就是底和高同增,所以这一部分是开口向上的二次函数,选项只有AB符合;②当重合部分是正方形EFGH的一部分时,我们发现这一部分的长在增大,但是宽在减小,就是底和高一增一减,所以这一部分是开口向下的二次函数,选项A符合.故选:A.【点评】本题主要考查了动点问题的函数图象,掌握此类问题的判断方法是快速而正确解题的关键.10.【分析】根据对称轴位置即可判断①;由二次函数y=ax2+bx+2(a≠0)的图象与x轴交于(﹣1,0)即可判断②;求得对称轴,利用二次函数的性质即可判断③;利用根与系数的关系即可判断④;由2<x1<3得到关于b的不等式组,解不等式组求得b的取值范围即可判断⑤.【解答】解:由图象可知,﹣>0,∴ab<0,故结论①错误;∵二次函数y=ax2+bx+2(a≠0)的图象与x轴交于(﹣1,0),∴a﹣b+2=0,即a﹣b=﹣2,故结论②正确;∵二次函数y=ax2+bx+2(a≠0)的图象与x轴交于(﹣1,0),(x1,0),其中2<x1<3,∴<﹣<1,∵抛物线开口向下,∴当x>1时,y随x的增大而减小,故结论③正确;∵二次函数y=ax2+bx+2(a≠0)的图象与x轴交于(﹣1,0),(x1,0),∴﹣1,x1是方程ax2+bx+2=0的两个根,∴﹣1•x1=,∴x1=﹣,∴关于x的一元二次方程ax2+bx+2=0(a≠0)的另一个根是﹣,故结论④正确;∵a﹣b+2=0,∴a=b﹣2,∴y=(b﹣2)x2+bx+2,∵2<x1<3,∴,解得1<b<,故结论⑤正确.故选:C.【点评】本题考查了二次函数图象与系数的关系,抛物线与x轴的交点,根与系数的关系,掌握二次函数的性质以及函数与方程的关系是解题的关键.二、填空题(每小题3分,满分21分)11.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:7416.7万=74167000=7.4167×107,故答案为:7.4167×107.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.12.【分析】由作图过程可知,OH为∠MON的平分线,进而可得2a﹣1=a+1,解方程即可.【解答】解:由作图过程可知,OH为∠MON的平分线,∴∠MOH=45°,∴2a﹣1=a+1,解得a=2.故答案为:2.【点评】本题考查作图—基本作图、坐标与图形性质,解题的关键是理解题意,灵活运用所学知识解决问题.13.【分析】根据二次根式的被开方数是非负数、分母不为零列出不等式组,解不等式组得到答案.【解答】解:由题意得:3+x>0且x+2≠0,解得:x>﹣3且x≠﹣2,故答案为:x>﹣3且x≠﹣2.【点评】本题考查的是函数自变量的取值范围的确定,熟记二次根式的被开方数是非负数、分母不为零是解题的关键.14.【分析】根据弧长公式求出圆锥的母线长,根据勾股定理计算,得到答案.【解答】解:设扇形的母线长为l cm,∵圆锥的底面半径是1cm,∴圆锥的底面周长是2πcm,即侧面展开图扇形的弧长是2πcm,则=2π,解得:l=4,由勾股定理得:圆锥的高==(cm).故答案为:.【点评】本题考查的是圆锥的计算,认识平面图形和勾股定理,掌握圆锥的底面周长与展开后所得扇形的弧长相等是解题的关键.15.【分析】延长AB交y轴于点D,根据平行四边形面积可求出AB=OC=1,继而可得点A坐标,根据反比例函数图象上点的坐标特征求出k值即可.【解答】解:如图,延长AB交y轴于点D,∵B(﹣1,3),S▱ABCO=3,∴OC•OD=3OC=3,∵ABCO是平行四边形,∴AB=OC=1,∴AD=2,∴A(﹣2,3),∵点A在反比例函数图象上,∴k=﹣6.故答案为:﹣6.【点评】本题考查了反比例函数k值的几何意义、反比例函数图象上点的坐标特征、平行四边形的性质,熟练掌握平行四边形面积计算是关键.16.【分析】分三种情况讨论,一是∠BB′C=90°,可由∠PB′B=∠PBB′,推导出∠PB′C=∠PCB′,则B′P=CP=BP=BC=2;二是∠BCB′=90°,则点B′在DC上,求得B′D==3,则B′C=2,由勾股定理得22+CP2=(4﹣CP)2,求得CP=;三是由∠B′BC是等腰三角形B′PB的底角,说明∠B′BC≠90°,于是得到问题的答案.【解答】解:∵四边形ABCD是矩形,AB=5,BC=4,∴DC=AB=5,AD=BC=4,∠D=∠ABC=∠ACB=90°,由折叠得AB′=AB=5,B′P=BP,如图1,△BCB′为直角三角形,且∠BB′C=90°,∴∠PB′C+∠PB′B=90°,∠PCB′+∠PBB′=90°,∵∠PB′B=∠PBB′,∴∠PB′C=∠PCB′,∴B′P=CP,∴CP=BP=BC=×4=2;如图2,△BCB′为直角三角形,且∠BCB′=90°,∵∠BCB′=∠C=90°,∴点B′在DC上,∴B′D===3,∴B′C=DC﹣B′D=5﹣3=2,∵B′C2+CP2=BP′2,且B′P=BP=4﹣CP,∴22+CP2=(4﹣CP)2,解得CP=;∵∠B′BC是等腰三角形B′PB的底角,∴∠B′BC≠90°,综上所述,线段CP的长为2或,故答案为:2或.【点评】此题重点考查矩形的性质、轴对称的性质、等角的余角相等、勾股定理、分类讨论数学思想的运用等知识与方法,正确地进行分类是解题的关键.17.【分析】根据所给滚动方式,发现每滚动三次,出现一个花心,再根据点A n坐标变化的规律即可解决问题.【解答】解:由题知,∠COB=∠O′C′B=30°,BO=BC′,∴A1O=A1C′,∴点A1在OC′的垂直平分线上.∵点B的坐标为(1,0),∴OB=1,在Rt△A1OB中,tan30°=,∴A1B=,∴点A1的坐标为(1,).依次类推,点A2的坐标为(),点A3的坐标为(),…,∴点A n的坐标为()(n为正整数).又∵每滚动三次,出现下一个花心,∴2024÷3=674于2,则674+1=675,∴滚动2024次后停止滚动,最后一个“花朵”的花心对应的点为点A675.当n=675时,点A675的坐标为(1349+,),即滚动2024次后停止滚动,最后一个“花朵”的花心的坐标为(1349+674,).故答案为:(1349+674,).【点评】本题主要考查了点的坐标变化规律及等腰三角形的性质,熟知等腰三角形的性质及能根据所给滚动方式发现点A n坐标变化的规律是解题的关键.三、解答题(本题共7道大题,共69分)18.【分析】(1)利用算术平方根,绝对值,特殊锐角三角函数值,零指数幂,负整数指数幂计算即可;(2)利用提公因式法及公式法因式分解即可.【解答】解:(1)原式=2+|﹣4×|﹣1+4=2+2﹣1+4=7;(2)原式=2a(a2﹣4b2)=2a(a+2b)(a﹣2b).【点评】本题考查实数的运算,算术平方根,绝对值,特殊锐角三角函数值,零指数幂,负整数指数幂,利用提公因式法及公式法因式分解,熟练掌握相关运算法则及因式分解的方法是解题的关键.19.【分析】利用因式分解法求解可得.【解答】解:∵x2﹣5x+6=0,∴(x﹣2)(x﹣3)=0,则x﹣2=0或x﹣3=0,解得x1=2,x2=3.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.【分析】(1)先有B人数及其所占百分比求出被调查总人数,再用总人数乘以A的百分比求出m的值,再根据各组人数之和等于总人数求出n的值;(2)根据m和n的值即可补全条形统计图;(3)用360°乘以C组人数所占比例可求得其对应圆心角度数;(4)用总人数乘以样本中80分以上(含80分)的人数所占比例即可得.【解答】解:(1)本次随机抽取的学生人数为94÷47%=200(人),∴m=200×25%=50,∴n=200﹣50﹣94﹣16=40;故答案为:50,40;(2)补全条形统计图如图所示:(3)扇形统计图中,C组对应的圆心角的度数是360°×=72°;故答案为:72;(4)2000×=560(名),答:估计该校参加竞赛的2000名学生中成绩为优秀的人数有560名.【点评】本题考查条形统计图,频数(率)分布表,用样本估计总体及扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.21.【分析】(1)证连接OC,根据垂直的定义得到∠BDC=90°,根据等腰三角形的性质得到∠OCB=∠OBC,根据折叠的性质得到∠EBC=∠DBC,∠E=∠BDC=90°,根据平行线的性质得到∠COF=∠E=90°,根据切线的判定定理得到结论;(2)根据三角函数的定义得到∠CFB=45°,求得∠COF=∠CFO=45,°得到CD=OD=OC=2,根据扇形和三角形的面积公式即可得到结论.【解答】(1)证明:连接OC,∵CD⊥AB,∴∠BDC=90°,∵OC=OB,∴∠OCB=∠OBC,∵将△CDB沿BC所在的直线翻折,得到△CEB,∴∠EBC=∠DBC,∠E=∠BDC=90°,∴∠OCB=∠CBE,∴OC∥BE,∴∠OCF=∠E=90°,∵OC是⊙O的半径,∴CF是⊙O的切线;(2)解:∵sin∠CFB=,∴∠CFB=45°,∵∠COF=90°,∴∠COF=∠CFO=45,∴CF=OC==4,∴∠CDO=90°,∴∠OCD=∠COD=45°,∴CD=OD=OC=2,∴图中阴影部分的面积=扇形AOC的面积﹣△COD面积=﹣×2×2=2π﹣4.【点评】本题考查了切线的判定和性质,折叠的性质,解直角三角形,扇形面积的计算,等腰直角三角形的判定和性质,正确地作出辅助线是解题的关键.22.【分析】(1)根据图形计算即可求解;(2)先求得甲无人机单独表演所用时间为19﹣12=7(秒),得到M(13,48),利用待定系数法即可求解;(3)利用待定系数法分别求得线段OB、线段AN、线段BM所在直线的函数解析式,再分三种情况讨论,列式计算即可求解详解.【解答】解:(1)由题意得甲无人机的速度为a=48÷6=8(米/秒),t=39﹣19=20(秒).故答案为:8,20;(2)由图象知,N(19,96),∵甲无人机的速度为8米/秒,∴甲无人机匀速从0米到96米所用时间为96÷8=12(秒),∴甲无人机单独表演所用时间为19﹣12=7(秒),6+7=13(秒),∴M(13,48),设线段MN所在直线的函数解析式为y=kx+b,将M(13,48),N(19,96)代入得,解得∴线段MN所在直线的函数解析式为y=8x﹣56.(3)由题意A(0,20),B(6,48),同理线段OB所在直线的函数解析式为y=8x,线段AN所在直线的函数解析式为y=4x+20,线段BM所在直线的函数解析式为y=48,当0≤t≤6时,由题意得|4x+20﹣8x|=12,解得x=2或x=8(舍去),当6<t≤13时,由题意得|4x+20﹣48|=12,解得x=10或x=4(舍去),当13<t≤19时,由题意得|8x﹣56﹣4x﹣20|=12,解得x=16或x=22(舍去),综上,两架无人机表演训练到2秒或10秒或16秒时,它们距离地面的高度差为12米.【点评】本题主要考查求一次函数的应用,熟练掌握待定系数法求一次函数的解析式是解题的关键.23.【分析】(1)利用“一线三垂直“证△ABC≌△EBD(AAS)即可得证;(2)证△DEF∽△CAF可求EF长度,然后即可求出△BDF的面积;(3)要求的值,有两个方向,①把BN和BC的值求出来,这题BC很好求,但是BN不好求,可以建立坐标系求解析式,再求交点N坐标,最后利用两点距离公式求BN的长度;②根据题干给我们的思路建立一线三直角得相似进行转化即可,利用△EMN∽△EAC和△BMN∽△BED建立关于MN的方程,求出MN的长度,最后利用△BMN∽△CAB求值即可.(4)由已知条件过P作BC垂线段,可得两个直角三角形,然后解这两个直角三角形即可求解.另外方法二的正切和差角公式可以作为课外拓展知识,在这种直接写答案的题型中可以用下,快速找出答案.【解答】解:(1)∵线段BC绕点B逆时针旋转90°得到线段BD,∴BC=BD,∠CBD=90°,∴∠BCA=∠DBE=90°﹣∠ABC,∵∠A=∠E=90°,∴△ABC≌△EBD(AAS),∴AB=DE;故答案为:AB=DE.(2)∵线段BC绕点B逆时针旋转90°得到线段BD,∴BC=BD,∠CBD=90°,∴∠BCA=∠DBE=90°﹣∠ABC,∵∠A=∠E=90°,∴△ABC≌△EBD(AAS),∴DE=AB,BE=AC,∵AB=2,AC=6,∴DE=2,BE=6,∴AE=AB+BE=8,∵∠DEB+∠A=180°,∴DE∥AC,∴△DEF∽△CAF,∴,即,∴EF=4,∴BF=BE+EF=10,=BF•DE=10.∴S△BDF(3)方法一:如图,以AE所在直线为x轴,以AC所在直线为y轴建立坐标系,由AC=6,AE=8,DE=2,BD=2,∴C(0,6),B(2,0),E(8,0),D(8,2),设直线BD解析式为y=kx+b,将B、D代入得,,解得:,∴直线BD解析式为y=x﹣,同理可求直线CE解析式为:y=﹣x+6,令x﹣=﹣x+6,解得x=,∴y=,即N(,),∴利用两点距离公式可得BN=,∵BC==2,∴==.故答案为:.方法二:如图,过N作NM⊥AE于点M,由△EMN∽△EAC得,,即,∴EM=MN,由△BMN∽△BED得,,即,解得MN=,由△BMN∽△CAB得,=.故答案为:.(4)方法一:①当点P在点B左侧时,如图所示,过P作PQ⊥BC于点Q,∵tan∠BCP==,tan∠ABC===3,∴PQ=CQ,PQ=3BQ,设BQ=2a,则PQ=6a,CQ=9a,∴BC=BQ+CQ=11a,∵BC==2=11a,∴a=,∴BP==2a=,∴AP=BP﹣AB=;②当点P在点B右侧时,如图所示,作PG⊥BC交BC延长线于点G,tan∠BCP==,tan∠PBG=tan∠ABC,即,剩下思路与第一种情况方法一致,求得AP=.综上,AP的长度为或.方法二:补充知识:正切和差角公式:tan(α+β)=,tan(α﹣β)=.①当点P在点B左侧时,因为tan∠BCA=,tan∠BCP=,所以此时点P在A的左侧,如图所示,tan∠BCP=tan(∠BCA+∠ACP)===,解得tan∠ACP=,即=,∵AC=6,∴AP=.②当点P在点B右侧时,如图所示,tan∠ACP=tan(∠BCA+∠BCP)===,即,∵AC=6,∴AP=.综上,AP的长度为或.【点评】本题主要考查了相似三角形的判定和性质、全等三角形的性质和判定、解直角三角形、勾股定理等知识,熟练掌握以上基础知识和添加合适的辅助线是解题关键.24.【分析】(1)由待定系数法即可求解;(2)AC2=20,AD2=(x﹣4)2,CD2=x2+4,则AC=AD或AC=CD,即20=(x﹣4)2或20=x2+4,即可求解;(3)E、C、F、A共线,EF=AC,则x F﹣x E=x A﹣x C,即可求解;(4)作点A关于y轴的对称点A′(﹣4,0),将点A′向右平移(MN的长度),得到点A″(﹣,0),连接PA″交抛物线对称轴于点M,过点M作MN⊥y轴于点N,连接A′N,则NA+MP=A′N+PM =A″M+MP=A″P为最小,即可求解.【解答】解:(1)直线y=x﹣2与x轴交于点A,与y轴交于点C,则点A、C的坐标分别为:(4,0)、(0,﹣2),则抛物线的表达式为:y=a(x﹣4)(x+1)=a(x2﹣3x﹣4),则﹣4a=﹣2,则a=,则抛物线的表达式为:y=x2﹣x﹣2;(2)设点D(x,0),由点A、C、D的坐标得,AC2=20,AD2=(x﹣4)2,CD2=x2+4,则AC=AD或AC=CD,即20=(x﹣4)2或20=x2+4,解得:x=4±2或4(舍去)或﹣4,即点D(4±2,0)或(﹣4,0);(3)设点P(x,x2﹣x﹣2),当y=x2﹣x﹣2=x﹣2,则x=x2﹣3x,即点E(x2﹣3x,x2﹣x﹣2),∵E、C、F、A共线,EF=AC,则x F﹣x E=x A﹣x C,即x﹣(x2﹣3x)=4﹣0,解得:x=2,即点P(2,﹣3);(4)作点A关于y轴的对称点A′(﹣4,0),将点A′向右平移(MN的长度),得到点A″(﹣,0),连接PA″交抛物线对称轴于点M,过点M作MN⊥y轴于点N,连接A′N,∵A′A″∥MN且A′A″=MN,则四边形A′A″MN为平行四边形,则A′N=A″M,则NA+MP=A′N+PM=A″M+MP=A″P为最小,最小值为=,故答案为:.【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系,解决相关问题。

