薄板弯曲挠度计算公式

合集下载

薄板弯曲问题

薄板弯曲问题

(2)小挠度弯曲:挠度t,(本节讨论) 大挠度弯曲:挠度=t 薄膜问题 :挠度t
(3)薄板弯曲的基本假定:(Kirchhoff-Love假定)
a、假定应变分量z=0,xz=0,yz=0
说明任意根法线上,
z
w z
0
w
w( x,
y)
薄板全厚的所有各点 具有相同的挠度
2020年6月13日星期六
专题:薄板弯曲问题
2
xz
w x
u z
0
yz
w y
v z
0
结论:
u w z x
v w z y
弯曲变形前垂直于中面的法线,变形后仍为直线,且 长度不变,称为直法线假定,它和梁弯曲的平面假定 类似。
b、薄板弯曲时,垂直于板面的应力分量z很小,可以 忽略不计,纵向间无挤压,所以物理方程与平面问题
的物理方程完全一样。
z
xz
6 FSx t3
t2 (
4
z2)
yz
6FSy t3
(t2 4
z2)
z
2q( 1 2
z )2 (1 t
z) t
2020年6月13日星期六
专题:薄板弯曲问题
17
各应力最大值
x , y , xy
x z , yz
( x )z t 2
6M x t2
( y )z t 2
2020年6月13日星期六
专题:薄板弯曲问题
4
三、弹性曲面的微分方程
薄板的小挠度弯曲问题,采用按位移求解,所以,取 薄板挠度w为基本未知量
1、用w表示应力,应变和位移
u w
z
x
v w z y
v
w y

薄板的小挠度弯曲问题及经典解法

薄板的小挠度弯曲问题及经典解法

(z2

d2
4
)
y
2 w

(9-5)
(4)用w表示应力分量z
由平衡方程(7-1)式的第三式有(取 fz=0):
z zx yz
z
x y
(c)
若体力不为零,可把薄板单位面积内的体力及面力归入薄板上面的
面力,并用 q表示。
d
q ( f )z zd
FRB

2D(1
)
2w xy
B
(9-18)
集中剪力或集中反力的正负号决定于角点处的扭矩的正负号, 而不能另行规定。据此,A点和C点处的剪力以沿z轴的正方向为正, 而O点和B点处的剪力以沿 z轴的负向时为正。
如果点B是自由边AB和自由边BC的交点,而点B并没有任何支 柱对薄板施以此向集中力,则应有FRB=0 ,亦即:
z
w
w(x, y)即在垂直于中面的任一法线
上,薄板全厚度内各点的挠度相同。
2)由几何方程, zy

w v y z
0
, zx

u z
w x
0
,得
v w , u w z y z x (2) z 引起的形变可以不计。
(9-1)
由物理方程(7-12),有:
(3)应用时可查相关手册,若是双向配筋时,扭矩的影响 也可不考虑。
§9-4 边界条件 扭矩的等效剪力
矩形薄板,OC边简支;OA边固支;AB和BC边自由。
1. 固支边,OA边(x = 0)
(w) x ( w )
x
0 x0
0 0
(9-13)
2. 简支边,OC边 (y = 0)
x y

薄板弯曲和薄壳问题

薄板弯曲和薄壳问题

y
Ni 0
0
Ni
刚度矩阵b 刚度矩阵S
kbe se Bb T DBb dxdy kSe se BS T BS dxdy
Kb kbe KS kSe
总体刚度矩阵 K Kb KS
等效节点力
q x, y
Qe
se
N T
0
dxdy
0
Q Qe
K Q
§4 薄壳变形的假设
1
(i k,l, m, n)
M DBe
T
U e 1 2
1
se
D
1
dxdy
1 2
e
T
se BT DBdxdy e
1 e T ke e 2
ke se BT DBdxdy
K ke
总变形能
U
U e
1 T
2
K
不计边界外力,只有面内横向载荷时的外力功为
1
(i=k, l, m, n)
三、单元刚阵
w N(x, y)e
1
x
2
x
2
1
1
y
2 y2
w
2
x
2
1 2
y
2
N e [B] e
1
xy
2 2 xy
应变矩阵
2 2 xy
B Bk Bl Bm Bn
6xi x a4
Dp
1
z
h
M x
2
h
x
zdz
2
h
M xy
2
h
xy
zdz
x
2
h
M y
2
h
y

