卫生统计学知识点总结
医学统计学重点总结

(1) 单个样本均数 H0:μ=μ0t= ν=n-1 (小样本)
(已知样本——均数) H1:μ≠μ0
α=u= 或u= (大样本)(2)配对:H0:μ=μ0
H1:μ≠μ0t= ν=对子数-1
α=
(3) 两独立样本均数H0:μ=μ0t= ν=n1+n2-2
(4)(已知样本——样本) H1:μ≠μ0
9.对任何参数μ和σ的正态分布,都可以通过一个简单的变量变换成标准正态分布,即μ=X-μ
σ
9
标准正态分布
正态分布
面积或概率
-1~1
μ σ
%
~
μ σ
%
·
μ σ
%
10.医学参考值范围(reference value range)传统上称作正常值范围,指正常人的解剖、生理、生化、免疫及组织代谢产物的含量等各种数据的波动范围。习惯上是包含95%的参照总体的范围。
实际工作中标准差 σ往往未知,因而通常用样本标准差S代替σ,求得样本均数 准误估计值S ,计算公式为 S = (当n→无穷,S→σ,S →0)
3 95%的可信区间的计算:x (μ,σ ) 1) σ已知,可信区间= σ
2)σ未知,n为小样本: t 3)σ未知,n为大样本:
T变换
μ变换
N (0,1)
3、t分布曲线的形态变化与自由度v=n-1有关。
2.四格表专用公式(
3对于四格表资料,通常规定为:(1)当n≥40且所有的T ≥ 5时,用检验的基本公式或四格表的专用公式;(2)当n ≥ 40 但有1≤T<5时,用四格表资料的校正公式;(3)当n<40,或T<1时,用四格表资料的Fisher确切 概率法。
4 行×列表资料的χ 检验: 自由度:ν=(行数-1)(列数-1)
卫生统计学名词解释

卫生统计学名词解释一、基础概念1.总体(Population):在一定时空范围内同质的所有观察单位或个体的集合。
2.样本(Sample):从总体中随机抽取的一部分观察单位的集合。
3.变量(Variable):观察单位的基本特征或特性,可以分为定量变量和定性变量。
4.总体参数(Population Parameter):描述总体特征的概括性数值,如总体均数、总体率等。
5.样本统计量(Sample Statistic):描述样本特征的数值,如样本均数、样本率等。
二、资料类型与搜集方法1.计数资料(Count Data):通过计数或分类得到的资料,一般用相对数(率)表示。
2.计量资料(Measure Data):通过测量得到的数值资料,一般用均数、中位数等表示。
3.等级资料(Ordinal Data):具有一定顺序或等级的资料,一般用等级或有序分类表示。
4.调查法(Survey Method):通过问卷、访谈等方式收集资料的方法,常用于大样本调查。
5.实验法(Experimental Method):通过实验设计、随机分组等方式收集资料的方法,常用于实验研究。
6.观察法(Observational Method):通过观察记录收集资料的方法,常用于临床观察、生态学研究等。
7.纵向研究(Longitudinal Study):对同一组观察单位在不同时间点进行重复观察的方法,可获取纵向数据。
8.横向研究(Cross-sectional Study):在某一时间点对不同组观察单位进行同时观察的方法,可获取横截面数据。
9.随机抽样(Random Sampling):按照随机原则从总体中抽取样本的方法,保证每个观察单位被抽中的概率相等。
10.系统抽样(Systematic Sampling):按照某种规则或顺序从总体中抽取样本的方法,如每隔一定数量的观察单位抽取一个样本。
