四杆机构特性
铰链四杆机构的基本特性课件

利用智能控制技术,如模糊控制、神经网络和遗传算法,实现对机构的高精度 控制和自适应调节。
自动化技术
采用自动化技术,如机器人和自动化生产线,实现机构的自动化装配、检测和 调试,提高生产效率和产品质量。
铰链四杆机构的基本 特性课件
目录
CONTENTS
• 铰链四杆机构的定义与组成 • 铰链四杆机构的基本特性 • 铰链四杆机构的运动分析 • 铰链四杆机构的优化设计 • 铰链四杆机构的应用 • 铰链四杆机构的发展趋势与展望
01 铰链四杆机构的定义与组 成
定义
01
铰链四杆机构是一种由四个杆件 通过铰链连接而成的机械机构, 通常用于实现各种运动轨迹和传 动功能。
03 铰链四杆机构的运动分析
平面四杆机构的运动分析
平面四杆机构是由四个杆件相 互铰接组成的,其运动特性主 要取决于各杆的长度和角度。
平面四杆机构有三种基本类型 :曲柄摇杆机构、双曲柄机构 和双摇杆机构。
平面四杆机构的运动分析可以 通过几何法和解析法进行,其 中解析法更为精确和可靠。
空间四杆机构的运动分析
求。
减小能耗
降低机构在运动过程中的能量 消耗,实现节能减排。
减小尺寸和重量
优化机构的结构设计,减小其 尺寸和重量,便于携带和运输
。
提高可靠性
增强机构的结构强度和耐磨性 ,提高其使用寿命和可靠性。
优化设计方法
数学建模
建立铰链四杆机构的数 学模型,包括几何模型 、运动学模型和动力学
模型等。
仿真分析
利用仿真软件对机构进 行运动学和动力学仿真 分析,以评估其性能。
印刷机械
在印刷机械中,铰链四杆机构用于 调节印刷滚筒的位置和角度,确保 印刷质量。
铰链四杆机构的运动特性急回特性

这时摇杆CD处于最左和最右的位置:C1D和C2D。
也就是摇杆的两个极限位置。
B
C1
C C2
A
B2
D
B1
曲柄摇杆机构
3
铰链四杆机构的急回特性
一、概念: 1、极位:当曲柄摇杆机构处于两个极限位置时,称为 极位。 2、极位夹角:曲柄与连杆两次共线位置之间的夹角称
为极位夹角,用字母 表示。
15
作行程(慢行程)的平均速度小于空回行程(快行程) 的平均速度,则称该机构具有急回特性。
工作行程: 切制工件 空回行程:刀具返回
8
铰链四杆机构的急回特性
四、急回特性系数 为能定量描述急回运动,将回程平均速度V2与工作行
程平均速度V1之比定义为行程速度变化系数即急回特性 系数,用K来表示。
由上式可观察出:
3、摆角:摇杆在两个极限位置的夹角称之为摆角,用
字母 表示。
思考:
极位夹角是取其所夹的锐角还是取其所夹的钝角?