黑龙江省齐齐哈尔市2023-2024学年七年级上学期期末数学试题(含答案)

黑龙江省齐齐哈尔市2023-2024学年七年级上学期期末数学试题(含答案)

七年级上学期学业水平调研测试数学试卷考生注意:1.考试时间120分钟;2.全卷共三道大题,总分120分;3.请将答案写在答题卡的指定位置.一、单项选择题(本大题共9小题,每小题3分,共27分)1.的相反数是()A .3B.C .D .2.史料证明:中国是最早采用正数、负数表示相反意义的量的国家.追溯到两千多年前,中国人已经开始使用负数,并应用到生产和生活中.如果向南走3米,记作米,那么向北走6米,记作()A .米B .米C .米D .米3.计算的结果是()A .8B .C .6D .4.在下列单项式中,与是同类项的是()A .B .C .D .5.已知是有理数,它们在数轴上对应点的位置如图所示,把按照从小到大的顺序排列,正确的是()A .B .C .D .6.下列图形中,不能作为一个正方体的展开图的是()A .B .C .D .7.某件商品现在的售价是68元,比原价降低了15%,则这件商品的原价是()A .102元B .57.8元C .78.2元D .80元8.如图,,则的度数是()3-133-13-3+9+6+6-3-()()24-⨯+8-6-2xy xy 2x 2xy 2x y,a b ,,a b a -a a b <-<a a b -<<b a a <<-b a a<-<90,48AOC BOD AOB ∠=∠=︒∠=︒COD ∠A .B .C .D .9.下列说法正确的是()A .单项式的次数是2B.如果,那么C .连接两点之间的线段,叫做这两点之间的距离D .若点在点的北偏东向上,点在点的西北方向上,则二、填空题(本大题共9小题,每小题3分,共27分)10.黑龙江省地域辽阔,四季分明,夏季凉爽怡人,文化厚重,物产丰富,全省土地总面积约为473000平方千米.将数473000用科学记数法表示为________.11.如果,且,那么________.12.已知一个角的度数是,则它的余角的度数是________.13.已知,则________.14.定义一种新的运算“▲”:.若,则的值是________.15.如图,射线在的内部,是的平分线.若,则的度数是________.16.在一节数学活动课上,小敏同学用火柴棍拼成一排由三角形组成的图形,如图所示.按照这种方式继续拼下去,若图形中用了41根火柴棍,则图形中含有*个三角形.17.中国瓷器以其精湛的工艺和精美的图案享誉世界.某瓷器厂一车间有14名工人,每名工人每天可以加工10只茶壶或30只茶杯.1只茶壶需要配4只茶杯,为使每天加工的茶壶和茶杯刚好配套,该车间应安排________名工人加工茶壶.18.点在同一条直线上,,点分别是的中点.若,则的长是________.42︒45︒48︒69︒22a b a b c c=a b =A O 30︒B O 15AOB ∠=︒3m =0m <m =6243'︒1b a -=221b a --=321a b ab a =-+▲29x =▲x OC AOB ∠1,3AOC AOB OD ∠=∠BOC ∠60AOB ∠=︒AOD ∠,,A B P 3AB BP =,C D ,AB BP 12AB =CD三、解答题(本大题共9小题,共66分)19.(本题8分)计算:(1);(2).20.(本题8分)解方程:(1);(2).21.(本题6分)先化简,再求值:,其中.22.(本题6分)小亮和小刚两位同学准备将一批图书分给班级的写作兴趣小组的同学阅读.请根据两人的对话信息,求这批图书有多少本?如果每个同学分4本,这批图书还剩余12本.如果每个同学分6本,这批图书恰好分完.23.(本题7分)某仓库管理员连续7次对进库、出库的冰箱台数进行统计,将进库的冰箱台数记作正数,出库的冰箱台数记作负数.记录如下表(单位:台):第1次第2次第3次第4次第5次第6次第7次(1)经过这7次进库、出库后,仓库管理员结算时发现仓库还存有219台冰箱.那么在这7次进库、出库前,仓库存有冰箱多少台?(2)若每台冰箱进库或出库的搬运费均为10元,则这7次进库、出库的冰箱搬运费共多少元?24.(本题7分)如图,平面内有四个点.(1)画直线和射线;()()324-++-21(1)522⎛⎫-⨯-÷- ⎪⎝⎭322x x +=-11123x x +--=()()2232x xy xy x --+110,02x y +=-=17+23-16-25+28-20-26+,,,A B C D AB CD(2)画线段相交于点;(3)在线段上的所有点中,到点的距离之和最小的点是________,理由是________.25.(本题8分)某文教商店有A ,B 两种型号的钢笔共10支,其中B 型钢笔比A 型钢笔多2支,请回答下列问题:(1)A 型钢笔有________支,B 型钢笔有________支;(2)该文教商店每支A 型钢笔的售价比每支B 型钢笔的售价多4元,A ,B 两种型号的钢笔全部售出后,销售的总金额为96元.求每支B 型钢笔的售价是多少元?26.(本题8分)在一节综合实践课上,老师与同学们以“同一平面内,点在直线上,用三角尺画,使;用直尺画射线,使平分.”为问题背景,展开研究.(1)提出问题:如图(1),若,求的度数;(2)探索发现:如图(2),的值是(3)拓展探究:若点在直线的同侧,利用图(3)探索与之间的数量关系.请直接写出它们之间的数量关系.27.(本题8分)点在同一条直线上,点在线段的延长线上,如果,那么我们把点叫做点关于点的伴随点.(1)如图(1),在数轴上,点表示的数是,点关于原点的伴随点表示的数是________;(2)在(1)的条件下,点表示的数是,若点关于点的伴随点是点,求的值;(3)如图(2),数轴上的三个点分别表示的数是.有一动点从点出发,以每秒1个单位长度的速度沿数轴的负方向运动;同时,另一动点从点出发,以每秒2个单位长度的速度沿数轴的负方向运动.当动点运动至点处时,两动点同时停止运动.设动点的运动时间为秒,在运动过程中,若三个点中,恰有一个点是另一个点关于第三个点的伴随点,请直接写出的值.,AC BD M BD ,A C O AB COD ∠90COD ∠=︒OE OE BOC ∠130AOD ∠=︒DOE ∠:DOE AOC ∠∠,C D AB AOE ∠DOE ∠,A B C AB 12BC AB =C A B E 4-E O F G m F G E m ,,P Q R 1,1,4-M Q N R N P ,M N ,M N ,,P M N七年级上学期学业水平调研测试数学试题答案及评分参考一、单项选择题(本大题共9小题,每小题3分,共27分)1.A 2.C 3.B 4.A 5.D 6.B 7.D 8.C 9.B二、填空题(本大题共9小题,每小题3分,共27分)10. 11. 12. 13.1 14.2 15. 16.20 17.6 18.8或4三、解答题(本大题共9小题,共66分)19.解:(1)原式(2)原式20.解:(1)(2)21.解:因为,所以当时,原式22.解:设写作兴趣小组有个同学答:这批图书有36本.23.解:(1)54.7310⨯3-2717'︒40︒3245=-+-=-1549=⨯+=322x x -=--24x =-2x =-()()31216x x +--=33226x x +-+=55x =1x =()()2232x xy xy x --+22332x xy xy x =---24x xy=-110,02x y +=-=11,2x y =-=11,2x y =-=()21(1)4132=--⨯-⨯=x 4126x x+=6x =6636⨯=1723162528202619+--+--+=-219(19)238--=答:在这7次进库、出库前,仓库存有冰箱238台.(2)答:这7次进库、出库的冰箱搬运费共1550元.24.(1)画出直线,射线(2)画出线段,标出交点(3);两点之间,线段最短25.解:(1)4,6(2)设每支B 型钢笔的售价是元答:每支型钢笔的售价是8元.26.解:(1)因为,所以因为,所以因为平分,所以(2)(3)或27.解:(1)2(2).根据题意,所以.|17||23||16||25||28||20||26|++-+-+++-+-++17231625282026=++++++155=155101550⨯=AB CD,AC BD MM x ()44696x x ++=8x =B 130AOD ∠=︒180********BOD AOD ∠=︒-∠=︒-︒=︒90COD ∠=︒905040BOC COD BOD ∠=∠-∠=︒-︒=︒OE BOC ∠11402022COE BOC ∠=∠=⨯︒=︒902070DOE COD COE ∠=∠-∠=︒-︒=︒1290AOE DOE ∠-∠=︒270AOE DOE ∠+∠=︒()2,44FG m EG m m =-=--=+2EG FG =()242m m +=-2m =-9 412 5(3)1或或.。

2024年黑龙江省齐齐哈尔市龙沙区中考二模数学试题(含答案)

2024年黑龙江省齐齐哈尔市龙沙区中考二模数学试题(含答案)

2023—2024学年度下学期初三数学二模试题2024.05学校姓名班级考场考号考生注意:1.本科为闭卷考试,考试时间120分钟2.全卷共三道大题,总分120分一、单项选择题(每小题3分,满分30分)1.-5的绝对值是( )A .-5B .±5C .5D.2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.下列运算正确的是( )A .B .C .D .4.同学们争当鹤城旅游义务讲解员,在选拔环节中有一名男同学和两名女同学表现优异.若从以上三名同学中随机抽取两名同学担任讲解员,则刚好抽中一名男同学和一名女同学的概率是( )A .B .C .D .5.若关于的分式方程无解,则实数的取值是( )A .0或2B .2或4C .2D .4或86.如图,在中,分别以点和点为圆心,大于长为半径画弧,两弧相交于点.作直线,交于点,交于点,连接,若,则的周长为( )A .25B .22C .19D .1815()()4224124a a a =÷-2355a a a ⋅=22(1)1a a -=+22(4)(4)16ab b a a b +-=-16131223x 231222x a x x x x -+=--a ABC B C 12BC ,M N MN AC D BC E BD 7,12,6AB AC BC ===ABD7.如图,从一个直径为的圆形铁皮中剪出一个圆心角为60°的最大扇形,并将剪下来的扇形围成一个圆锥,则圆锥的高为( )ABC .D .8.如图,中,∠C =90°,,动点从点出发,沿折线以每秒5个单位长度的速度运动(运动到点停止),过点作于点,则的面积与点运动的时间之间的函数图象大致是( )A .B .C .D .9.青少年辩论社团共有40名学生,为方便开展活动,计划分成若干个小组,每小组只能是5人或6人,则有几种分组方案( )A .4B .3C .2D .110.如图,抛物线(是常数,)的顶点在第四象限,对称轴是,过一、二、四象限的直线(是常数)与抛物线交于轴上一点,则下列结论正确的有( )个.①,②,③,④当抛物线与直线的另一个交点也在坐标轴上时,则,⑤为任意实数,则有.A .2B .3C .4D .5ABC Rt ABC 90,15,20C AC BC ∠=== P A A C B --B P PD AB ⊥D APD y P x 2y ax bx c =++,,a b c 0a ≠3x =4y kx k =-k x 0bk >430b c +=4220a b c k +++<2k a =-m ()0m am b c a +++≥二、填空题(每小题3分,满分21分)11.春意盎然,许多地方杨絮漫天飞舞,据测量,杨絮纤维的直径约为0.0000105,用科学记数法表示杨絮的直径为 .12.如图,,于点,,则 .13.在函数中,自变量的取值范围是 .14.一个几何体由几个大小相同的小立方块搭成,从左面和从上面看到的这个几何体的视图如图所示,则搭成该几何体的小立方块的个数最少有 个.15.如图,的顶点在轴上,顶点,在的图象上,顶点在反比例函数的图象上,且轴,若的面积等于11,则的值为 .16.在中,,点是线段上的一点,将沿折叠,使点的对称点恰好落在的中位线所在的直线上,则点到的距离为 .17.如图,在抛物线的内部依次画正方形,使对角线在轴上,另两个顶点落在抛物线上,按此规律类推,第2024个正方形的边长是.m m AB CD EF ∥∥PS GH ⊥P 1120∠= 2∠=0(2)y x =-x ABCD A y B C 4(0)y x x=->D (0)k y x x=>//BD y ABCD k ABC 90,8,6ABC AB BC ∠=== D AB ABC CD B H ABC H BC 2y x =y三、解答题(本题共7道大题,共69分)18.(本题共2个小题,第(1)题6分,第(2)题4分,满分10分)(1)计算:(2)因式分解:19.(5分)解方程:.20.(8分)为了解我校学生的身高情况,随机抽取部分男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm )组别A B C D E 身高(1)样本中,男生的身高中位数在 组;(2)样本中,女生身高在组的人数有多少人;(3)已知该校共有男生400人,女生380人,请估计身高在之间的学生约有多少人?21.(10分)如图,中,为斜边中线,以为直径作交于点,过点作,垂足为点.2013tan 30|4|(2024)3π-⎛⎫--+--- ⎪⎝⎭221218a b ab b-+23410x x +-=155x <155160x ≤<160165x ≤<165170x ≤<170x ≥E 160165x ≤<Rt ABC 90,ACB CD ∠= CD O BC E E EF AB ⊥F(1)求证:为的切线;(2)若,求的长.22.(10分)已知、两地间有地,客车由地驶向地,货车由地经过地去地(客货车在、两地间沿同一条路行驶),两车同时出发,匀速行驶.货车的速度是客车速度的.如图是客车、货车距地的路程与行驶时间的函数关系的图象.(1)货车的速度为 ;、两地间的路程为 ;(2)求客车距地的路程与的函数关系式,并直接写出货车距地的路程与的函数关系式;(3)求两车相遇时距地的路程;(4)直接写出两车出发多长时间时相距70的路程.23.(12分)综合与实践数学活动课上,同学们将直角三角形和的直角顶点重合,来研究几何知识.实践操作:(一)如图①,和是等腰直角三角形,,,;(二)在图①中,取中点,连接并延长交于点,延长至点,使,连接、,得到图②.(三)如图③,和是直角三角形,,;EF O 13,5AB AC ==EF A B C A C B C A A C 34C 12,(km)y y (h)x km /h A B km C 1y x C 2y x B km BAC DAE A BAC DAE 90BAC DAE ∠∠== AB AC =AD AE =BD G GA CE H AG M GM AG =BM DM BAC DAE 90,2BAC DAE AC AB ∠∠=== 2AE AD =图① 图② 图③问题解决:(一)在图①中,若,则 ;= ; °;(二)在图②中,(1)与的位置关系为 ;(2)证明.(三)在(1)问条件下,图②中 ;拓展延伸(四)在图③中,若,则 .(用含的代数式表示).24.(14分)综合与探究:如图,在平面直角坐标系中,抛物线与轴交于点A (1,0),点B (-3,0),交轴于点,顶点为,连接.备用图(1)求抛物线的解析式.(2)点是直线下方抛物线上的一动点,过点作交轴于点,轴交于点.①当时,点的坐标为 .②求的最大值;BD =45,2BDA AD ∠== tan ABD ∠=AC CAE ∠=AM CE CAE ABM ≅ ACE S = 45,105,BDA BAD AD m ∠=∠== ACE S = m 22y ax bx =+-x y C D ,AC BC P BC P PM AC ∥x M PH x ∥BC H 12PM AC =H PH③连接并延长交轴于点,点为轴上的一个动点,连接,则的最小值为 .2023-2024学年度下学期初三数学二模试题2024.05一、单选题1.C2.C3.B4.D5.D6.C7.A8.A9.C 10.D二、填空题11.12.30°13.且14.615.716.或417.三、解答题18.(1)………………6分(2);……………………4分19.………………5分20.解:(1)C (2)分(2)女生身高在组的百分比为:1-17.5%-37.5%-25%-15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在组的人数有:40×5%=2(人)………………3分(3)解:(人).∴估计身高在之间的学生约有195人.……………………3分21.(1)证明:连接OE ,,,为斜边中线,BD BD y N Q y AQ 35AQ QN +51.0510-⨯3x >-2x ≠6-22(3)b a -12x x ==E E 1040038025%19540⨯+⨯=OC OE ∴=OCE OEC ∠∠∴=90,ACB CD ∠=,,,,,∴为的切线.………………5分(2)解:连接,,,是直径,,,,,,.………………5分22.(1)60,840;…………2分(2)设客车与的函数关系式是,,解得,即客车与的函数关系式是;………………2分12CD AB BD ∴==OCE OEC B ∠∠∠∴==//OE BD ∴EF AB ⊥ 90OEF ∠∴= EF O DE 90,13,5ACB AB AC ∠=== 11312,22BC CD AB ∴====CD 90CED ∠∴= //DE AC ∴BDE BAC ∴~ 12DE BE BD AC BC AB ∴===162CE EB BC ∴===5sin 13AC EF B AB BE ∠∴===3013EF ∴=1y x 1y kx b =+72090b k b =⎧∴⎨+=⎩80720k b =-⎧⎨=⎩1y x 180720(09)y x x =-+≤≤货车与的函数关系式是;………………2分(3).两车相遇时距的路程为.……………………2分(4)5.5小时或6.5小时……………………2分23.(一);………………3分(二)(1)互相垂直………………1分(2)证明:略;……………………4分……………………2分(四);………………2分24.(1)…………………………3分(2)①………………3分②……………………5分(3)……………………3分2y x 260120(02)60120(214)x x y x x -+≤≤⎧=⎨-<≤⎩8072060120,6,(606120)602360(km)x x x -+=-=⨯-+⨯=B 360km 1+2(1m 224233y x x =+-3,12H ⎛⎫-- ⎪⎝⎭94165。