第五章薄板弯曲

第五章薄板弯曲
其中V为板的体积域。
将式(5.2)及(5.3)代入上式,并沿厚度方向积 分,可得
1 2 1 1 U D p z dV 2 V
T

1 1 1 D dS 2 S
T
(5.6)
其中S为板中面的面积域,[D]为薄板弯曲的弹性 系数矩阵。 •由上式可见,薄板弯曲变形时,单位面积中面的 弹性应变能为其曲率的二次型。 •板弯曲的曲率是其挠度w的二阶导数,因而薄板弯 曲的弹性应变能为包括w二阶导数的二次泛函数。
薄板弯曲时,板内各点的应变为
x
z
x
1
y
z
y
xy
z
xy
其中z为点到中面的距离
1
x
1
y
为挠曲面沿方向的曲率
xy 为扭曲率
当板弯曲挠度很小时,曲率、扭曲率与挠 曲面的关系为
w 2 x x 1
2
w 2 y y 1
2
1
xy
w 2 xy
e
T

e

简写为 而其中
1 eT e e U [k ] 2
T S


(5.16)
[k ]e e B D B dxdy
即为板弯曲的单元刚度矩阵。

板弯曲的单元刚度矩阵,其计算式 与一般单元刚阵(如平面问题)完 全一样,只是这里应代入板弯曲的 弹性系数矩阵[D][式(5.5)]和板弯曲 的应变矩阵[B][式(5.13)]。
式中的[B]也可称为单元的应变矩阵,按 节点分块表示,有
B Bk
Bl
Bm
Bn
而对任一节点i的应变矩阵,按图5-4所示的 坐标轴,有(5.14)(p81)

第五章 薄板的弯曲

第五章  薄板的弯曲

第五章 薄板的弯曲薄板的概念:厚度t<<Min(B,L)()L B Min t 81~51<中厚板 ()L B Min t 81~51> 厚板()()L B Min t L B Min 81~511001~801<< 薄板()L B Min t 1001~801< 薄膜作用在其上的载荷分解为平行于板面和垂直于板面,当仅有平行于板面的力时,就是我们前面讲到的平面应力问题。

现在我们要解决的就是当有垂直于板面的载荷时(板受弯曲作用时),应该如何计算。

两者都有时,又应该如何考虑。

§5.1 薄板弯曲的基本方程一,基本概念1,中面:变形前平分板厚的平面。

2,挠度:中面上各点在垂直于中面上的位移w 。

3小挠度:通常w/t<1/5。

二,基本假定1,变形前垂直于中面上的直线,变形后仍为直线,且仍垂直于弯曲的中面。

该假定类似与材料力学中梁的平面假定。

它确保与中面平行的的各面之间不存在剪应变。

0==zy zx γγ 2,变形前后,板的厚度不变,即0=z ε。

板内各点的挠度值仅为x 、y 的函数,而与z 轴无关。

()y x w w ,=。

3,薄板中面内的各点没有平行于板面的位移()00==z u 、()00==z v ,只有z 方向的位移。

4,平行于中面的各层之间互不挤压。

0=z σ三,基本方程利用空间的三大方程和以上4个假定,我们可以推求出适用薄板的基本方程。

1,几何方程由假定○1,0=∂∂+∂∂=x w z u zx γ,0=∂∂+∂∂=ywz v zy γ,就有: x w z u ∂∂-=∂∂,ywz v ∂∂-=∂∂,积分可得: ()y x f xwzu ,1+∂∂-= ()y x f ywzv ,2+∂∂-=再由假定○3,()00==z u 、()00==z v ,就是中面上各点没有板面的位移,代入上式,可得()()0,,21==y x f y x f 所以x w zu ∂∂-=,ywz v ∂∂-=。

弹性力学第九章 薄板弯曲问题

弹性力学第九章 薄板弯曲问题


2w
x2

xy

Ez 1
2w xy
(9-2) (9-4)
弹性力学简明教程
NORTHEASTERN UNIVERSITY
§9-2 弹性曲面的微分方程
(4)用挠度 w 表示次要应力分量 xz , yz
利用平衡微分方程(7-1)的前两式(不考虑体力)
zx x yx , zy y xy
应力分量 xz 只可能合成横向剪力,在单位宽度上
2
Fsx


2
xz
dz
将(9-5)的第一式代入,并对z积分
Fsx

2
E
1 2
x
2w

2 2

z
2
2
4
dz
E 3 2w
12 1 2 x
(c)
弹性力学简明教程
z

2
E
1 2
2

4

z


2


1 3

z3

3
8

4w
E 3
6 1 2

1 2

z

2

1
z


4
w
(9-6)
弹性力学简明教程
NORTHEASTERN UNIVERSITY
§9-2 弹性曲面的微分方程
下面推导 w 的微分方程
利用薄板的上板面的应力边界条件 z z q 2
(f)
其中,q 是薄板单位面积内的横向载荷,包括横向面力和横向体力。

薄板屈曲1

薄板屈曲1

x y
Ez 1 2 Ez 1 2
xy yx
Ez 2 w 1 xy
(5)
为了计算板中内力,取出板的单元体如图 2a 所示。微元体侧面上的应力的合力矩 就是板中的弯矩 M x 、 M y 和扭矩 M xy (图 2b)。分别按下列各式求得 M x 、 M y 和 M xy :
图 2a
图 2b
Mx
t/2
t / 2
x zdz y zdz
t/2
My
t/2
t / 2
M xy M yx
t / 2
xy zdz
以式(5)表示的应力分量代入上式,因 w w( x, y ) ,不随 z 变化,积分后可得
2w 2w M x D x 2 y 2 2w 2w M y D y 2 x 2 M xy M yx D(1 ) 2w xy
m 4 4 m 2 n 2 4 n 4 4 p x m 2 2 2 4 0 D a2 a4 a 2b 2 b
7