为讨论及计算方便:取锐角。
4
铰链四杆机构的急回特性
二、分析:曲柄运转一周:
1、行程 1:曲柄由AB1顺时针转动到AB2时,转过的角度是1
=180º+ ;耗时为t1; 行程 2
B
C1
1
6
铰链四杆机构的急回特性
因为:
1 > 2 且曲柄匀速旋转
所以:
t1
1 1
180 1
又因为:
> t2
2 1 > t2
所以:
_
_
V1 C1C2 t1 < V2 C1C2 t2
即:摇杆返回速度较快;
这里就称它具有急回特性。
铰链四杆机构基本形式和特性

3.4 铰链四杆机构类型判别
3、案例分析
如图所示的铰链四杆机构ABCD中,已知各杆的长度 分别为:a=30,b=50,c=40,d=45。试确定该机构分别以
AD、AB、CD和BC为机架时,属于何种机构?(板书)
CopyRight ZDJ
3.4 铰链四杆机构类型判别
案例分析
3.1 铰链四杆机构的类型
平面铰链四杆机构:构件间均用用转动副相连的平面四 杆机构。如:脚踏式脱粒机
脚踏式脱粒机
CopyRight ZDJ
3.1 铰链四杆机构的类型
二、铰链四杆机构组成
(1)机架:机构中固定不动的构件。 (2)连架杆:与机架连接的构架。
曲柄:若能绕机架作整周转动的连架杆则称为曲柄。 摇杆:只能绕着机架在一定范围内摆动的连架杆。 (3)连杆:不直接与机架相连的构件。
CopyRight ZDJ
3.2 平面四杆机构的特性-死点特性
(1)死点的概念
曲柄摇杆机构中,当摇杆为主动件时,当连杆与从动曲
柄共线时,机构的传动角γ=0°,此时主动件CD 通过连杆 作用于从动曲柄AB上的力恰好通过其回转中心,所以出现了 不能使构件AB转动的顶死现象,机构的这种位置称为死点位
置或死点。
缝纫机的脚踏机构
CopyRight ZDJ
3.2 平面四杆机构的特性-死点特性
(3)克服死点的方法
(1)增大从动件的质量,利用惯性度过死点位置。 (2)在从动曲柄上施加外力或安装飞轮以增加惯性。 (3)采用相同的机构错位排列。
缝纫机的脚踏机构
火车车轮联动装置
CopyRight ZDJ
3.3 铰链四杆机构曲柄存在条件
CopyRight ZDJ
简述平面四杆机构的类型特点和应用

简述平面四杆机构的类型特点和应用一、平面四杆机构的类型:1. 平衡四杆机构:该机构有能力保持平衡,即使受到外部干扰也能够回到原来的位置。
这种机构被广泛用于稳定系统和开放环境。
2. 驱动四杆机构:该机构可以转化旋转运动为线性运动或反之。
这种机构广泛应用于机械工程、模具制造和自动化工程中。
3. 可逆四杆机构:该机构可以逆向工作,在不同的任务中灵活应用。
这种机构被广泛用于机器人工程和自动化工程中。
4. 变位四杆机构:该机构可以在不同位置自动调整,以适应不同的应用需求。
这种机构被广泛用于自动化机械和精密制造领域。
二、平面四杆机构的特点:1. 平面四杆机构可以转换不同类型的运动,包括旋转、线性、摆动等。
2. 平面四杆机构结构简单,易于制造和维护,具有良好的可靠性和稳定性。
3. 平面四杆机构可以通过组装多个单元来实现更高级别的机械结构,例如机器人、自动化系统等。
4. 平面四杆机构广泛应用于机械、汽车、制造、物流、自动化等领域,并逐渐成为机器人、智能装备的重要组成部分。
三、平面四杆机构的应用:1. 发动机连杆机构:由于发动机需要将旋转运动转化为线性运动来驱动汽车轮胎,平面四杆机构被广泛应用于汽车发动机的连杆机构中。
2. 物流设备:平面四杆机构可以逆向工作,可以将线性运动转化为旋转运动,这使得物流设备可以保持高速和精度,如自动包装线、调料机等。
3. 机械手:平面四杆机构的结构简单,稳定性好,这使得它成为机器人手臂的优选部件之一,广泛应用于各个制造领域。
4. 印刷机械:平衡四杆机构可以使印刷平台始终稳定,特别是在高速印刷时,它可以保持印刷品的精度和质量。