2024届黑龙江省齐齐哈尔市中考一模数学试题含解析

2024届黑龙江省齐齐哈尔市中考一模数学试题含解析

2024届黑龙江省齐齐哈尔市中考一模数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.如图所示的几何体的主视图是()A.B.C.D.2.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以2cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线AC CB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是()A.B.C.D.3.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=8x,则该二次A .x=1B .x=49C .x=﹣1D .x=﹣49 4. “车辆随机到达一个路口,遇到红灯”这个事件是( )A .不可能事件B .不确定事件C .确定事件D .必然事件5.计算x ﹣2y ﹣(2x +y )的结果为( )A .3x ﹣yB .3x ﹣3yC .﹣x ﹣3yD .﹣x ﹣y6.m-n 的一个有理化因式是( )A .m n +B .m n -C .m n +D .m n -7.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,AB=c ,∠A=α,则CD 长为( )A .c•sin 2αB .c•cos 2αC .c•sinα•tanαD .c•sinα•cosα8.如图,在Rt △ABC 中,∠ACB=90°,AC=23,以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将BD 绕点D 旋转180°后点B 与点A 恰好重合,则图中阴影部分的面积为( )A .2233π-B .2233π-C .233π-D .233π- 9.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A.4233π-B.8433π-C.8233π-D.843π-10.四组数中:①1和1;②﹣1和1;③0和0;④﹣23和﹣112,互为倒数的是()A.①②B.①③C.①④D.①③④二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.12.如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于_____.13.如图,已知点A是反比例函数2yx=-的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为______.14.设[x)表示大于x的最小整数,如[3)=4,[−1.2)=−1,则下列结论中正确的是______ .(填写所有正确结论的序号)①[0)=0;②[x)−x的最小值是0;③[x)−x的最大值是0;④存在实数x,使[x)−x=0.5成立.15.2011年,我国汽车销量超过了18500000辆,这个数据用科学记数法表示为▲ 辆.16.如图,Rt△ABC的直角边BC在x轴上,直线y=23x﹣23经过直角顶点B,且平分△ABC的面积,BC=3,点A在反比例函数y=kx图象上,则k=_______.三、解答题(共8题,共72分)17.(8分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.请根据以上的信息,回答下列问题:(1)补全扇形统计图和条形统计图;(2)所抽查学生参加社会实践活动天数的众数是(选填:A、B、C、D、E);(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?18.(8分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)19.(8分)如图,在▱ABCD中,以点4为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF 的长为半径画弧,两弧交于点P;连接AP并廷长交BC于点E,连接EF(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若AB=2,AE=2,求∠BAD的大小.20.(8分)观察下列各式:①()()2111x x x -+=- ②()()23111x x x x -++=- ③()()324111x x x x x -+++=- 由此归纳出一般规律()()111nn x x x x --++⋅⋅⋅++=__________. 21.(8分)(1)计算:20(2)(3)12sin 60π︒-+-+-;(2)化简:2121()a a a a a--÷-. 22.(10分)如图,已知点A (1,a )是反比例函数y 1=m x 的图象上一点,直线y 2=﹣1122x +与反比例函数y 1=m x的图象的交点为点B 、D ,且B (3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D 坐标,并直接写出y 1>y 2时x 的取值范围;(Ⅲ)动点P (x ,0)在x 轴的正半轴上运动,当线段PA 与线段PB 之差达到最大时,求点P 的坐标.23.(12分)如图,ABC ∆在方格纸中.(1)请在方格纸上建立平面直角坐标系,使(2,3)A ,(6,2)C ,并求出B 点坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将ABC ∆放大,画出放大后的图形'''A B C ∆;(3)计算'''A B C ∆的面积S .24.某景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a 折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b 折,设游客为x 人,门票费用为y 元,非节假日门票费用y 1(元)及节假日门票费用y 2(元)与游客x (人)之间的函数关系如图所示.(1)a= ,b= ;(2)确定y 2与x 之间的函数关系式:(3)导游小王6月10日(非节假日)带A 旅游团,6月20日(端午节)带B 旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A 、B 两个旅游团各多少人?参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】【题目详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A.【题目点拨】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2、D【解题分析】在△ABC中,∠C=90°,AC=BC=3cm,可得AB=32,∠A=∠B=45°,分当0<x≤3(点Q在AC上运动,点P在AB上运动)和当3≤x≤6时(点P与点B重合,点Q在CB上运动)两种情况求出y与x的函数关系式,再结合图象即可解答.【题目详解】在△ABC中,∠C=90°,AC=BC=3cm,可得AB=32,∠A=∠B=45°,当0<x≤3时,点Q在AC上运动,点P在AB上运动(如图1),由题意可得AP=2x,AQ=x,过点Q作QN⊥AB于点N,在等腰直角三角形AQN中,求得QN=22x,所以y=12AP QN⋅=21212=222x x x⨯⨯(0<x≤3),即当0<x≤3时,y随x的变化关系是二次函数关系,且当x=3时,y=4.5;当3≤x≤6时,点P与点B重合,点Q在CB上运动(如图2),由题意可得PQ=6-x,AP=32,过点Q作QN⊥BC于点N,在等腰直角三角形PQN中,求得QN=22(6-x),所以y=12AP QN⋅=12332(6)=9222x x⨯⨯--+(3≤x≤6),即当3≤x≤6时,y随x的变化关系是一次函数,且当x=6时,y=0.由此可得,只有选项D符合要求,故选D. 【题目点拨】本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答.3、D【解题分析】设A 点坐标为(a ,8a),则可求得B 点坐标,把两点坐标代入抛物线的解析式可得到关于a 和b 的方程组,可求得b 的值,则可求得二次函数的对称轴.【题目详解】解:∵A 在反比例函数图象上,∴可设A 点坐标为(a ,8a ). ∵A 、B 两点关于原点对称,∴B 点坐标为(﹣a ,﹣8a). 又∵A 、B 两点在二次函数图象上,∴代入二次函数解析式可得:228989a ab a a ab a ⎧+-=⎪⎪⎨⎪--=-⎪⎩,解得:389a b =⎧⎪⎨=⎪⎩或389a b =-⎧⎪⎨=⎪⎩,∴二次函数对称轴为直线x =﹣49. 故选D .【题目点拨】本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b 的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系.4、B【解题分析】根据事件发生的可能性大小判断相应事件的类型即可.【题目详解】“车辆随机到达一个路口,遇到红灯”是随机事件.故选:B .【题目点拨】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的实际;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、C【解题分析】原式去括号合并同类项即可得到结果.【题目详解】原式223x y x y x y =---=--,故选:C .【题目点拨】本题主要考查了整式的加减运算,熟练掌握去括号及合并同类项是解决本题的关键.6、B【解题分析】找出原式的一个有理化因式即可.【题目详解】故选B .【题目点拨】此题考查了分母有理化,熟练掌握有理化因式的取法是解本题的关键.7、D【解题分析】根据锐角三角函数的定义可得结论.【题目详解】在Rt △ABC 中,∠ACB =90°,AB =c ,∠A =a ,根据锐角三角函数的定义可得sinα=BC AB , ∴BC =c •sinα,∵∠A +∠B =90°,∠DCB +∠B =90°,∴∠DCB =∠A =α在Rt △DCB 中,∠CDB =90°,∴cos ∠DCB = CD BC, ∴CD =BC •cosα=c •sinα•cosα,故选D .8、B【解题分析】阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.由旋转可知AD=BD,∵∠ACB=90°,AC=23,∴CD=BD,∵CB=CD,∴△BCD是等边三角形,∴∠BCD=∠CBD=60°,∴BC=23π33AC=2,∴阴影部分的面积=23×2÷2−2602360π⨯=23−23π.故答案选:B.【题目点拨】本题考查的知识点是旋转的性质及扇形面积的计算,解题的关键是熟练的掌握旋转的性质及扇形面积的计算.9、C【解题分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【题目详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD=2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.10、C【解题分析】根据倒数的定义,分别进行判断即可得出答案.【题目详解】∵①1和1;1×1=1,故此选项正确;②-1和1;-1×1=-1,故此选项错误;③0和0;0×0=0,故此选项错误;④−23和−112,-23×(-112)=1,故此选项正确; ∴互为倒数的是:①④,故选C .【题目点拨】此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.二、填空题(本大题共6个小题,每小题3分,共18分)11、4π【解题分析】根据圆内接四边形对角互补可得∠BCD+∠A=180°,再根据同弧所对的圆周角与圆心角的关系以及∠BOD=∠BCD ,可求得∠A=60°,从而得∠BOD=120°,再利用弧长公式进行计算即可得.【题目详解】解:∵四边形ABCD 内接于⊙O ,∴∠BCD+∠A=180°,∵∠BOD=2∠A ,∠BOD=∠BCD ,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴BD 的长=41812060ππ=⨯, 故答案为4π.【题目点拨】本题考查了圆周角定理、弧长公式等,求得∠A 的度数是解题的关键.12、【解题分析】根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE的长.【题目详解】由题意可得,DE=DB=CD=12 AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等边三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四边形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴∴.故答案为【题目点拨】本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13、2 yx =【解题分析】∵点A是反比例函数2yx=-的图象上的一个动点,设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO与△ODB中,∵∠ACO=∠ODB,∠CAO=∠BOD,AO=BO,∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),∵mn=﹣2,∴n(﹣m)=2,∴点B所在图象的函数表达式为2yx =,故答案为:2yx =.14、④【解题分析】根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.【题目详解】①[0)=1,故本项错误;②[x)−x>0,但是取不到0,故本项错误;③[x)−x⩽1,即最大值为1,故本项错误;④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.故答案是:④.【题目点拨】此题考查运算的定义,解题关键在于理解题意的运算法则.15、2.85×2.【解题分析】根据科学记数法的定义,科学记数法的表示形式为a×20n,其中2≤|a|<20,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于2还是小于2.当该数大于或等于2时,n为它的整数位数减2;当该数小于2时,-n为它第一个有效数字前0的个数(含小数点前的2个0).【题目详解】解:28500000一共8位,从而28500000=2.85×2.16、1【解题分析】分析:根据题意得出点B的坐标,根据面积平分得出点D的坐标,利用三角形相似可得点A的坐标,从而求出k的值.详解:根据一次函数可得:点B的坐标为(1,0),∵BD平分△ABC的面积,BC=3∴点D的横坐标1.5,∴点D的坐标为512⎛⎫⎪⎝⎭,,∵DE:AB=1:1,∴点A的坐标为(1,1),∴k=1×1=1.点睛:本题主要考查的是反比例函数的性质以及三角形相似的应用,属于中等难度的题型.得出点D的坐标是解决这个问题的关键.三、解答题(共8题,共72分)17、(1)见解析;(2)A;(3)800人.【解题分析】(1)用A组人数除以它所占的百分比求出样本容量,利用360°乘以对应的百分比即可求得扇形圆心角的度数,再求得时间是8天的人数,从而补全扇形统计图和条形统计图;(2)根据众数的定义即可求解;(3)利用总人数2000乘以对应的百分比即可求解.【题目详解】解:(1)∵被调查的学生人数为24÷40%=60人,∴D类别人数为60﹣(24+12+15+3)=6人,则D类别的百分比为×100%=10%,补全图形如下:(2)所抽查学生参加社会实践活动天数的众数是A,故答案为:A;(3)估计参加社会实践“活动天数不少于7天”的学生大约有2000×(25%+10%+5%)=800人.【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18、(1)38°;(2)20.4m.【解题分析】(1)过点C作CE与BD垂直,根据题意确定出所求角度数即可;(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高.【题目详解】(1)过点C作CE⊥BD,则有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;(2)由题意得:CE=AB=30m,在Rt△CBE中,BE=CE•tan20°≈10.80m,在Rt△CDE中,DE=CD•tan18°≈9.60m,∴教学楼的高BD=BE+DE=10.80+9.60≈20.4m,则教学楼的高约为20.4m.【题目点拨】本题考查了解直角三角形的应用﹣仰角俯角问题,正确添加辅助线构建直角三角形、熟练掌握和灵活运用相关知识是解题的关键.19、(1)见解析;(2)60°.【解题分析】(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明;(2)连结BF,交AE于G.根据菱形的性质得出AB=2,AG=AE=,∠BAF=2∠BAE,AE⊥BF.然后解直角△ABG,求出∠BAG=30°,那么∠BAF=2∠BAE=60°.【题目详解】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD ∥BC ,∴∠EAF=∠AEB=∠EAB ,∴BE=AB=AF .∵AF ∥BE ,∴四边形ABEF 是平行四边形,∵AB=BE ,∴四边形ABEF 是菱形;(2)连结BF ,交AE 于G .∵AB=AF=2,∴GA=AE=×2=,在Rt △AGB 中,cos ∠BAE==, ∴∠BAG=30°,∴∠BAF=2∠BAG=60°,【题目点拨】本题考查了平行四边形的性质与菱形的判定与性质,解题的关键是熟练的掌握平行四边形的性质与菱形的判定与性质. 20、x n+1-1【解题分析】试题分析:观察其右边的结果:第一个是2x ﹣1;第二个是3x ﹣1;…依此类推,则第n 个的结果即可求得. 试题解析:(x ﹣1)(n x +1n x -+…x+1)=11n x +-.故答案为11n x +-.考点:平方差公式.21、(1)3(2)11a a +-. 【解题分析】(1)根据幂的乘方、零指数幂、特殊角的三角函数值和绝对值可以解答本题;(3)根据分式的减法和除法可以解答本题.【题目详解】(1)())022π12sin60︒-++-=4+1+|1﹣=4+1+|1﹣1(2)2a 12a 1a a a --⎛⎫÷- ⎪⎝⎭ =()()2a 1a 1a 2a 1a a+--+÷ =()()()2a 1a 1a ·a a 1+-- =a 1a 1+-. 【题目点拨】本题考查分式的混合运算、实数的运算、零指数幂、特殊角的三角函数值和绝对值,解答本题的关键是明确它们各自的计算方法.22、(1)反比例函数的解析式为y=﹣3x ;(2)D (﹣2,32);﹣2<x <0或x >3;(3)P (4,0). 【解题分析】试题分析:(1)把点B (3,﹣1)带入反比例函数1m y x=中,即可求得k 的值; (2)联立直线和反比例函数的解析式构成方程组,化简为一个一元二次方程,解方程即可得到点D 坐标,观察图象可得相应x 的取值范围;(3)把A (1,a )是反比例函数1m y x=的解析式,求得a 的值,可得点A 坐标,用待定系数法求得直线AB 的解析式,令y=0,解得x 的值,即可求得点P 的坐标. 试题解析:(1)∵B (3,﹣1)在反比例函数1m y x =的图象上, ∴-1=m 3, ∴m=-3, ∴反比例函数的解析式为3y x =-;(2)31122y x y x ⎧=-⎪⎪⎨⎪=-+⎪⎩, ∴3x -=1122x -+, x 2-x-6=0,(x-3)(x+2)=0,x 1=3,x 2=-2,当x=-2时,y=32, ∴D (-2,32); y 1>y 2时x 的取值范围是-2<x<0或x>32; (3)∵A (1,a )是反比例函数1m y x =的图象上一点, ∴a=-3,∴A (1,-3),设直线AB 为y=kx+b,331k b k b +=-⎧⎨+=-⎩, ∴14k b =⎧⎨=-⎩, ∴直线AB 为y=x-4,令y=0,则x=4,∴P(4,0)23、(1)作图见解析;(2,1)B .(2)作图见解析;(3)1.【解题分析】分析:(1)直接利用A ,C 点坐标得出原点位置进而得出答案;(2)利用位似图形的性质即可得出△A'B'C';(3)直接利用(2)中图形求出三角形面积即可.详解:(1)如图所示,即为所求的直角坐标系;B (2,1);(2)如图:△A'B'C'即为所求;(3)S△A'B'C'=12×4×8=1.点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.24、(1)a=6,b=8;(2)()28001064160(10)x xyx x⎧≤≤=⎨+>⎩;(3)A团有20人,B团有30人.【解题分析】(1)根据函数图像,用购票款数除以定价的款数,计算即可求得a的值;用11人到20人的购票款数除以定价的款数,计算即可解得b的值;(2)分0≤x≤10与x>10,利用待定系数法确定函数关系式求得y2的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50-n),然后分0≤x≤10与x>10两种情况,根据(2)中的函数关系式列出方程求解即可.【题目详解】(1)由y1图像上点(10,480),得到10人的费用为480元,∴a=480106 800⨯=;由y2图像上点(10,480)和(20,1440),得到20人中后10人的费用为640元,∴b=640108 800⨯=;(2)0≤x≤10时,设y2=k2x,把(10, 800)代入得10k2=800, 解得k2=80,∴y2=80x,x>10,设y2=kx+b,把(10, 800)和(20,1440)代入得10800201440k b k b +=⎧⎨+=⎩解得64160k b =⎧⎨=⎩∴y 2=64x+160∴()28001064160(10)x x y x x ⎧≤≤=⎨+>⎩(3)设B 团有n 人,则A 团的人数为(50-n )当0≤n≤10时80n+48(50-n )=3040,解得n=20(不符合题意舍去)当n >10时801064n 104850n 3040⨯+-+-=()(),解得n=30.则50-n=20人,则A 团有20人,B 团有30人.【题目点拨】此题主要考查一次函数的综合运用,解题的关键是熟知待定系数法确定函数关系式.。