三、卫生统计学方法1.描述性统计(Descriptive Statistics):通过对数据进行整理、归类、简化和表示,描述数据的基本特征和分布情况。
(完整版)医学统计学重点总结

1.简述总体和样本的定义,并且举例说明。
总体是研究目的确定的所有同质观察单位的全体。
样品是从研究总体中抽取部分有代表性的观察单位。
2.简述参数和统计量的定义,并且举例说明。
描述总体特征的指标称为参数,描述样本特征的指标称为统计量。
3.变量的类型有哪几种?举例说明各种类型变量有什么特点。
①定量数据:计量资料;定量的观测值是定量的,其特点是能够用数值的大小衡量其水平的高低。
②定性数据:计数资料;变量的观测值是定性的,表现为互不相容的类别或属性。
③有序数据:半定量数据/等级资料;变量的观测值是定性的,但各类别(属性)有程度或顺序上的差异。
4.请举例说明一种类型的变量如何变换为另一种类型的变量。
定量数据>有序数据>定性数据--------------->5.请简述什么是小概率事件?概率是描述事件发生可能性大小的度量,P 0.05事件称为小概率事件。
≤6.举例说明什么是配对设计。
配对设计是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。
①同源配对:同一受试对象或同一标本的两个部分,随机分配接受两种不同处理;②异源配对:为消除混杂因素的影响,将两个同质受试对象配对分别接受两种处理。
7.非参数假设检验适合什么类型数据进行分析?①总体分布类型未知或非正态分布数据;②定量或半定量数据;③数据两端无确定的数值。
8.简述P 25 P 50 P 75的统计学意义。
(条件:明显偏态且不能转化为正态或近似对称;一端或两端无确定数值;分布情况未知)用来描述资料的观测值序列在某百分位置的水平,四分位数间距可以作为说明个体差异的指标(说明个体在不同位置的变异情况)。
9.直条图、直方图、圆饼图的使用条件是什么?直条图:各自独立的统计指标的数值大小和他们之间的对比;直方图:连续变量频数分布情况;圆饼图:全体中各部分所占的比例。
10.统计分析包括哪两个方面的内容?为什么要进行统计推断?统计描述和统计分析;统计描述用来描述及总结一组数据的重要特征,其目的是使实验或观察得到的数据表达清楚并便于分析。
卫生统计学重点笔记

医师资历测验蓝宝书-预防医学医学统计学办法第一节根本概念和根本步调(异常重要)一.统计工作的根本步调设计(最症结.决议成败).汇集材料.整顿材料.剖析材料.总体:依据研讨目标决议的同质研讨对象的全部,确实地说,是性质雷同的所有不雅察单位某一变量值的聚集.总体的指标为参数.现实工作中,经常是从总体中随机抽取必定命量的个别,作为样本,用样本信息来揣摸总体特点.样本的指标为统计量.因为总体中消失个别变异,抽样研讨中所抽取的样本,只包含总体中一部分个别,这种由抽样引起的差别称为抽样误差.抽样误差愈小,用样本揣摸总体的精确度愈高;反之,其精确度愈低.小概率事宜.二.变量的分类变量:不雅察单位的特点,分数值变量和分类变量.第二节数值变量数据的统计描写(重要考点)一.描写计量材料的分散趋向的指标有1.均数均数是算术均数的简称,实用于正态或近似正态散布.2.几何均数实用于等比材料,尤其是对数正态散布的计量材料.对数正态散布即原始数据呈偏态散布,经对数变换后(用原始数据的对数值lgX代替X)屈服正态散布,不雅察值不克不及为0,同时有正和负.3.中位数一组按大小次序分列的不雅察值中位次居中的数值.可用于描写任何散布,特殊是偏态散布材料的分散地位,以及散布不明或散布末尾无肯定命据材料的中间地位.不克不及求均数和几何均数,但可求中位数.百分位数是个界值,将全部不雅察值分为两部分,有X%比小,剩下的比大,可用于盘算正常值规模.