5. 飞控系统:平衡四杆机构被广泛应用于飞控系统的调节器中,以帮助控制飞行器的稳定性。
总的来说,平面四杆机构具有结构简单、稳定性好、运动特性多样等特点,可以在各个行业发挥重要的作用。
机械基础——四杆机构的运动特性

曲柄滑块机构的 位置:滑块为从动件,曲柄为原动件时,当曲柄与滑块的导路相垂直时,压力角最大。但对于偏置式曲柄滑块机构, 出现在曲柄位于偏置方向相反一侧的位置。
摆动导杆机构中,若以曲柄为原动件,则其压力角恒等于 ,即传动角 恒等于 ,说明以曲柄为原动件时,机构具有最好的传力性能。
(2)死点位置如曲柄摇杆机构中,若以摇杆为原动件,而曲柄为从动件,则当摇杆摆到两极限位置时,连杆与曲柄共线,此时机构的压力角 = = ,因此有效驱动力矩为零,无论作用力多大,不能使从动件曲柄转动。此位置称为死点位置。机构处于死点位置时,会出现停顿或运动不确定现象。
作业
1、画出下列机构图示位置的压力角,并指出该机构最大压力角的位置。
急回特性可用行程速度变化系数K表示
K= =
如果已知K,可以求出极位夹角
=
3、四杆机构的传力特性
(1)压力角 和传动角 作用在从动件上的力F与力作用点的速度方向之间所夹的锐角,称为机构在此位置时的夹角,用 表示。压力角可以作为判断机构传力特性的标志。在连杆机构中,为了度量方便,常用压力角的余角 来判断机构的传力性能, 称为传动角。
课题
四杆机构的运动特性
教学目的
熟练掌握平面四杆机构的运动特性
教学安排
组织教学ቤተ መጻሕፍቲ ባይዱ
讲述新课
五、四杆机构的运动特性
(1)四杆机构的极限位置在曲柄摇杆机构、摆动导杆机构和曲柄滑块机构中,当曲柄为原动件时,从动件作往复摆动或往复移动时,存在左、右两个极限位置。极限位置可以用几何作图法作出。
(2)极位夹角θ和行程速度变化系数K在曲柄摇杆机构中,当从动件摇杆处于两个极限位置时,曲柄对应两位置所夹的锐角θ称为极位夹角。两个极限位置之间的夹角ψ,称为摆角。对于摆动导杆机构,θ=ψ。
平面四杆机构基本特性精品PPT课件

的余角即α+γ=90º称为传动角。
讨论:压力角α↑(传动角γ↓) → Fn↑→传力性能差。
压力角α↓(传动角γ↑ )→ Fn ↓→传力性能好。
三、压力角、传动角和死点
位置之间所夹的锐角。
B
1
1
A
1
B
2
1
C
2
1
B2
4
C C2
3 v1
v2 j
D
2)急回运动机理
a)曲柄转过 1 180
摇杆上C点摆过: C1C2
所用时间: t1
1 1
180 1
b)曲柄转 2 180
过 摇杆上C点摆过: C2C1
所用时间:t2
2 1
180 1
1 2 t1 t2
c)设两过程的平均速度为V1、V2:V1
缝纫机的脚踏机构
火车车轮联动装置
4.3 铰链四杆机构的基本特性
想一想 练一练 请问摆动导杆机构、对心曲柄滑块机构以哪个构件为原动件时,机构存在
死点位置(滑块)?
K
v2
C1C2 / t2
t1
j1
180
v1 C2C1 / t1 t2 j2 180
或 180 K 1 K 1
4.3 铰链四杆机构的基本特性
极位夹角为: 180 K 1
K 1
讨论:a、θ>0º→K>1→此时机构具有急回特性,θ↑ → K↑ →急
回特性越显著。 b、θ=0º→K=1,此时机构无急回特性。
偏置曲柄滑块机构
0 ,无急回特性。
平面四杆机构的基本特性
采用多套机构错位排列,使死点相互错开。
平面四杆机构的基本特性
三、死点
2、死点的应用
A D
B1 C1
地面
飞机起落架收放机架
平面四杆机构的基本特性
三、死点
2、死点的应用 (夹紧工件)
F
FN
总结
运动特性
基本特性
传力特性
曲柄存在的条件及推论
(铰链四杆机构类型判别)
压力角和传动角(最小值) 死点位置
平面四杆机构的 基本特性
平面四杆机构的基本特性
一、急回特性
1、什么是急回特性:
从动件空回行程比工作 行程的速度大的特性。
可以缩短非生产时间, 提高生产效率时.