2024年黑龙江省齐齐哈尔市铁锋区中考二模数学试题(含答案)

初三教学质量监测数学试卷考生注意:1.考试时间120分钟.2.全卷共三道大题,总分120分.三题号一二18192021222324总分得分一、选择题(每小题3分,共30分)1.下列各式中,最简二次根式为( )ABCD2.下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.不等式组的解集在数轴上表示正确的是( )A .B .C .D .4.从一副扑克牌中取出两组脾,其中一组是黑桃A (算1)、2、3、4、5,另一组是方块A 、2、3、4、5,将两组扑克的背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于4的概率是( )A .B .C .D .5.九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个”.上面两名同学的议论能反映出的统计量是( )A .平均数和众数B .众数和方差C .中位数和极差D .众数和极差6.为迎接端午节,超市用一些装有同种饮料的正方体纸箱做造型,其俯视图如图所示,其中正方形中的数字表示该位置上的正方体纸箱的个数,那么该造型的左视图是( )13x x -⎧⎨<⎩≥32515144256题图A .B .C .D .7.足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是( )A .1或2B .2或3C .3或4D .4或58.如图,在矩形ABCD 中,AB =4,AD =3,连接BD ,分别以B ,D为圆心,大于的长为半径作弧,两弧交于点E ,F ,作直线EF 分别交线段AB ,BD 于点G ,H .连接CH ,则四边形BCHG 的周长为( )8题图A .B .11C .D .9.如图①,E 为矩形.ABCD 边AD 上一点,点P 从点B 沿折线BE -ED -DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm /s 。

(中考精品卷)黑龙江省齐齐哈尔市中考数学真题(解析版)