二.描写计量材料的离散趋向的指标1.全距和四分位数间距.2.方差和尺度差最为经常运用,适于正态散布,既斟酌了离均差(不雅察值和总体均数之差),又斟酌了不雅察值个数,方差使本来的单位变成了平方,所以开方为尺度差.均为数值越小,不雅察值的变异度越小.3.变异系数多组间单位不合或均数相差较大的情形.变异系数盘算公式为:CV=s/X×100%,公式中s为样本尺度差,X为样本均数.三.尺度差的运用暗示不雅察值的变异程度(或离散程度).在两组(或几组)材料均数邻近.器量单位雷同的前提下,尺度差大,暗示不雅察值的变异度大,即各不雅察值离均数较远,均数的代表性较差;反之,暗示各不雅察值多分散在均数四周,均数的代表性较好.(常考!)四.医学参考值的盘算办法,单双侧问题,医学为95%医学参考值是斧正常人体或动物体的各类心理常数,因为消失变异,各类数据不但因人而异,并且统一小我还会随机体表里情形的转变而转变,因而须要肯定其摇动的规模,即正常值规模.医学参考值的盘算公式:①正态散布材料95%医学参考值:X±1.96s(双侧);X X-1.645s(单侧),s为尺度差.②百分位数法P和P(双侧);P5或P95(单侧).第三节数值变量数据的统计揣摸(重要考点)一.尺度误,尺度误与尺度差和样本含量的关系尺度差和尺度误的差别.样本尺度误等于样本尺度差除以根号下样本含量.尺度误与尺度差成正比;与样本含量的平方根成反比.是以.为削减抽样误差,应尽可能包管足够大的样本含量.样本尺度差与样本尺度误是既有接洽又有区此外两个统计量,二者的接洽是公式:二者的差别在于:样本尺度差是反应样本中各不雅测值X1,X2,……,X n变异程度大小的一个指标,它的大小说清楚明了对该样本代表性的强弱.样本尺度误是样本平均数1,2,……的尺度差,它是抽样误差的估量值,其大小说清楚明了样本间变异程度的大小及精确性的高下.(控制!)二.t散布和尺度正态u散布关系均以0为中间阁下两侧完整对称的散布,只是t散布曲线顶端较u散布低,两头翘.(v逐渐增大,t散布逐渐逼近u散布).正态散布的特色:①以均数为中间阁下两侧完整对称散布;②两个参数,均数u(地位参数)和s(变异参数);③对称均数的两正面积相等.三.总体均数的估量样本统计量推算总体均数有两个重要方面:区间估量和假设磨练.样本均数估量总体均数称点估量.总体均数区间估量(可托区间)的概念:按必定的可托度估量未知总体均数地点规模.其统计上习习用95%(或99%)可托区间暗示总体均数μ有95%(或99%)的可能在某一规模.可托区间的两个要素,一为精确度,反应在可托度1-α的大小,即区间包含总体均数的概率大小,当然愈接近1愈好;二是精度,反应在区间的长度,当然长度愈小愈好.在样本例数肯定的情形下,二者是抵触的,须要统筹.总体均数可托区间的盘算办法:1.当n小按t散布的道理用式盘算可托区间为:X±tαv S X/2,2.当n足够大因n足够大时,t散布逼近μ散布,按正态散布道理.用式估量可托区间为:X±μα/2SX可托区间与医学参考值规模的差别:二者的意义和算法不合.四.假设磨练的步调1.树立假设:H0(无效,两样本代表的总体均数雷同),H1(备择,两样本来自不合总体),当谢绝H0就接收H1,不谢绝就不接收H1.2.肯定明显性程度:区分精确率和小概率事宜的尺度,平日取α=0.05.3.盘算统计量:依据材料类型和剖析目标选择恰当的公式盘算.4.肯定概率P值:将盘算得到的t值或u值查界值表得到P 值和α值比较.5.做出揣摸结论.|t|值.P值与统计结论五.两均数的假设磨练(常考!)1.样本均数与总体均数比较 u磨练和t磨练用于样本均数与总体均数的比较.