观察现象:
平面四杆机构的基本特性
一、急回运动
观察:
2、急回特性产生的原因:
极位夹角
工作行程:
摇杆 C1 C2 1
空回行程
摇杆 C2
C1
2
0 (即 90 )
时的位置。
曲柄与连杆共线的两个位置
平面四杆机构的基本特性
三、死点
注意:曲柄为从动件,才会出现死点
BHale Waihona Puke AB1脚C2
踏板 D
C1 缝纫机主运动机构
平面四杆机构的基本特性
三、死点
1、克服死点的办法
安装飞轮加 大惯性,借惯性 作用使机构闯过 死点。
平面四杆机构的基本特性
三、死点
冲压机构
平面四杆机构的基本特性
四、死点 例:缝纫机 –踏板机构 属曲柄摇杆机构
平面四杆机构的基本特性
问题1:对踏板机构操作不熟练会怎样? 踏板易卡死,不能动或出现飞轮倒转。
平面连杆机构——滑块四杆机构工作特性
(a3+)3如0≤果50能+3成5 为双摇杆机构,求a的取值范围。
(2) 如果能成为双曲柄机构,求a的取值范围。 机在构机中 构具中有,整具转有副整的转构副件的是构关件键占性有的重构要件的。地位,因为只有这种构件才能用电机等连续转动装置来带动。
a+30>≤5500++3355
1这5时m,m<应a考<虑45下m述m 两种情况:
b+a≤c+d 在机曲构柄 中A具B有转整动转一副周的的构过件程是中关,键曲性柄的A构B必件定。与连杆BC有两个共线的位置(曲柄转至B1,B2处)。
所以
50+a≤35+30 a≤15mm
四铰链机构
(2) 若能成为双曲柄机构,则应满足“杆长之和的条件”, 且AD必须为最短杆。 这时,应考虑下述两种情况:
将以上三式两两相加,经过化简后得到 a≤b a≤c a≤d
可见,曲柄1是机构中的最短杆,并且最短杆与最长杆的长度之和小于或等于其余两 杆长度之和,我们把这种杆长之和的关系简称为杆长之和条件。
【例】在下图所示四铰链机构中,已知:b=50mm,c=35 mm,d=30mm,AD 为固定件。
另这外时,还应应考考虑虑下(到述1两B)C种与如情C况D果杆:延能长成成一直为线时曲,需柄满足摇三角杆形的机边长构关系,(一边且小于A另B两边是之和曲),柄即 ,求a的极限值。
平面四杆机构的几个工作特性
构件具有整转副的条件
在机构中,具有整转副的构件占有重要的地位,因为只有这种构件才能用电机等 连续转动装置来带动。如果这种构件与机架相铰接(亦即是连架杆), 则该构件就是一 般所指的曲柄。机构中具有整转副的构件是关键性的构件。 在图的曲柄摇杆机构中,
四杆机构特性(精)
例:设计一铰链四杆 机构作为加热炉炉门 的启闭机构。已知炉 门上两活动铰链B、C 的中心距为50。要求 炉门打开后成水平位 置,且热面朝下(如 虚线所示)。如果规 定铰链A、D安装在炉 体的y-y坚直线上, 其相关尺寸如图所示。 用图解法求此铰链四 杆机构其余三杆的尺 寸。
2.按给定的行程速比系数设计四杆机构
设计目标 :
根据给定的运动条件,选定机构的类 型,确定机构中各构件的尺寸参数。
设计方法 :图解法、实验法和解析法等。
1.按给定连杆两个位置设计铰链四杆机构
有无穷多个解。实际上,还应考虑几何、动力等辅助条 件,例如各杆所允许的尺寸范围、最小传动角或其他结 构上的要求,就可以合理选定A、D两点的位置而得到确 定的解。 如果给定连杆三个、四个或五个位置呢?