D 2 px 2 b
mb n 2 a a mb
2
(f)
临界载荷应是使板发生微弯的最小载荷,因而设微弯时沿 y 方向的半波数 n 1 ,于是
Q x Q y x y dxdy
(g)
将式(f)和式(g)相加,化简后得平衡条件 z 0 为
5
Q x Q y 2w 2w 2w N x 2 2 N xy Ny 2 0 x y xy x y
由图 4b 所示微元体,对 x 轴的力矩平衡条件 M x 0 ,得
2

第十四讲 薄板小挠度弯曲(一)汇总

第十四讲 薄板小挠度弯曲(一)汇总

第十四讲 薄板小挠度弯曲理论(一)概念和假定薄板:板的厚度远小于中面最小尺寸的板。

荷载纵向荷载:作用在板中面以内的荷载,可以认为沿板的厚度均布,按平面应力计算。

横向荷载:使薄板弯曲,按薄板弯曲问题计算。

中面弯曲所形成的曲面称为薄板的 弹性曲面,中面内各点的横向位移 称为挠度。

薄板弯曲的基本假设(基尔霍夫假设)(1)垂直于中面方向的正应变εz 可以不计,由∂w /∂z = 0得到 w = w (x , y )板厚度内各点具有相同的挠度。

放弃物理方程:)]([1y x z z Eσσμσε+-= 目地:允许σz -μ(σx +σy ) ≠ 0(2)应力分量τxz 、τyz 、σz 远小于其余三个应力分量,它们所引起的应变可以不计(它们本身是平衡所需,不能不计),即认为γxz = γyz = 0(一般,薄板弯曲问题中,τxz 、τyz 是次要应力,σz 则为更次要应力) 0=∂∂+∂∂x w z u ,xwz u ∂∂-=∂∂0=∂∂+∂∂y w z v ,yw z v ∂∂-=∂∂x放弃物理方程:xz xz E τμγ)1(2+=,yz yz Eτμγ)1(2+= 即:允许γxz 和γyz 等于零,但τxz 和τyz 不为零。

只有三个物理方程)(1y x x E μσσε-=)(1x y y Eμσσε-=xy xy Eτμγ)1(2+=与平面应力问题相同。

(3)薄板中各点都没有平行于中面的位移,(u )z = 0 = 0,(v )z = 0 = 0,因此,(εx )z = 0 = 0,(εy )z = 0 = 0,(γxy )z = 0 = 0 薄板弯曲后,在xy 平面的投影形状不变。

弹性曲面微分方程按位移求解,基本未知量为挠度w ,需将其它物理量用w 表示,由x w z u ∂∂-=∂∂,yw z v ∂∂-=∂∂ 积分得到:),(1y x f z x w u +∂∂-=,),(2y x f z ywv +∂∂-= 由:(u )z = 0 = 0,(v )z = 0 = 0得到:f 1(x , y ) = f 2(x , y ) = 0,因此 z x w u ∂∂-=,z yw v ∂∂-= 则: z x w x u x 22∂∂-=∂∂=ε,z y w y v y 22∂∂-=∂∂=ε,z yx wx v y u xy ∂∂∂-=∂∂+∂∂=22γ将应力分量σx 、σy 、τxy 用w 表示⎪⎪⎭⎫⎝⎛∂∂+∂∂--=+-=2222221)(1y w x w Ez E y x x μμμεεμσ⎪⎪⎭⎫⎝⎛∂∂+∂∂--=+-=2222221)(1x w y w Ez E x y y μμμεεμσ yx wEz E xy xy ∂∂∂+-=+=21)1(2μγμτ w 仅为x 、y 的函数,因此应力分量与z 成正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

薄板弯曲挠度计算公式
δ = (5 w l^4) / (384 E t^3)。

在这个公式中,δ代表薄板的弯曲挠度,w代表加载在薄板上的集中力或均布载荷,l代表薄板的长度,E代表薄板的杨氏模量,t代表薄板的厚度。

另外,如果考虑薄板的边界条件和受力情况,还可以使用其他公式来计算薄板的弯曲挠度。

例如,对于简支边界条件下的均布载荷作用的薄板,可以使用以下公式:
δ = (5 w l^4) / (384 D)。

在这个公式中,D代表薄板的弯曲刚度,可以通过薄板的几何形状和材料性质来计算。

需要注意的是,薄板的弯曲挠度计算涉及到复杂的数学推导和力学理论,因此在实际工程中,通常会借助于专业的有限元分析软件来进行准确的计算。

总之,薄板的弯曲挠度计算公式可以通过梁的弯曲理论或者考虑边界条件和受力情况来进行推导,但在实际应用中需要综合考虑薄板的几何形状、材料性质和受力情况来选择合适的计算方法。

相关文档
最新文档