二〇二二年齐齐哈尔市初中学业考试数学试卷考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分3.使用答题卡的考生,请将答案填写在答题卡的指定位置一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1. 2022-的倒数是( )A. 2022B. 2022-C. 12022D. 12022- 【答案】D【解析】【分析】根据倒数定义解答.【详解】解:-2022的倒数是12022-, 故选:D .【点睛】此题考查了倒数的定义,熟记定义是解题的关键.2. 下面四个交通标志中,是中心对称图形的是( )A. B. C. D.【答案】A【解析】【分析】根据中心对称图形的概念判断即可.【详解】A :图形旋转180°后能与原图形重合,故是中心对称图形;B :图形旋转180°后不能与原图形重合,故不是中心对称图形;C :图形旋转180°后不能与原图形重合,故不是中心对称图形;D :图形旋转180°后不能与原图形重合,故不是中心对称图形;故选:A .【点睛】本题考查了中心对称图形的概念,绕对称中心旋转180°后能与原图形重合是中心对称图形,熟知其概念是解题的关键.3. 下列计算正确的是( )A. 2ab ab b ÷=B. 222()a b a b -=-C. 448235m m m +=D. 33(2)6-=-a a 【答案】A【解析】【分析】根据单项式除以单项式,完全平方公式,合并同类项,有理数的乘方的运算法则进行计算求解即可.【详解】解:A 中2ab ab b ÷=,正确,故符合题意;B 中()222222-=-+≠-a b a ab b a b ,错误,故不符合题意;C 中44482355m m m m +=≠,错误,故不符合题意;D 中()333286a a a -=-≠-,错误,故不符合题意;故选A .【点睛】本题考查了单项式除以单项式,完全平方公式,合并同类项以及有理数的乘方.解题的关键在于熟练掌握运算法则并正确的计算.4. 数据1,2,3,4,5,x 存在唯一众数,且该组数据的平均数等于众数,则x 的值为( )A. 2B. 3C. 4D. 5 【答案】B【解析】 【分析】由题意知,该组数据的平均数为123451566x x ++++++=,且3x +是6的倍数,然后根据题意求解即可. 【详解】解:由题意知,该组数据的平均数为123451532666x x x +++++++==+, ∴3x +是6的倍数,且x 是1-5中的一个数,解得3x =,则平均数是3.故选B .【点睛】本题考查了平均数与众数.解题的关键在于熟练掌握众数与平均数的定义与求解.5. 由一些大小相同的小正方体搭成的几何体的主视图、左视图和俯视图都是如图所示的“田”字形,则搭成该几何体的小正方体的个数最少为( )A. 4个B. 5个C. 6个D. 7个【答案】C【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出第二层的个数,从而算出总的个数.【详解】解:由题中所给出的左视图知物体共两层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少2+4=6.故选:C.【点睛】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.6. 在单词statistics(统计学)中任意选择一个字母,字母为“s”的概率是()A.110B.15C.310D.25【答案】C【解析】【分析】由题意知,任意选择一个字母有10种等可能的结果,字母为“s”有3种等可能的结果,然后根据概率公式求解即可.【详解】解:由题意知,概率为3 10,故选C.【点睛】本题考查了简单的概率计算.解题的关键在于明确字母“s”的可能的结果与任意选择一个字母的所有可能的结果.7. 如图所示,直线a∥b,点A在直线a上,点B在直线b上,AC=BC,∠C=120°,∠1=43°,则∠2的度数为()A. 57°B. 63°C. 67°D. 73°【答案】D【解析】 【分析】根据等腰三角形的性质可求出30ABC ∠=︒,可得出+173ABC ∠∠=︒,再根据平行线的性质可得结论.【详解】解:∵AC =BC ,∴ABC ∆是等腰三角形,∵=120C ∠︒ ∴11(180)(180120)3022ABC C ∠=︒-∠=︒-︒=︒ ∴1304373ABC ∠+∠=︒+︒=︒∵a ∥b ,∴2173ABC ∠=∠+∠=︒故选:D【点睛】本题主要考查了等腰三角形的判定与性质,以及平行线的性质,求出173ABC ∠+∠=︒是解答本题的关键.8. 如图①所示(图中各角均为直角),动点Р从点A 出发,以每秒1个单位长度的速度沿A →B →C →D →E 路线匀速运动,△AFP 的面积y 随点Р运动的时间x (秒)之间的函数关系图象如图②所示,下列说法正确的是( )A. AF =5B. AB =4C. DE =3D. EF =8【答案】B【解析】 【分析】路线为A →B →C →D →E ,将每段路线在坐标系中对应清楚即可得出结论.【详解】解:坐标系中(4,12)对应点运动到B 点144AB v t =⋅=⨯=B 选项正确12ABF S AB AF =⋅△ 即:11242AF =⨯⋅ 解得:6AF =A 选项错误12~16s 对应的DE 段1(1612)4DE v t =⋅=⨯-=C 选项错误6~12s 对应的CD 段1(126)6CD v t =⋅=⨯-=4610EF AB CD =+=+=D 选项错误故选:B . 【点睛】本题考查动点问题和坐标系,将坐标系中的图象与点的运动过程对应是本题的解题关键.9. 端午节前夕,某食品加工厂准备将生产的粽子装入A 、B 两种食品盒中,A 种食品盒每盒装8个粽子,B 种食品盒每盒装10个粽子,若现将200个粽子分别装入A 、B 两种食品盒中(两种食品盒均要使用并且装满),则不同的分装方式有( )A. 2种B. 3种C. 4种D. 5种【答案】C【解析】【分析】设使用A 食品盒x 个,使用B 食品盒y 个,根据题意列出方程,求解即可.【详解】设使用A 食品盒x 个,使用B 食品盒y 个,根据题意得,8x +10y =200,∵x 、y 都为正整数, ∴解得204x y =⎧⎨=⎩,158x y =⎧⎨=⎩,1012x y =⎧⎨=⎩,516x y =⎧⎨=⎩, ∴一共有4种分装方式;故选:C .【点睛】本题考查了二元一次方程的实际问题,解题的关键是明确题意列出方程. 10. 如图,二次函数2y ax bx c =++(0)a ≠的图象与y 轴的交点在(0,1)与(0,2)之间,对称轴为1x =-,函数最大值为4,结合图象给出下列结论:①2b a =;②32a -<<-;③24<0ac b -;④若关于x 的一元二次方程24ax bx c m ++=- (0)a ≠有两个不相等的实数根,则m >4;⑤当x <0时,y 随x 的增大而减小.其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个【答案】B【解析】 【分析】根据二次函数图象与性质逐个结论进行分析判断即可.【详解】解:∵二次函数2y ax bx c =++(0)a ≠的对称轴为1x =-,∴1,2b x a=-=- ∴2,b a =故①正确;∵函数图象开口向下,对称轴为1x =-,函数最大值为4,∴函数的顶点坐标为(-1,4)当x =-1时,4-+=a b c∴24a a c -+=∴4c a =+,∵二次函数2y ax bx c =++(0)a ≠的图象与y 轴的交点在(0,1)与(0,2)之间, ∴1<c <2∴1<4+a <2∴32a -<<-,故②正确;∵抛物线与x 轴有两个交点,∴240b ac ->∴24<0ac b -,故③正确;∵抛物线的顶点坐标为(-1,4)且方程24ax bx c m ++=-有两个不相等的实数根, ∴044m <-<∴48m <<,故④错误;由图象可得,当x >-1时,y 随x 的增大而减小,故⑤错误.所以,正确的结论是①②③,共3个,故选:B【点睛】本题主要考查了二次函数图象与性质,,熟练掌握二次函数的图象与性质是解答本题的关键.二、填空题(每小题3分.满分21分)11. 据统计,2022届高校毕业生规模预计首次突破千万,约为10760000 人,总量和增量均为近年之最.将10760000用科学记数法表示为______________.【答案】1.076×107【解析】 【分析】根据科学记数法的表示形式为()10110n a a ⨯<≤,要表示的数为正整数,将小数点放在第一个数的后面,n 等于第一个数后面的数的个数.【详解】解:10760000=71.07610⨯,故答案为:71.07610⨯【点睛】本题考查科学记数法,掌握科学记数法的表示形式,确定a 和n 的值是关键.12. 如图,在四边形ABCD 中,AC ⊥BD ,垂足为O ,AB CD ,要使四边形ABCD 为菱形,应添加的条件是______________.(只需写出一个条件即可)【答案】AB =CD 或AD ∥BC 或OA =OC 或OB =OD 等(只需写出一个条件即可)【解析】【分析】由菱形的判定方法进行判断即可.【详解】解:可以添加的条件是:AB =CD ,理由如下:∵AB CD ,∴四边形ABCD 是平行四边形,∵AC ⊥BD ,∴四边形ABCD 是菱形;也可以添加条件是:AD BC ∥,利用如下:∵AB CD ,∴四边形ABCD 是平行四边形,∵AC ⊥BD ,∴四边形ABCD 是菱形;也可以添加的条件是OA =OC ,利用如下:∵AB CD ,∴OAB OCD ∠=∠,OBA ODC ∠=∠,∴OAB OCD ∆∆≌(AAS ),∴AB =CD ,∴四边形ABCD 是平行四边形,∵AC ⊥BD ,∴四边形ABCD 是菱形;也可以添加的条件是OB =OD ,利用如下:∵AB CD ,∴OAB OCD ∠=∠,OBA ODC ∠=∠,∴OAB OCD ∆∆≌(AAS ),∴AB =CD ,∴四边形ABCD 是平行四边形,∵AC ⊥BD ,∴四边形ABCD 是菱形.故答案为:AB =CD 或AD ∥BC 或OA =OC 或OB =OD 等.(只需写出一个条件即可)【点睛】本题考查了菱形的判定、平行四边形的判定与性质等知识,熟练掌握平行四边形的判定,熟记“对角线互相垂直的平行四边形为菱形”,是解题的关键.13. 已知圆锥的母线长为5,cm 高为4,cm 则该圆锥侧面展开图的圆心角是________________________.【答案】216【解析】【分析】先根据勾股定理算出圆锥底面圆的半径,然后算出弧长,再根据弧长公式反推出圆心角.【详解】解:根据母线和高,用勾股定理可以算出圆锥底面圆的半径3r ==, 则展开之后扇形的弧长就等于底面圆的周长26C r ππ==, 再根据弧长公式180n R l π=︒,得到56180n ππ=︒,算出216n =︒. 故答案是:216︒.【点睛】本题考查扇形和圆锥有关的计算,解题的关键是要熟悉扇形和圆锥之间的关系以及有关的计算公式.14. 若关于x 的分式方程2122224x m x x x ++=-+-的解大于1,则m 的取值范围是______________.【答案】m >0且m ≠1【解析】【分析】先解分式方程得到解为1x m =+,根据解大于1得到关于m 的不等式再求出m 的取值范围,然后再验算分母不为0即可.【详解】解:方程两边同时乘以()()22x x +-得到:22(2)2x x x m ++-=+, 整理得到:1x m =+,∵分式方程的解大于1,∴11m +>,解得:0m >,又分式方程的分母不为0,∴12m +¹且12m +¹-,解得:1m ≠且3m ≠-,∴m 的取值范围是m >0且m ≠1.【点睛】本题考查分式方程的解法,属于基础题,要注意分式方程的分母不为0这个隐藏条件.15. 如图,点A 是反比例函数(0)k y x x=<图象上一点,过点A 作AB ⊥y 轴于点D ,且点D 为线段AB 的中点.若点C 为x 轴上任意一点,且△ABC 的面积为4,则k =______________.【答案】4-【解析】 【分析】设点,k A a a ⎛⎫ ⎪⎝⎭,利用()1242=⨯-⨯=ABC k S a a △即可求出k 的值. 详解】解:设点,k A a a ⎛⎫ ⎪⎝⎭, ∵点D 为线段AB 的中点.AB ⊥y 轴∴22AB AD a ==-, 又∵()1242=⨯-⨯=ABC k S a a△, ∴4k =-.故答案为:4-【点睛】本题考查利用面积求反比例函数的k 的值,解题的关键是找出()1242=⨯-⨯=ABC k S a a△. 16. 在△ABC中,AB =,6AC =,45B ∠= ,则BC =______________.【答案】3+或3-【解析】【分析】画出图形,分△ABC 为锐角三角形和钝角三角形两种情况讨论即可.【详解】解:情况一:当△ABC 为锐角三角形时,如图1所示:【过A 点作AH ⊥BC 于H , ∵∠B =45°,∴△ABH 为等腰直角三角形,∴AH BH ==,在Rt △ACH 中,由勾股定理可知:3CH =,∴3BC BH CH =+=.情况二:当△ABC 为钝角三角形时,如图2所示:由情况一知:AH BH ===3CH =,∴3BC BH CH =-=-.故答案为:3+或3.【点睛】本题考察了等腰直角三角形的性质及勾股定理的应用,本题的关键是能将△ABC 分成锐角三角形或钝角三角形分类讨论.17. 如图,直线:l y x =+与x 轴相交于点A ,与y 轴相交于点B ,过点B 作1BC l ⊥交x 轴于点1C ,过点1C 作11B C x ⊥轴交l 于点1B ,过点1B 作12B C l ⊥交x 轴于点2C ,过点2C 作22B C x ⊥轴交l 于点2B …,按照如此规律操作下去,则点2022B 的纵坐标是______________.【答案】202243⎛⎫⎪⎝⎭【解析】【分析】先根据30°的特殊直角三角形,如AOB ,1BAC ,1BOC △,11BC B △求出B 点,B 1点的纵坐标,发现规律,即可【详解】∵:l y x =+当0y =时,3x =-当0x =时,y =故(3,0)A -,B ∴AOB 为30°的直角三角形 ∴30BAO ∠=︒ ∵1BC l ⊥∴1BAC 为30°的直角三角形 ∴160OC B ∠=︒∴1BOC △为30°的直角三角形1BC =∵11B C x ⊥轴 ∴11B C BO ∥ ∴111B C B C BO ∠=∠11BC B △为30°的直角三角形211143B C OB OB === 同理:2222121143B C C B C OB ⎛⎫=== ⎪⎝⎭33343B C OB ⎛⎫= ⎪⎝⎭…43nn n B C OB ⎛⎫= ⎪⎝⎭故:20222022202220224433B C OB ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭故答案为:202243⎛⎫⎪⎝⎭【点睛】本题考查30°的特殊直角三角形;注意只用求点2022B 的纵坐标,即20222022B C 长度三、解答题(本题共7道大题,共69分)18. (1)计算: 211)|2|tan 603-⎛⎫-++-+ ⎪⎝⎭(2)因式分解:3269x y x y xy -+ 【答案】(1)12(2)()23xy x - 【解析】【分析】(1)根据零指数幂、负整数指数幂、绝对值和特殊角的三角函数值计算即可; (2)先提公因式,再根据完全平方公式因式分解即可.【详解】(1)原式192=+++12=; (2)原式()269xy x x =-+()23xy x =-.【点睛】本题考查了特殊角的三角函数值、零指数幂、负整数指数幂、绝对值以及因式分解,熟知各运算法则是解题的关键. 19. 解方程:22(23)(32)x x +=+ 【答案】11x =-,21x = 【解析】【分析】直接开方可得2332x x +=--或2332x x +=+,然后计算求解即可. 【详解】解:∵22(23)(32)x x +=+ ∴2332x x +=--或2332x x +=+ 解得11x =-,21x =.【点睛】本题考查了解一元二次方程.解题的关键在于灵活选取适当的方法解方程. 20. “双减”政策实施后,某校为了解本校学生每天课后进行体育锻炼的时间情况,在5月份某天随机抽取了若干名学生进行调查,现将调查结果绘制成两幅尚不完整的统计图表.请根据统计图表提供的信息,回答下列问题: 组别锻炼时间(分钟)频数(人)百分比A 030x ≤≤50 25% B 3060x <≤ m 40% C 6090x <≤ 40 p D90x >n15%(1)表中m = ,n = ,p = ;(2)将条形图补充完整;(3)若制成扇形图,则C 组所对应的圆心角为°;(4)若该校学生有2000人,请根据以上调查结果估计:该校每天课后进行体育锻炼的时间超过60分钟的学生约有多少人? 【答案】(1)80,30,20% (2)见解析(3)72°(4)估计该校每天课后进行体育锻炼的时间超过60分钟的学生大约有700人 【解析】【分析】(1)、根据统计表用A 组人数除以其所占的百分比计算出总人数,即可求解; (2)、根据(1)求出的人数补全条形统计图; (3)、用C 组所占的百分比乘以360︒即可求解;(4)、先算出样本中每天课后进行体育锻炼的时间超过60分钟的学生所占百分比,再乘以全校人数即可求得. 【小问1详解】解:总人数为:5025%200÷=(人), B 组的人数为:20040%80m =⨯=(人), D 组的人数为:20015%30n =⨯= (人), C 组所占的百分比为:40100%20%200p =⨯= ;故答案为:80,30,20% ; 【小问2详解】由(1)可知,B 组人数为80人,D 组人数为30人, 补全条形统计图,如图所示:【小问3详解】C 组所对应的圆心角为:20%36072⨯︒=︒ , 故答案为:72︒ ; 【小问4详解】该校每天课后进行体育锻炼的时间超过60分钟的学生约有:(20%15%)2000700+⨯= (人).【点睛】本题考查了统计表,条形统计图,扇形统计图圆心角的计算,样本估计总体等知识,熟练掌握以上知识点并灵活运用是解题的关键.21. 如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O ,AC 与⊙O 交于点D ,BC 与⊙O 交于点E ,过点C 作CF AB ∥,且CF =CD ,连接BF .(1)求证:BF 是⊙O 的切线;(2)若∠BAC =45°,AD =4,求图中阴影部分的面积.【答案】(1)见解析 (2)π-【解析】【分析】(1)连接BD ,得90BDA ∠=︒;利用AB =AC 得到A ABC CB =∠∠,由CF AB ∥得到FCB ABC ∠=∠,故FCB ACB ∠=∠;利用SAS 证明BCF BCD ≌△△,得到90F BDC ∠=∠=︒,最后CF AB ∥同旁内角互补,即可得90ABF ∠=︒(2)连接OE ,与BD 相交于M 点,根据∠BAC =45°,得ABD △是等腰直角三角形,由AD =4,得AB ,OB ,OE 长度;ABC 和OBE △是共一底角的等腰三角形,故45BOE BAC ∠=∠=︒,OE AC ∥,90OMB ADB ∠=∠=︒,OBM 是等腰直角三角形,即可算出阴影部分面积 【小问1详解】 连接BD∵AB 是O 的直径 ∴90BDA ∠=︒ ∴90BDC ∠=︒ ∵AB AC = ∴A ABC CB =∠∠ ∵CF AB ∥∴FCB ABC ∠=∠,180ABF F ∠+∠=︒ ∴FCB ACB ∠=∠ ∵CF CD =,BC BC = ∴()BCF BCD SAS ≌△△ ∴90F BDC ∠=∠=︒ 又∵180ABF F ∠+∠=︒ ∴90ABF ∠=︒ ∴BF 是O 的切线 【小问2详解】连接OE ,与BD 相交于M 点∵90BDA ∠=︒,45BAC ∠=︒,4=AD ∴ADB △为等腰直角三角形 ∴4BD AD ==,AB ==,45OBM ∠=︒∴OB =∴OE OB == ∴OEB ABC ∠=∠∵AB AC =,45BAC ∠=︒ ∴45BOE BAC ∠=∠=︒ ∴OE AC ∥∴90OMB ADB ∠=∠=︒ ∴OMB △为等腰直角三角形 ∴2BM OM ==∴OBEOAB S S S π∆=-==-阴影扇形【点睛】本题考查圆,全等三角形,等腰直角三角形,等腰三角形;熟练运用各种几何知识本题关键22. 在一条笔直的公路上有A 、B 两地,甲、乙二人同时出发,甲从A 地步行匀速前往B 地,到达B 地后,立刻以原速度沿原路返回A 地.乙从B 地步行匀速前往A 地(甲、乙二人到达A 地后均停止运动),甲、乙二人之间的距离y (米)与出发时间x (分钟)之间的函数关系如图所示,请结合图像解答下列问题:(1)A 、B 两地之间的距离是 米,乙的步行速度是米/分;(2)图中a =,b =,c =;(3)求线段MN 的函数解析式;(4)在乙运动的过程中,何时两人相距80米?(直接写出答案即可) 【答案】(1)1200,60是(2)900,800,15(3)y =-20x +1200(15≤x≤20)(4)8分钟,647分钟 【解析】【分析】(1)分析图像,出发前两人之间的距离即为A 、B 两地之间的距离,为1200米,乙经过20分钟时到达A 地,所以乙的速度为可计算出来; (2)由函数图像可知,经过607分钟时两人相遇,则可算出甲的速度,经过c 分钟时两人距离重新达到最大,此时甲到达B 地,则可求出a ,经过20分钟时乙到达A 地,此时两人相距b 米,利用甲乙的速度即可算出b ;(3)由(2)可知M 、N 的坐标,设出MN 的一般解析式,将M 、N 的坐标代入即可求出;(4)设经过x 分钟两人相距80米,根据两人相遇前和相遇后都可相距80米分别列方程即可求出. 【小问1详解】由函数图像可知,最开始时甲乙两人之间的距离为1200米,因为甲从A 地出发,乙从B 地出发,两人最开始时的距离就是A 、B 两地之间的距离, 所以A 、B 两地之间距离为1200米; 由图像可知乙经过20分时到达A 地, ∴乙的步行速度为12006020=(米/分); 故答案为:1200,60; 【小问2详解】 由函数图像可知,经过607分钟时两人相遇,经过c 分钟时两人距离重新达到最大,此时甲到达B 地,乙未到达A 地,经过20分钟时乙到达A 地,此时两人相距b 米, 设甲的步行速度为x 米/分,则()606012007x +=, 解得:x =80(米/分) ∴12001580c ==(分), 1560900a =⨯=(米),1200(80201200)800b =-⨯-=(米).故答案为:900,800,15;小问3详解】由(2)可知,M 、N 的坐标分别为M (15,900),N (20,800), 设线段MN 的解析式为y =kx +b (1520x ≤≤),则有1590020800k b k b +=⎧⎨+=⎩ , 解得:201200k b =-⎧⎨=⎩∴线段MN 的函数解析式是y =-20x +1200(15≤x ≤20) 【小问4详解】设经过x 分钟两人相距80米,两人相遇前和相遇后都可相距80米, 相遇前:1200-(60+80)x =80,解得:x =8; 相遇后:(60+80)x -1200=80,解得:x =647, 所以经过8分钟和647分钟时两人相距80米. 【点睛】本题考查了一次函数的应用,解题关键是通过函数图像分析出各个点对应的情况.23. 综合与实践数学是以数量关系和空间形式为主要研究对象的科学.数学实践活动有利于我们在图形运动变化的过程中去发现其中的位置关系和数量关系,让我们在学习与探索中发现数学的美,体会数学实践活动带给我们的乐趣.如图①,在矩形ABCD 中,点E 、F 、G 分别为边BC 、AB 、AD 的中点,连接EF 、DF ,H 为DF 的中点,连接GH .将△BEF 绕点B 旋转,线段DF 、GH 和CE 的位置和长度也随之变化.当△BEF 绕点B 顺时针旋转90°时,请解决下列问题:【(1)图②中,AB =BC ,此时点E 落在AB 的延长线上,点F 落在线段BC 上,连接AF ,猜想GH 与CE 之间的数量关系,并证明你的猜想; (2)图③中,AB =2,BC =3,则GHCE= ;(3)当AB =m , BC =n 时.GHCE= .(4)在(2)的条件下,连接图③中矩形的对角线AC ,并沿对角线AC 剪开,得△ABC (如图④).点M 、N 分别在AC 、BC 上,连接MN ,将△CMN 沿 MN 翻折,使点C 的对应点P 落在AB 的延长线上,若PM 平分∠APN ,则CM 长为 .【答案】(1)12GH CE =,证明见解析 (2)13GH CE = (3)2GH mCE n=(4 【解析】【分析】(1)先证明△ABF ≌△CBE ,得AF =CE ,再根据中位线性质得GH =12AF ,等量代换即可;(2)连接AF ,先证明△ABF ∽△CBE ,得到AF :CE 的比值,再根据中位线性质得GH =12AF ,等量代换即可; (3)连接AF ,先证明△ABF ∽△CBE ,用含m 、n 的代数式表达出AF :CE 的比值,再根据中位线性质得GH =12AF ,等量代换即可; (4)过M 作MH ⊥AB 于H ,根据折叠性质得∠C =∠MPN ,根据角平分线证明出∠C =∠PMH ,设CM =PM =x ,HM =y ,根据三角函数定义找到x 、y 之间的关系,再利用△AHM ∽△ABC ,得到C M BC H AM A =,代入解方程即可. 【小问1详解】 解:12GH CE =,理由如下: ∵AB =BC ,四边形ABCD 为矩形,∴四边形ABCD 为正方形,∴∠ABC =∠CBE =90°,∵E 、F 为BC ,AB 中点,∴BE =BF ,∴△ABF ≌△CBE ,∴AF =CE ,∵H 为DF 中点,G 为AD 中点,∴GH =12AF , ∴12GH CE =. 【小问2详解】 解:13GH CE =, 连接AF ,如图所示,由题意知,BF =12AB =1,BE =12BC =32, ∴23AB BF BC BE ==, 由矩形ABCD 性质及旋转知,∠ABC =∠CBE =90°,∴△ABF ∽△CBE ,∴AF :CE =2:3,∵G 为AD 中点,H 为DF 中点,∴GH =12AF , ∴13GH CE =. 故答案为:13. 【小问3详解】 解:2GH m CE n=, 连接AF ,如图所示,由题意知,BF =12AB =2m ,BE =12BC =2n , ∴AB BF m BC BE n==, 由矩形ABCD 性质及旋转知,∠ABC =∠CBE =90°,∴△ABF ∽△CBE ,∴AF :CE =m :n ,∵G 为AD 中点,H 为DF 中点,∴GH =12AF , ∴2GH m CE n=.故答案为:2m n. 【小问4详解】解:过M 作MH ⊥AB 于H ,如图所示,由折叠知,CM =PM ,∠C =∠MPN ,∵PM 平分∠APN ,∴∠APM =∠MPN ,∴∠C =∠APM ,∵AB =2,BC =3,∴AC =设CM =PM =x ,HM =y ,由sin sin C APM ∠=∠知,AB HM AC PM=,y x =,y =, ∵HM ∥BC ,∴△AHM ∽△ABC , ∴CM BC H AM A =,即3y =,3y =⨯,3=解得:x ,. 【点睛】本题考查了正方形性质、三角形中位线性质、折叠性质、全等三角形判定与性质、相似三角形的性质与判定、三角函数定义等知识点,找到相似三角形是解题关键. 24. 综合与探究如图,某一次函数与二次函数2y x mx n =++的图象交点为A (-1,0),B (4,5).(1)求抛物线的解析式;(2)点C 为抛物线对称轴上一动点,当AC 与BC 的和最小时,点C 的坐标为 ;(3)点D 为抛物线位于线段AB 下方图象上一动点,过点D 作DE ⊥x 轴,交线段AB 于点E ,求线段DE 长度最大值;(4)在(2)条件下,点M 为y 轴上一点,点F 为直线AB 上一点,点N 为平面直角坐标系内一点,若以点C ,M ,F ,N 为顶点的四边形是正方形,请直接写出点N 的坐标.【答案】(1)223y x x =--(2)(1,2) (3)254(4)123415(1,1),(1,2),(1,4),,22N N N N ⎛⎫- ⎪⎝⎭【解析】【分析】(1)将A (-1,0),B (4,5)代入2y x mx n =++得到关于m ,n 的二元一次方程组求解即可;(2)抛物线的对称轴为1x =,求出直线AB 与对称轴的交点即可求解;的(3)设()2,23D d d d --,则(,1)E d d +,则()22(1)2334(14)DE d d d d d d =+---=-++-<<,根据二次函数的性质求解即可; (4)根据题意画出图形,分情况求解即可.【小问1详解】解:将A (-1,0),B (4,5)代入2y x mx n =++得,101645m n m n -+=⎧⎨++=⎩, 解这个方程组得23m n =-⎧⎨=-⎩, ∴抛物线的解析式为:223y x x =--;小问2详解】解:如图,设直线AB 的解析式为:y kx b =+,把点 A (-1,0),B (4,5)代入y kx b =+,得045k b k b -+=⎧⎨+=⎩, 解得11k b =⎧⎨=⎩, ∴ 直线AB 的解析式为:1y x =+ ,由(1)知抛物线223y x x =--的对称轴为2121x -=-=⨯, 点C 为抛物线对称轴上一动点,AC BC AB +≥,∴ 当点C 在AB 上时,AC BC +最小,把x =1代入1y x =+,得y =2,∴点C 的坐标为(1,2);【【小问3详解】解:如图,由(2)知 直线AB 的解析式为y =x +1设()2,23D d d d --,则(,1)E d d +,则()22(1)2334(14)DE d d d d d d =+---=-++-<<, 当32d =时,DE 有最大值为254,【小问4详解】解:如图, 直线AB 的解析式为:y =x +1,∴ 直线与y 轴的交点为D (0,1),1OD =(1,0)A - ,1OA =∴ ,45OA OD DAO ADO =∠=∠=︒,若以点C ,M ,F ,N 为顶点的四边形是正方形,分情况讨论:①过点C 作1CM y ⊥轴于点1M ,则1DM C ∆为等腰直角三角形,过点C 作11CN DN ⊥ ,则四边形11CM DN 为正方形,依题意,知D 与F 重合,点1N 的坐标为(1,1);②以1M 为中心分别作点F ,点C 点的对称点22,M N ,连接2222,,CM M N N F ,则四边形22M N FC 是正方形,则点2N 的坐标为(-1,2);③延长22N M 到3N 使322N M M C =,作31N F AB ⊥于点1F ,则四边形231M N F C 是正方形,则3N 的坐标为(1,4);④取2M C 的中点4N ,FC 的中点2F ,则124M F CN 为正方形,则4N 的坐标为15,22⎛⎫ ⎪⎝⎭,综上所述,点N 的坐标为:123415(1,1),(1,2),(1,4),,22N N N N ⎛⎫- ⎪⎝⎭【点睛】本题考查了用待定系数法求一次函数和二次函数的解析式,二次函数的性质,正方形的判定,根据题意正确画图是解本题的关键。