K 1 180 K 1
在生产实际中,常利用机构的急回运动来缩 短非生产时间,提高生产率,如牛头刨床、 往复式运输机等。
(二)、传力特性
1.压力角与传动角
Fn
F
Ft vC
压力角:从动件 受力方向与受力 点线速度方向之 间所夹的锐角。 传动角:压力角 的余角即连杆与 从动件间所夹的 锐角。
重点内容复习
存在曲柄且满足杆长条件的铰链四杆机构有 以下三种类型:
三种类型 曲柄摇杆机构 双曲柄机构 双摇杆机构 存在条件
以最短杆的相邻杆作为机架 以最短杆作为机架
以连杆作为机架
引申:不满足杆长条件的四杆机构均为双摇杆机 构。
5.2 铰链四杆机构的基本特性
基 本 特 性
运动特性
传力特性
了解机构的特性,对于选择平面 连杆机构的类型和设计平面连杆 机构具有重要的意义。
C1 90- E C2 以A为圆心,AC1为 半径作圆弧交A与 E,平分EC2得曲柄 长度 AB 。再以A 为圆心, AB 为 半径作圆,交C1A 的延长线和C2A于 B1和B2,连杆长度
平面四杆机构的基本特性
机械设计基础
Machine Design Foundation
2 B
平面四杆机构的基本特性
Fn
F
C″ C
C′ Ft vC
″
′
3
1A
B″
B′ 4
D
图6 – 19 传力特性分析
机械设计基础
Machine Design Foundation
平面四杆机构的基本特性
在机构的运动过程中, 传动角同样也是随着机构
机械设计基础
Machine Design Foundation
平面四杆机构的基本特性
如图6 - 19所示的导杆机构, 其极位夹角θ>0°,
因此导杆机构也具有急回特性。
综上所述, 平面四杆机构具有急回特性的条件可归 纳如下:
(1) 主动件以等角速度作整周转动;
(2) 输出从动件具有正行程和反行程的往复运动;
(3) 机构的极位夹角θ>0°。
机械设计基础
Machine Design Foundation
平面四杆机构的基本特性
快速
慢速
A
C2
=
C1
D
图6 - 19 导杆机构的极位夹角
机械设计基础
Machine Design Foundation
平面四杆机构的基本特性
1.2 传力特性
1. 压力角和传动角
在图6 - 19所示的曲柄摇杆机构中, 如果不考虑各个构件的质量和运动副中的摩擦力, 则连
Ft=F cosα Fn=F sinα
(6 - 2)
机械设计基础
Machine Design Foundation
平面四杆机构的基本特性
压力角α的余角称为传动角, 用γ表示。 传动角 γ与压力角α的关系如下:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何确定机构的 死点位置? 死点位置?