理论上请求样本来自正态散布总体现实中,只要样本例数n较大,或n小但总体尺度差σ已知,就选用u磨练.n 较小且σ未知时,用于t磨练.两样本均数比较时还请求两总体方差等.以算得的统计量t,按表所示关系作断定.2.配对材料的比较在医学研讨中,经常运用配对设计.配对设计重要有四种情形:①统一受试对象处理前后的数据;②统一受试对象两个部位的数据;③统一样品用两种办法(仪器等)磨练的成果;④配对的两个受试对象分离接收两种处理后的数据.情形①的目标是揣摸其处理有无感化;情形②.③.④的目标是揣摸两种处理(办法等)的成果有无不同.v=对子数-1;如处理前后或两法无不同,则其差数d的总体均数应为0,可看作样本均数d和总体均数0的比较.d为差数的均数;d S 为差数均数的尺度误,S d 为差数的尺度差;n 为对子数.因盘算的统计量是t,按表所示关系作断定.3.完整随机设计的两样本均数的比较 亦称成组比较.目标是揣摸两样本各自代表的总体均数μ1与μ2是否相等.依据样本含量n 的大小,分u 磨练与t 磨练.t 磨练用于两样本含量n 1.n 2较小时,且请求两总体方差相等,即方差齐.若被磨练的两样本方差相差明显则需用t ′磨练.u 磨练:两样本量足够大,n>50.21X X S -=)(21212C n n n n S + v =(n 1-1)+(n 2-1)=n 1+n 2-2 式中21X X S -,为两样本均数之差的尺度误,Sc 2为归并估量方差(combined estimate variance ).算得的统计量为t,按表所示关系做出断定.4.Ⅰ型错误和Ⅱ型错误 弃真,谢绝精确的H 0为Ⅰ型错误α暗示,若明显性程度α定为0.05,则犯Ⅰ型错误的概率0.05;接收错误的H 0为Ⅱ型错误,概率用β暗示,β值的大小很难确实估量.当样本含量一准时,两者反比,增大n,当α一准时,可削减β.1-β称为磨练效能或掌控度,其统计意义是若两总体确有不同,按α水准能检出其差此外才能.客不雅现实谢绝H 0 不谢绝H 0H 0成立 Ⅰ型错误(α) 揣摸精确1-αH 0不成立揣摸精确(1-β) Ⅱ型错误(β)5.假设磨练留意事项 包管组间可比性;依据研讨目标.材料类型和设计类型选用恰当的磨练办法,熟习各类磨练办法的运用前提;“明显与否”是统计学术语,为“有无统计学意义”,不克不及懂得为“不同是不是大”;结论不克不及绝对化.第四节 分类变量材料的统计描写(一般考点)相对数是两个有接洽关系事物数据之比.经常运用的相对数指标有构成比.率.相比较等.一.构成比暗示事物内部各个构成部分所占的比重,平日以100为例基数,故又称为百分比.其公式如下: 构成比=个体数总和事物内部各构成部分的的个体数事物内部某一构成部分×100% 该式可用符号表达如下: 构成比=⋯⋯+++C B A A ×100% 构成比有两个特色:(1)各构成部分的相对数之和为100%.(2)某一部分所占比重增大,其他部分会响应地削减.二.率用以解释某种现象产生的频率或强度,故又称频率指标,以100,1000,10000或100000为比例基数(K )均可,原则上以成果至少保存一位整数为宜,其盘算公式为:率和构成比不合之处:率的大小仅取决于某种现象的产生数和可能产生该现象的总数,不受其他指标的影响,并且各率之和一般不为1. 率=可能发生某现象的总数某现象实际发生例数×K 该式亦可用符号表达如下 阳性率=)()()(-+++A A A ×K (若算阴性率则分子为A (-))式中A (+)为阳性人数,A (-)为阴性人数.三.相比较暗示有关事物指标之比较,常以百分数和倍数暗示,其公式为:相比较:甲指标/乙指标(或×100%)或用符号暗示为:A/B ×K四.