【中考冲刺】2023年黑龙江省齐黑大地区中考数学模拟试卷(附答案)

2023年黑龙江省齐黑大地区中考数学模拟试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.-2021的绝对值是()A.2021-B.12021-C.2021D.120202.下列图形中,是轴对称图形,但不是中心对称图形的个数有()A.1个B.2个C.3个D.4个3.下列运算正确的是()A.x3•x﹣2=x5B.(x2)3•(﹣2x)2=4x8C.x4+x2=x6D.(12-)﹣2÷(π﹣2021)014=-4.三辆车在路上行驶,前方有直行、左转、右转三个路口,选择每个路口的可能性相同,则三辆车中有两辆车左转、一辆车右转的概率是()A.19B.127C.13D.2275.如图,边长为2的菱形ABCD中,∠B=120°,点E,F,G,H分别在边AB,BC,CD,DA上,且AE=AH=CF=CG=x,若四边形EFGH的面积为S,则S与x 的函数图象是()A.B.C.D.6.若干个相同的小正方体组成一个几何体,它的主视图和左视图相同,如图所示,若组成这个几何体的小正方体的个数最多为a个,最少为b个,a,b为等腰三角形ABC 的边长,则△ABC的周长为()A .23B .31C .23或31D .26或31 7.△ABC 中,∠A =80°,点M 是△ABC 的外心,点N 是△ABC 的内心,连接BM ,CM ,BN ,CN ,则∠BMC 与∠BNC 的差为( )A .30°B .35°C .40°D .45°8.若关于x 的分式方程22139x mx x x -=+--无解,则m 的值为( ) A .﹣3或163-B .163-或23-C .﹣3或163-或23-D .﹣3或23- 9.李老师到体育用品店购买A ,B 两种球类,A 种球每个5元,B 种球每个7元,两种球都买,一共花了200元,则李老师的购买方案有( )A .4种B .5种C .6种D .7种10.对称轴为x =﹣1的抛物线y =ax 2+bx +c (a ≠0)如图所示,与y 轴的交点在(0,12)与(0,32)之间(不含端点),2424b ac a-=-,下列五个结论:∠abc >0;∠若点(12-,y 1)Q (53-,y 2)均在抛物线上,则y 1>y 2;∠(a +c )2>b 2;∠方程ax 2+bx +c 52+=0没有实数根;∠32-<a 12-<,其中结论正确的个数是( )A .1个B .2个C .3个D .4个二、填空题 11.中国成为全球唯一实现经济正增长的主要经济体,据统计,2020年全国经济总量突破100万亿元,数字100万亿元用科学记数法表示为 _____元.12.如图,E ,F 是矩形ABCD 的边AD 和BC 上的两点,连接BE ,DF ,BD ,请添加一个适当的条件,使△BED ∠∠DFB ,_____(填一个即可).13倍,则这个圆锥的高与母线夹角的余弦值是 _____.14.如图,一次函数y ﹣1与坐标轴交于A ,B 两点,以AB 为边作正方形ABCD ,若反比例函数y k x=(k ≠0)经过点C ,则反比例函数的解析式是 _____.15.已知关于x 的一元二次方程x 2﹣(2m ﹣3)x +m 2=0有两个不相等的实数根x 1,x 2,若12111x x +=-,则m 的值为 _____. 16.四边形ABCD 中,AD ∠BC ,AD =4,AB =5,CD =8,BC 边上的高AM =4,则BC 的长为 _____.17.如图,在Rt △ABC 中,∠C =90°,AC=,BC =1,在△ABC 内作第一个正方形CA 1M 1B 1,使点A 1在边AC 上,点M 1在边AB 上,点B 1在边BC 上,再作第二个正方形A 1A 2M 2B 2,使点A 2在边AC 上,点M 2在边AB 上,点B 2在边A 1M 1上…如此下去,则第2021个正方形A 2020A 2021M 2021B 2021的面积为 _____.三、解答题18.(1)计算:﹣22﹣sin45°(2)分解因式:x 2(x ﹣y )+y 2(y ﹣x ).19.解方程:(x -3)2=2x -620.如图,已知∠O 的半径OA =5,延长OA 至B ,使AB 103=,C 为∠O 上一点,连接AC ,cos∠OAC 45=,M 为∠O 上一点,MN ∠OA 于点N ,交AC 于点E ,AE =ME ,连接AM ,CM ,BM .(1)求证:直线BM是∠O的切线;(2)若∠CAM=m°,求图中阴影部分面积(结果保留m,π).21.齐齐哈尔市某中学为了解学生参加户外活动的情况,对全校学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成两幅不完整的频数分布表和扇形统计图,请根据图表信息,回答下列问题:(1)本次被调查的学生有______人,m=______,在扇形统计图中,D组所在扇形的圆心角是______度;(2)被调查的学生每天户外活动时间的中位数出现在______组;(3)被调查的小丽同学接下来的五天户外活动时间(单位:小时)分别为:1.1,0.8,1,0.9,1.2,则这组数据的方差为______;(4)若该校共有3000名学生,请估计该校每天户外活动时间不少于2小时的学生有多少名.22.一辆轿车从甲城驶向乙城,1个小时后,一辆货车从乙城驶向甲城,两车沿相同路线匀速行驶,轿车到达乙城停留一段时间后,按原路原速返回甲城,货车到达甲城比轿车返回甲城早2.5小时,轿车比货车每小时多行驶40千米,两车到达甲城后均停止行驶两车之间的路程y(单位:千米)与轿车的行驶时间x(单位:小时)之间的函数图象如图所示,结合图象信息解答下列问题:(1)甲城和乙城之间的路程为______千米,轿车行驶速度为______千米/时,货车行驶速度为______千米/时;(2)点D的坐标为______;(3)求图象中EF所在直线的函数解析式(不要求写出自变量的取值范围);(4)直接写出货车出发多少小时,轿车距甲城360千米.23.矩形纸片ABCD中,AB=4.实践思考:(1)连接BD,将纸片折叠,使点B落在边AD上,对应点为E,折痕为GH,点G,H分别在AB,BD上.若AD=,如图∠.∠BD=______,tan∠ADB=______;∠若折叠后的∠AGE为等腰三角形,则∠DHE为______三角形;∠隐去点E,G,H,线段GE,EH,折痕GH,如图∠,过点D作DF∠BD交BC的延长线于点F,连接AF,AC,则S△ACF=______;(2)若AD=1)AB,如图∠,点M在AD边上,且AM=AB,连接BM,求∠DBM 的度数;拓展探究:(3)若AD=,如图∠,N为边AD的中点,P为矩形ABCD内一点,连接BP,CP,满足∠BPC=90°,Q是边AB上一动点,则PQ+QN的最小值为______.24.综合与探究:如图,抛物线y1=ax2﹣6ax+c(a≠0)与x轴交于点A,B(点A在点B的右侧),与y轴交于点C,顶点为N,直线y212=-x﹣1与x轴交于点B,与抛物线交于点D,连接BC,DN,sin∠OCB=.(1)求抛物线的解析式;(2)∠点D的坐标为______,DN=______;∠当y1<y2时,自变量x的取值范围是______;(3)若点P在直线AC上,且S△ABP:S△BCP=1:3,求ABAP的值;(4)在第四象限内存在点E,使∠ACE与∠ABC相似,且AC为∠ACE的直角边,请直接写出点E的坐标.参考答案:1.C【解析】【分析】根据绝对值的定义即可得出正确选项.【详解】解:-2021的绝对值是2021故选:C.【点睛】本题考查求绝对值,掌握正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数是解题的关键.2.B【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:∠第1、4个图形是轴对称图形,也是中心对称图形;第2、3个图形是轴对称图形,不是中心对称图形,∠是轴对称图形,但不是中心对称图形的个数有2个.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.B【解析】【分析】根据同底数幂乘法与除法,负整数指数幂、零指数幂及单项式乘单项式的法则进行计算.【详解】解:A、原式=x,故A不符合题意.B、原式=x6•4x2=4x8,故B符合题意.C、x4与x2不是同类项,故不能合并,故C不符合题意.D、原式=4÷1=4,故D不符合题意.故选:B.【点睛】此题考查了同底数幂的乘除法,幂的乘方与积的乘方,以及负指数幂、零指数幂,解题的关键是熟练掌握运算法则.4.D【解析】【分析】画出树状图,可得共有的等可能的结果及其中三辆车中有两辆车左转、一辆车右转,即可求得其概率.【详解】根据题意,可以画出如下的树状图:共有27个等可能的结果,其中三辆车中有两辆车左转、一辆车右转的有2种,则三辆车中有两辆车左转、一辆车右转的概率是227.故选:D.【点睛】本题考查了利用树状图求概率,画出树状画图,解题的关键是找准所有等可能的结果.5.D【解析】根据菱形的性质得到AB=BC=AD=CD=2,求得BE=BF=2−x,过点B作BN∠EF于点N,得到∠BNE=60°,求得NE=x),推出∠AEH、∠CFG是等边三角形,得到EH=FG=x,四边形EFGH是矩形,根据矩形的面积公式即可得到结论.【详解】解:∠四边形ABCD是菱形,∠AB=BC=AD=CD=2,∠AE=AH=CF=CG=x,∠BE=BF=2﹣x,如图,过点B作BN∠EF于点N,则∠NBE12=∠ABC=60°,∠BEN=30°,在Rt∠BEN中,BE=2﹣x,∠)2cos302x NE BE-=⋅︒=.∠EF=2﹣x),∠∠A=∠C=60°,AE=AH=CF=CG=x,∠∠AEH、∠CFG是等边三角形.∠HEF=90°,∠EH=FG=x,∠四边形EFGH是矩形,∠S=EH•EF=(2﹣x)=2,∠S与x的函数图象是D选项,故选:D.【点睛】此题考查了菱形的性质,等边三角形的判定和性质,矩形的判定,解直角三角形,解题的关键是表示出EF,EH.6.B【分析】几何体有三行,三列,再判断出各行各列最多及最少有几个正方体组成,依此确定a,b,然后利用等腰三角形的性质求得周长即可.【详解】解:底层正方体最少的个数应是3个,第二层正方体最少的个数应该是2个,因此这个几何体最少有5个小正方体组成;易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体最多共有13个正方体.即a=13、b=5,∠5+5<13,5+13>13,∠以a,b为等腰三角形ABC的边长,则∠ABC的周长为5+13+13=31.故选:B.【点睛】本题考查了由三视图判断几何体、等腰三角形的周长,解题的关键熟练三视图的画法法则,找到所需正方体的个数.7.A【解析】【分析】分别求出∠BMC=2∠A=160°,BNC=130°,然后得出结果.【详解】解:如图,∠点M是∠ABC的外心,∠∠BMC=2∠A=160°,∠点N是∠ABC的内心,∠∠BNC=180°﹣(∠NBC+∠NCB)=180°12-(∠ABC +∠ACB )=180°12-(180°﹣∠A ) =130°,∠∠BMC ﹣∠BNC =160°﹣130°=30°.故选:A .【点睛】本题考查三角形的内心和外心,解题的关键是掌握内心(内切圆圆心)和外心(外接圆圆心)的定义.8.C【解析】【分析】首先最简公分母为0,求出增根,在把分式方程化为整式方程,把增根代入整式方程,字母系数为0,满足这两个条件求出m 的值.【详解】解:当(x +3)(x ﹣3)=0时,x 1=3或x 2=﹣3, 原分式方程可化为:3x x =-1()()233mx x x --+-, 去分母,得x (x +3)=(x +3)(x ﹣3)﹣(mx ﹣2),整理得(3+m )x =﹣7,∠分式方程无解,∠3+m =0,∠m =﹣3,把x 1=3或x 2=﹣3,分别代入(3+m )x =﹣7,得m 163=-或m 23=-, 综上所述:m 的值为m 163=-或m 23=-或m =﹣3, 故选:C .【点睛】本题考查分式方程的解,解题的关键是掌握在本题中分式方程无解满足的两个条件:一次项系数为0,最简公分母为0.9.B【解析】【分析】设购买x 个A 种球,y 个B 种球,根据一共花了200元,列方程5x +7y =200,求出正整数解即可.【详解】解:设购买x 个A 种球,y 个B 种球,依题意得:5x +7y =200,∠x =4075-y . 又∠x ,y 均为正整数,∠335x y =⎧⎨=⎩或2610x y =⎧⎨=⎩或1915x y =⎧⎨=⎩或1220x y =⎧⎨=⎩或525x y =⎧⎨=⎩, ∠李老师共有5种购买方案.故选:B .【点睛】本题考查二元一次方程的应用,解题的关键是找出满足题意得等量关系列方程,注意结果应该满足实际情况.10.C【解析】【分析】∠∠根据二次函数图象开口方向,对称轴可求得a ,b 符号和关系,与y 轴交点判断c 的取值范围,∠通过比较两点到对称轴的距离进行判断,∠x =1时,y <0,x =﹣1时,y >0,代入函数关系式列不等式进行判断,∠先求抛物线的顶点坐标,再判断抛物线与直线的交点个数即可,当x 为1,-1时,∠先得出a 与c 的关系,再列出不等式求解即可.【详解】解:∠抛物线开口向下,∠a <0,∠抛物线的对称轴是直线x =﹣1,∠x 2b a=-=-1, ∠b =2a <0,∠抛物线与y轴的交点在(0,12)与(0,32)之间(不含端点),∠12<c32<.∠abc>0,∠∠正确.∠(12-,y1)到对称轴的距离为:12--(﹣1)12=,(53-,y2)到对称轴的距离为:﹣1﹣(53-)23=,抛物线开口向下,∠y1>y2.∠∠正确.∠x=1时,y<0,x=﹣1时,y>0,∠a+b+c<0,a﹣b+c>0,∠(a+b+c)(a﹣b+c)<0,∠(a+c)2<b2.∠∠错误.∠244b aca-=-2,对称轴x=﹣1,∠抛物线的顶点(﹣1,2).∠抛物线与直线y52=-有两个交点.∠方程ax2+bx+c52+=0有两个实数根.∠∠错误.∠抛物线的顶点为(﹣1,2).∠a﹣b+c=2,∠a﹣2a+c=2.∠a=c﹣2.∠12<c32<.∠32-<a12-<.故∠正确.∠∠∠∠正确.【点睛】本题考查二次函数的图象和性质,解题的关键是抓住二次函数的顶点,对称轴,最值.11.1×1014【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【详解】解:100万亿元=100000000000000元=1×1014元.故答案为:1×1014.【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,解题的关键是确定a与n的值.12.ED=FB(答案不唯一)【解析】【分析】根据矩形的性质可得AD∠BC,所以∠ADB=∠CBD,添加ED=FB,利用SAS即可使△BED∠∠DFB.【详解】解:∠四边形ABCD是矩形,∠AD∠BC,∠∠ADB=∠CBD,所以添加ED=FB,利用SAS即可使△BED∠∠DFB.故答案为:ED=FB(答案不唯一).【点睛】此题考查矩形的性质,全等三角形的判定,解题的关键是熟练掌握矩形的性质.13【分析】设圆锥底面圆的半径为r ,母线长为a ,这个圆锥的高与母线夹角为α,根据圆锥的侧面积12×2πr ×a ×πr 2,求出r 【详解】设圆锥底面圆的半径为r ,母线长为a ,这个圆锥的高与母线夹角为α,∠ ∠12⨯2πr ×a =πr 2, 解得:r=即r a =∠sinα= ∠α=45°,∠这个圆锥的高与母线夹角的余弦值=cos45°=【点睛】本题考查了锐角三角函数的定义,圆锥的面积计算等知识点,解题的关键是能根据题意得出12×2πr ×a πr 2.14.y =【解析】【分析】过点CE ∠y 轴于点E ,首先可求得点A 、B 的坐标,可得OB =1,OA =系可证得∠CBE =∠BAO ,既而可证得∠OAB ∠∠EBC ,可得C 的坐标是(﹣11),把点C 的坐标代入反比例函数解析式即可求得.【详解】解:如图:过点CE ∠y 轴于点E ,在y ﹣1中,令x =0,则y =﹣1,即B 的坐标是(0,﹣1). 令y =0﹣1=0,解得x =A0). 则OB =1,OA =∠∠ABC =90°,∠∠CBE +∠ABO =90°,又∠∠BAO +∠OBA =90°,∠∠CBE =∠BAO ,在∠OAB 和∠EBC 中,90CBE BAO BEC AOB BC AB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∠∠OAB ∠∠EBC (AAS ),∠OB =EC =1,OA =BE =∠C 的坐标是(﹣11),∠反比例函数y k x=(k ≠0)经过点C , ∠k =﹣1×1)=1∠反比例函数的解析式是y =故答案为:y =【点睛】本题考查了一次函数与坐标轴的交点问题,正方形的性质,全等三角形的判定与性质,求反比例函数解析式,解题的关键是作出辅助线.15.﹣3【解析】【分析】根据方程有两个不相等的实数根,得到根的判别式大于0,再利用根与系数的关系表示出两根之和与两根之积,已知等式变形后代入计算即可求出m 的值.