分析B、 点的压力角 分析 、C点的压力角
B1
C1
B
C
b a
B2
c b d
C2
ψ
D
c
a
A
曲柄摇杆机构(曲柄为主动件) 曲柄摇杆机构(曲柄为主动件)的死点
FB = M AB
C
B
αC
FC
M
A
vB αB = 0
FB
vC
D
无死点存在
曲柄摇杆机构(摇杆为主动件) 曲柄摇杆机构(摇杆为主动件)的死点
C
B FB
vC
αC = 0
αB
vB
FC
FC =
M CD
M
D
A
AB与BC共线时 α B = 90 或者 γ B = 0 机构有死点存在 与 共线时
曲柄滑块机构(曲柄为主动件) 曲柄滑块机构(曲柄为主动件)的死点
M
B
vB
FB =
A
M AB αB = 0
无死点存在
α C F C C
vC e
FB
曲柄滑块机构(滑块为主动件)的死点 曲柄滑块机构(滑块为主动件)
αB v B
FB
B
A
有死点存在
e
vC C
α C = 0 FC
2. 死点位置的应用
飞机起落架 夹具
死点的避免措施
机构错位排列 加飞轮,利用惯性通过死点 , 利用外力
2. 避免死点位置的危害
火车轮
加虚约 束的平 行四边 形机构
加虚约束的平行四边形机构
′ ′ t1 > t 2 ω 3 < ω 3′
3. 行程速比系数 行程速比系数K
通常把从动件往复运动平均速度的比 大于1)称为行程速比系数 表示。 值(大于 称为行程速比系数,用K表示。 大于 称为行程速比系数, 表示
′ 从动件快速行程平均速度 ω 3′ K= = ′ 从动件慢速行程平均速度 ω 3
b
C γ
F
δ
c
α Ft
Vc
δ < 90
γ =δ
B a
δmin
A d D
δ > 90
γ = 180 δ
B a A
b
Fn C
α F
c
α γ δ max
δ γ
Ft
Vc
δmin
d
D
曲柄滑块机构的压力角 m a a
b n
α
b
α max α min
e
四、机构的死点位置
1. 死点位置 所谓死点位置就是指从动件的传动角等于零或者压力角等于90 所谓死点位置就是指从动件的传动角等于零或者压力角等于90时 90 机构所处的位置。 机构所处的位置。
§2-2 平面四杆机构的基本类型
急回特性 压力角和传动角 死点位置
二、急回特性和行程速比系数
1. 极位夹角
当机构从动件处于两极限位置时, 当机构从动件处于两极限位置时,主动件曲柄在两相应位 置所夹的角 θ
曲柄摇杆机构的极位夹角
C
C
C
b a A
θ
B
d
ψ
D
B
曲柄滑块机构的极位夹角
B
A
B θ
C
C
e
摆动导杆机构的极位夹角
B
ψ
摆动导杆机构传动性能非常好。 摆动导杆机构传动性能非常好。
θ
A
γ = 90
D
Bd
曲柄摇杆机构的压力角
BD = a 2 + d 2 2adcos BD = b 2 + c 2 2bccos δ
2 2
Fn
b 2 + c 2 - a 2 d 2 + 2adcos cosδ = 2bc
δ max
称为压力角 压力角。 α称为压力角。
传动角: 称为传动角 传动角:压力角的余角γ称为传动角
W = F S cosα
越大,作功W 在其它条件不变的情况下压力角α越大,作功W越大 压力角是机构传力性能的一个重要指标, 压力角是机构传力性能的一个重要指标,它是力的利用率大小 的衡量指标。 的衡量指标。
θ
A
B
ψ
D
Bd
2. 急回运动
当曲柄等速回转的情况下, 当曲柄等速回转的情况下,通 常把从动件往复运动速度快慢不同 的运动称为急回运动。 的运动称为急回运动。 主动件a 主动件a 运动: 运动:AB 1 → AB 2 转角: 1 转角: 运动: 运动:AB 2 → AB 1 时间: 时间: t 2 转角: 转角: 2 时间: 时间: t 1 从动件c 从动件c
DC1 → DC2
C1
1
a
B1
b
θ
c
B2
C2
a A
b d
ψ
D
c
ψ ψ
t1
2
DC2 → DC1
t2
t1 =
从动件c 从动件c的 DC1 → DC2 : ω 3 = ψ ′ t1 平均角速度: 平均角速度: ψ ′ ω3′ = DC2 → DC1 : t2
1 180 + θ = ω1 ω1
t2 =
2 180 - θ = ω1 ω1
′ ω3 = ′ ω 3′ =
ψ
ψ
t1 t2
t1 = t2 =
1 180 + θ = ω1 ω1
2 180 - θ = ω1 ω1
180 + θ K= 180 θ
K 1 θ = 180 K +1
三、压力角和传动角
γ F
V
S
W = F S cosα
α
压力角: 压力角:力F的作用线与力作用点绝对速度V所夹的锐角