【详解】∠关于x 的一元二次方程x 2﹣(2m ﹣3)x +m 2=0有两个不相等的实数根x 1,x 2,∠x 1+x 2=2m ﹣3,x 1x 2=m 2,且(2m ﹣3)2﹣4m 2>0,即m 34<, 已知等式变形得:1212x x x x +=-1, 代入得:223m m-=-1,即m 2+2m ﹣3=0, 解得:m =1(舍去)或m =﹣3,则m 的值为﹣3.故答案为:﹣3.【点睛】此题考查了根与系数的关系,熟练掌握一元二次方程根与系数的关系是解本题的关键. 16.7+7-1+【解析】【分析】先根据勾股定理得到BM 、CN 的长,根据矩形得到MN 的长,再利用线段之间的关系得到BC 的长.【详解】解:过点A 作AM ∠直线BC 于点M ,过点D 作DN ∠直线BC 于点N ,则AM =DN =AH =4,四边形AMND 为矩形,∠AD =MN =4,在Rt ∠ABM 中,BM 3,在Rt ∠DNC 中,CN在图1中,BC ==7+在图2中,BC =3+4-7-在图3中,BC =4﹣3+=1+故BC 的长为7+7-1+故答案为:7+7-1+【点睛】本题考查勾股定理,解题的关键是利用分类讨论的思想求解.17.2021 【解析】【分析】先证∠BB 1M 1∠∠BCA ,利用相似三角形的性质得出1BB 与11B M 的比值,进而解出1B C 的长度,得到第一个正方形CA 1M 1B 1的面积;同理推出第二个正方形的面积,类比可得答案.【详解】解:∠∠B =∠B ,∠BB 1M 1=∠C =90°,∠∠BB 1M 1∠∠BCA ,∠BB 1:BC =B 1M 1:CA ,∠111::1BB B M BC CA ==∠B 1M 1=B 1C ,∠11:B B C B =∠1:(1BC C B =∠BC =1,∠1B C ==∠11121()CA M B S B C ==同理,可求得22212A M B A S =, …∠第2021个正方形A 2020A 2021M 2021B 2021的面积为2021.故答案为:2021. 【点睛】本题考查了相似三角形的应用,解题的关键是需要用到类比归纳的数学思想,是中考常考题型.18.(1)1(2)(x ﹣y )2(x +y )【解析】【分析】(1)根据乘方运算法则、二次根式的化简、特殊角的三角形函数值及实数的混合运算,即可求得;(2)首先提取公因式,再根据平方差公式即可分解因式.【详解】解:(1)原式=﹣4﹣(32-=﹣4﹣38﹣=1(2)原式=x 2(x ﹣y )﹣y 2(x ﹣y )=(x ﹣y )(x 2﹣y 2)=(x ﹣y )2(x +y ).【点睛】本题考查了乘方运算法则、二次根式的化简、特殊角的三角形函数值及实数的混合运算,解题的关键是利用提公因式法和平方差公式分解因式,同时需要掌握各运算法则和公式. 19.x 1=3,x 2=5【解析】【分析】先移项,再利用因式分解法求解可得.【详解】解:∠(x-3)2=2(x-3),∠(x-3)2-2(x-3)=0,则(x-3)(x-5)=0,∠x-3=0或x-5=0,解得:x1=3,x2=5.【点睛】本题考查了一元二次方程的解法,解题的关键是灵活运用所学知识解决问题,学会用适当的方法解一元二次方程,属于中考常考题型.20.(1)见解析(2)图中阴影部分面积505348mπ=-【解析】【分析】(1)先证明OM∠AC,再由AAS证明∠AOF∠∠MON,求出OB、ON长度,证明∠MON∠∠BOM,推出OM∠BM,即可证明;(2)求出∠AOM,求出扇形OAM面积,图中阴影部分面积=S△BOM﹣S扇形OAM.(1)证明:连接OM,∠OA=OM,AE=EM,∠∠OAM=∠OMA,∠EAM=∠AME,∠MN∠OA,∠∠ANM=90°,∠∠NAM+∠AMN=90°,∠∠EAM+∠AMO=90,∠∠AFM=90°,∠OM∠AC,∠∠ONM=∠OF A=90°,∠AOF=∠MON,OA=OM,∠∠AOF∠∠MON(AAS),∠∠OMN=∠OAC,∠cos∠OAC45 =,∠cos∠OMN455 MN MNOM===,∠MN=4,∠3 ON==,∠OA=5,AB103 =,∠OB253 =,35ON OM =,532553OMOB==,∠MON=∠BOM,∠∠MON∠∠BOM,∠∠ONM=∠OMB=90°,∠OM∠BM,∠OM是∠O的半径,∠直线BM是∠O的切线;(2)解:由(1)知∠OMB=90°,OM∠AC,∠AMCM=,203BM==,∠AM=CM,∠∠C=∠CAM=m°,∠∠AOM=2m°,∠图中阴影部分面积=S△BOM﹣S扇形OAM212025505523360348m mππ⋅⨯=⨯⨯-=-.【点睛】本题考查全等三角形的判定与性质、相似三角形的判定与性质、切线的性质、扇形面积公式、勾股定理等知识,属于圆内综合题,有一定难度,解题的关键是需要熟练掌握相关基础知识并根据已知条件综合运用.21.(1)60;15;36(2)C(3)0.02(4)估计该校有600名学生每天户外活动时间不少于2小时【解析】【分析】(1)根据B组的人数和百分比,可以计算出被调查的学生总数进而求出m、n的值,用360°乘D组人数所占比例可得D组所在扇形的圆心角度数;(2)根据中位数的定义即可求解;(3)根据方差公式即可求解;(4)根据表中的数据,可以计算该校有多少名学生每天户外活动时间不少于2小时.(1)解:本次被调查的学生有21÷35%=60(人),∠m=60×25%=15,∠n=60﹣8﹣21﹣15﹣6=10(人),∠D组所在扇形的圆心角是:360°1060⨯=36°,故答案为:60;15;36;(2)解:本次被调查的学生有60人,∠中位数是第30,31个数的平均数,∠A组的人数为8,B组的人数为21,C组的人数为15,∠被调查的学生每天户外活动时间的中位数出现在C组;故答案为:C;(3)解:15x=⨯(1.1+0.8+1+0.9+1.2)=1,∠21 5s=⨯[(1.1﹣1)2+(0.8﹣1)2+(1﹣1)2+(0.9﹣1)2+(1.2﹣1)2]15=⨯(0.01+0.04+0+0.01+0.04)10.15=⨯=0.02.故答案为:0.02;(4)解:30005340+⨯=600(人),答:估计该校有600名学生每天户外活动时间不少于2小时.【点睛】本题考查统计表、扇形统计图、用样本估计总体,解题的关键是求出样本容量,利用数形结合的思想解答.22.(1)720,120,80(2)(6,400)(3)EF所在直线的函数解析式为y=﹣40x+700(4)货车出发2小时或8.5小时,轿车距甲城360千米【解析】【分析】(1)从图象获得甲城和乙城之间的路程为720千米,根据路程之和为720千米列方程求解;(2)分别求出货车所用的时间和路程得出结果;(3)首先根据图象得到点E和点F的坐标,利用待定系数法求解;(4)分相遇前和相遇后两种情况解答.(1)解:由图象知甲城和乙城之间的路程为720千米,设轿车行驶速度为x千米/时,则货车行驶速度为(x﹣40)千米/时,根据图象可得:4x+3(x﹣40)=720,解得x=120,∠x﹣40=120﹣40=80,∠轿车行驶速度为120千米/时,则货车行驶速度为80千米/时,故答案为:720,120,80;(2)解:∠轿车行驶速度为120千米/时,∠轿车到达乙城时间是720÷120=6(小时),此时货车行驶的路程是(6﹣1)×80=400(千米),∠D 的坐标为:(6,400);故答案为:(6,400);(3)解:货车从乙城驶到甲城所需时间为720÷80=9(小时),即货车在x =10时到达甲城, ∠货车到达甲城比轿车返回甲城早2.5小时,∠轿车返回甲城时x =12.5,∠轿车在乙城停留的时间是12.5﹣2×6=0.5(小时),当x =6.5时,货车行驶路程为(6.5﹣1)×80=440(千米),∠E 的坐标是(6.5,440),∠货车在x =10时到达甲城,轿车从x =6.5时开始返回甲城,∠轿车返回所行驶路程为(10﹣6.5)×120=420(千米),此时两车相距300千米, ∠F (10,300),设EF 所在直线的函数解析式为y =kx +b ,把(6.5,440),F (10,300)代入得: 6.544010300k b k b +=⎧⎨+=⎩, 解得40700k b =-⎧⎨=⎩, ∠EF 所在直线的函数解析式为y =﹣40x +700;(4)解:当两车未相遇时,轿车距甲城360千米所需时间为3小时,此时货车出发2小时; 当轿车返回距甲城360千米,则轿车返回行驶路程为720﹣360=360(千米),返回所需时间为3小时,∠此时x =6.5+3=9.5,货车出发8.5小时;综上所述,货车出发2小时或8.5小时,轿车距甲城360千米.【点睛】本题考查利用函数图象解决问题,解题的关键是从图象中获取相关信息,注意首先确定横坐标和纵坐标代表的实际意义.23.(1)∠8∠等腰; (2)∠DBM =22.5°【解析】【分析】(1)∠由矩形的性质得∠A =90°,再由勾股定理得BD =8,然后由锐角三角函数定义得tan AB ADB AD ∠==∠由tan AB ADB AD ∠==得∠ADB =30°,再由等腰直角三角形的性质得∠AEG =45°,然后由折叠的性质得∠GEH =∠ABD =60°,求出∠DEH =∠DHE ,即可得出结论;∠由矩形的性质得∠ABC =∠BCD =∠ADC =90°,CD =AB =4,求出∠CDF =30°,再由含30°角的直角三角形的性质得,然后由三角形面积公式即可求解;(2)由等腰直角三角形的性质得∠AMB =45°,AM =AB =4,BM ==BM =DM ,然后由等腰三角形的性质和三角形的外角性质即可求解;(3)作点N 关于AB 的对称点N ',则AN AN '==P 在以BC 为直径的半圆O 上,连接ON '交AB 于Q ,交半圆O 于P ,则OP =OB =12BC =QN QN '=,此时PQ +QN 的值最小PQ QN PN ''=+=,再证AQN ''∠∠BQO (AAS ),得QN '=QO ,AQ =BQ =122AB =,然后由勾股定理得QN QO '== (1) 解:∠∠四边形ABCD 是矩形,∠∠A =90°,∠AB =4,AD =,∠AD=∠8BD ==,tan AB ADB AD ∠==故答案为:8∠由∠得:tan∠ADB =, ∠∠ADB =30°,∠∠ABD =90°﹣∠ADB =60°,∠∠A =90°,∠AGE 为等腰三角形,∠∠AEG =45°,由折叠的性质得:∠GEH =∠ABD =60°,∠∠DEH =180°﹣∠AEG ﹣∠GEH =180°﹣45°﹣60°=75°,∠∠DHE =180°﹣∠DEH ﹣∠ADB =180°﹣75°﹣30°=75°,∠∠DEH =∠DHE ,∠DE =DH ,∠∠DHE 是等腰三角形,故答案为:等腰;∠∠四边形ABCD 是矩形,∠∠ABC =∠BCD =∠ADC =90°,CD =AB =4,∠∠DCF =90°,由∠得:∠ADB =30°,∠∠BDC =90°﹣∠ADB =60°,∠DF ∠BD ,∠∠BDF =90°,∠∠CDF =90°﹣∠BDC =30°,∠CF =∠S △ACF 12=CF ×AB =,; (2) 解:∠∠A =90°,AM =AB ,∠∠ABM 是等腰直角三角形,∠∠AMB =45°,AM =AB =4,BM =∠AD =1)AB 4,∠DM =AD﹣AM∠BM =DM ,∠∠DBM =∠BDM 12=∠AMB =22.5°; (3)解:∠AD =N 为边AD 的中点,∠AN 12=AD 作点N 关于AB 的对称点N ',则AN '=AN ,∠∠BPC =90°,∠点P 在以BC 为直径的半圆O 上,连接ON '交AB 于Q ,交半圆O 于P ,则OP =OB 12=BC ,QN =QN ', 此时PQ +QN 的值最小=PQ +QN '=PN ',∠∠N 'AQ =90°=∠OBQ,∠AQN '=∠BQO ,AN '=BO∠∠AQN '∠∠BQO (AAS ),∠QN '=QO ,AQ =BQ 12=AB =2,∠QN QO '==∠PQ +QN =PN '=2QO ﹣OP ,即PQ +QN 的最小值为故答案为:.【点睛】 本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、勾股定理、锐角三角函数定义、轴对称的性质、圆周角定理以及最小值问题等知识,解题的关键是熟练掌握矩形的性质和等腰三角形的判定与性质. 24.(1)y 114=x 232-x ﹣4 (2)∠(6,﹣4),154;∠﹣2<x <6(3)AB AP的值为(4)点E 的坐标为(2,﹣8)或(8,﹣20)或(10,﹣4)或(16,﹣16)【解析】【分析】(1)先求出点B 、C 的坐标,再运用待定系数法即可求得答案;(2)∠联立方程组求解得出点D 的坐标,再利用配方法求出顶点N 的坐标,再运用两点间距离公式即可求出DN ;∠直接观察图象即可得出答案;(3)分两种情况:∠当点P 在线段AC 上时,∠当点P 在线段CA 的延长线上时,分别利用相似三角形性质求解即可;(4)分两种情况:当,ACE =90°时,当∠CAE =90°时,分别运用相似三角形性质和三角函数定义进行计算即可.(1)解:∠y 212=-x ﹣1,令y 2=0,得12-x ﹣1=0, 解得:x =﹣2,∠B (﹣2,0),∠OB =2,∠sin∠OCB =∠OB BC =sin∠OCB =∠BC =在Rt ∠BOC 中,OC 4,∠C (0,﹣4).把B (﹣2,0),C (0,﹣4)代入抛物线y 1=ax 2﹣6ax +c 中,得:41204a a c c ++=⎧⎨=-⎩, 解得:144a c ⎧=⎪⎨⎪=-⎩, ∠抛物线的解析式为;y 114=x 232-x ﹣4; (2)解:∠∠直线y 12=-x ﹣1与抛物线y 14=x 232-x ﹣4交于点D , ∠211213442y x y x x ⎧=--⎪⎪⎨⎪=--⎪⎩, 解得:20x y =-⎧⎨=⎩(舍去)或64x y =⎧⎨=-⎩, ∠点D 的坐标为(6,﹣4),∠y 114=x 232-x ﹣414=(x ﹣3)2254-, ∠N (3,254-), ∠DN 154=, 故答案为:(6,﹣4),154; ∠由图象可知:当y 1<y 2时,自变量x 的取值范围是﹣2<x <6, 故答案为:﹣2<x <6;(3) 解:令14x 232-x ﹣4=0, 解得:x 1=﹣2,x 2=8,∠A (8,0),∠B (﹣2,0),∠AB =10.在Rt ∠ACO 中,AC ==∠当点P 在线段AC 上时,如图1,过点P 作PH ∠x 轴于点H ,∠S △ABP :S △BCP =1:3,∠S △ABP :S △ABC =1:4, ∠14PH OC =, ∠OC =4,∠PH =1,∠PH ∠x 轴,∠PH,y 轴,∠∠APH ∠∠ACO ,∠AP AC PH OC =,即1AP =∠AP =∠AB AP == ∠当点P 在线段CA 的延长线上时,如图2,过点P 作PH ∠x 轴于点H ,∠S △ABP :S △BCP =1:3,∠S △ABP :S △ABC =1:2,∠12PH OC =, ∠OC =4,∠PH =2,∠PH ∠x 轴,∠PH,y 轴,∠∠APH ∠∠ACO ,∠AP AC PH OC =,即2AP =∠AP =∠AB AP ==综上所述,AB AP的值为 (4) 解:当∠ACE =90°时, ∠2142OB OC ==,4182OC OA ==, ∠OB OC OC OA=, ∠∠BOC =∠COA =90°,∠∠BOC ∠∠COA ,∠∠BCO =∠CAO ,12BC OB AC OC ==, ∠∠CAO +∠ACO =90°,∠∠BCO +∠ACO =90°,即∠ACB =90°,∠点E 在直线BC 上,设直线BC 的解析式为y =kx +b ,把B (﹣2,0),C (0,﹣4)代入,得204k b b -+=⎧⎨=-⎩, 解得:24k b =-⎧⎨=-⎩, ∠直线BC 的解析式为y =﹣2x ﹣4,设E(t,﹣2t﹣4),如图3,过点E作EF∠y轴于点F,则EF=t,OF=2t+4,∠CF=OF﹣OC=2t+4﹣4=2t,∠CE=,在Rt∠BCO中,BC=∠∠ACE∠∠ACB或∠ECA∠∠ACB,∠∠EAC=∠BAC或∠EAC=∠ABC,∠tan∠EAC=tan∠BAC12=或tan∠EAC=tan∠ABC=2,∠12CEAC=或CEAC=2,12=⨯=∠t=2或8,∠点E的坐标为(2,﹣8)或(8,﹣20);当∠CAE=90°时,如图4,过点E作EG∠x轴于点G,∠∠CAO+∠EAG=∠CAO+∠ACO=90°,∠∠EAG=∠ACO,∠tan∠EAG=tan∠ACO=2,∠EGAG=2,设AG=m,EG=2m,则E(8+m,﹣2m),∠∠ACE∠∠CAB或∠ACE∠∠CBA,∠∠ACE=∠CAB或∠ACE=∠CBA,∠tan∠ACE=tan∠CAB12=或tan∠ACE=tan∠CBA=2,∠12AEAC=或AEAC=2,∠AE12=AC=AE=2AC=在Rt∠AEG中,AG2+EG2=AE2,∠m2+(2m)2=(2或m2+(2m)2=(2,∠m=2或8,∠点E的坐标为(10,﹣4)或(16,﹣16),综上所述,点E的坐标为(2,﹣8)或(8,﹣20)或(10,﹣4)或(16,﹣16).【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,两点间距离公式,勾股定理,直角三角形性质,相似三角形的判定和性质,三角函数定义等,涉及知识点较多,难度较大,解题的关键是运用数形结合思想和分类讨论思想思考解决问题.。

2016中考数学必备试题(有答案)

2016中考数学必备试题(有答案)A级基础题1.要使分式1x-1有意义,则x的取值范围应满足()A.x=1B.x≠0C.x≠1D.x=02.(2013年贵州黔西南州)分式x2-1x+1的值为零,则x的值为()A.-1B.0C.±1D.13.(2013年山东滨州)化简a3a,正确结果为()A.aB.a2C.a-1D.a-24.约分:56x3yz448x5y2z=________;x2-9x2-2x-3=________.5.已知a-ba+b=15,则ab=__________.6.当x=______时,分式x2-2x-3x-3的值为零.7.(2013年广东汕头模拟)化简:1x-4+1x+4÷2x2-16.8.(2012年浙江衢州)先化简x2x-1+11-x,再选取一个你喜欢的数代入求值.9.先化简,再求值:m2-4m+4m2-1÷m-2m-1+2m-1,其中m=2.B级中等题10.(2012年山东泰安)化简:2mm+2-mm-2÷mm2-4=________.11.(2013年河北)若x+y=1,且x≠0,则x+2xy+y2x÷x+yx的值为________.12.(2013年贵州遵义)已知实数a满足a2+2a-15=0,求1a+1-a+2a2-1÷a+1a+2a2-2a+1的值.C级拔尖题13.(2012年四川内江)已知三个数x,y,z满足xyx+y=-2,yzz+y=34,zxz+x=-34,则xyzxy+yz+zx的值为________.14.先化简再求值:ab+ab2-1+b-1b2-2b+1,其中b-2+36a2+b2-12ab=0.分式1.C2.D3.B4.7z36x2yx+3x+15.326.-17.解:原式=x+4+x-4x+4x-4•x+4x-42=x+4+x-42=x.8.解:原式=x2-1x-1=x+1,当x=2时,原式=3(除x=1外的任何实数都可以).9.解:原式=m-22m+1m-1•m-1m-2+2m-1=m-2m+1+2m-1=m-2m-1+2m+1m+1m-1=m2-m+4m+1m-1,当m=2时,原式=4-2+43=2.10.m-611.112.解:原式=1a+1-a+2a+1a-1•a-12a+1a+2=1a+1-a-1a+12=2a+12,∵a2+2a-15=0,∴(a+1)2=16.∴原式=216=18.13.-4解析:由xyx+y=-2,得x+yxy=-12,裂项得1y+1x=-12.同理1z+1y=43,1x+1z=-43.所以1y+1x+1z+1y+1x+1z=-12+43-43=-12,1z+1y+1x=-14.于是xy+yz+zxxyz=1z+1y+1x=-14,所以xyzxy+yz+zx=-4.14.解:原式=a b+1b+1b-1+b-1b-12=ab-1+1b-1=a+1b-1.由b-2+36a2+b2-12ab=0,得b-2+(6a-b)2=0,∴b=2,6a=b,即a=13,b=2.∴原式=13+12-1=43.欢迎大家去阅读由小编为大家提供的中考数学必备试题大家好好去品味了吗?希望能够帮助到大家,加油哦!精心整理,仅供学习参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档