留意事项①构成比和率的不合,不克不及以比代率;②盘算相对数时,不雅察例数不宜过小;③率的比较留意可比性,特殊是混淆身分的问题,有的话,可用尺度化法和分层剖析清除;④不雅察单位不合的几个率的平均率不等于几个率的算术均数;⑤样本率或构成比的比较应做假设磨练.第五节 分类变量材料的统计揣摸(异常重要)一.率的抽样误差用抽样办法进行研讨时,必定消失抽样误差.率的抽样误差大小可用率的尺度误来暗示,盘算公式如下:σp=n π)π(1+式中:σp为率的尺度误,π为总体阳性率,n为样本含量.因为现实工作中很难知道总体阳性率π,故一般采取样本率P来代替,而上式就变成S p=n P)P(1-二.总体率的可托区间因为样本率与总体率之间消失着抽样误差,所以也需依据样本率来推算总体率地点的规模,依据样本含量n和样本率P的大小不合,分离采取下列两种办法:(一)正态近似法(常考!)当样本含量n足够大,且样本率P和(1-P)均不太小,如nP 或n(1-P)均≥5时,样本率的散布近似正态散布.则总体率的可托区间可由下列公式估量:总体率(π)的95%可托区间:p±p总体率(π)的99%可托区间:p±p(二)查表法当样本含量n较小,如n≤50,特殊是P接近0或1时,则按二项散布道理肯定总体率的可托区间,其盘算较繁,读者可依据样本含量n和阳性数x参照专用统计学介绍的二项散布中95%可托限表.三.u磨练(异常重要!)当样本含量n 足够大,且样本率P 和(1-P )均不太小,如nP 或n (1-P )均≥5时,样本率的散布近似正态散布.样本率和总体率之间.两个样本率之间差别的断定可用u 磨练.1.样本率和总体率的比较公式 u=|P-π|/σP =|P-π|/n π)/π(1-;2.两样本率比较公式 u=|P 1-P 2|/Sp 1-P 2=|P 1-P 2|/)1/)(1/(121n n p p c c +-也可用χ2磨练,两者相等.四.χ2磨练(异常重要!)可用于两个及两个以上率或构成比的比较;两分类变量相干关系剖析.其数据构成,必定是互相对峙的两组数据,四格表材料自由度v 永久=1.四格表χ2磨练各类公式实用前提,n>40且每个格子T>5,可用根本公式或专用公式,不必校订.根本公式:χ2=∑(A-T )2/T专用公式:χ2=∑(ad-bc )2n/(a+b )(c+d )(a+c )(b+d )只要有一个格子T 在1~5之间,需校订.校订公式:根本公式:χ2=∑(|A-T |-0.5)2/T专用公式:χ2=∑(|ad-bc |-n/2)2n/(a+b )(c+d )(a+c )(b+d )n<40或T<1,用确实概率法.五.行×列表χ2磨练当行数或列数超出2时,称为行×列表.行×列表χ2磨练是对多个样本率(或构成比)的磨练.实用前提:一般以为行×列表中不宜有1/5以上格子的理论数小于5,或有小于1的理论数.1.当理论数太小可采纳下列办法处理①增长样本含量以增大理论数;②删去上述理论数太小的行和列;③将太小理论数地点组与性质邻近的组归并,使从新盘算的理论数增大.因为后两法可能会损掉信息,伤害样本的随机性,不合的归并方法有可能影响揣摸结论,故不宜作通例办法.别的,不克不及把不合性质的现实数归并,如研讨血型时,不克不及把不合的血型材料归并.2.如磨练成果谢绝磨练假设,只能以为各总体率或总体构成比之间总的来说有不同,但不克不及解释它们彼此之间都有不同,或某两者间有不同.3.关于单向有序行列表的统计处理在比较遍地理组的效应有无不同时,宜用秩和磨练法,如作χ2磨练只解释遍地理组的效应在构成比上有无差别.六.配对计数材料的χ2磨练统一样品用两种办法处理,不雅察阳性和阴性个数.断定两种处理办法是否雷同.当b+c>40时,χ2=(b-c)2/b+c;b+c<40时,校订公式:χ2=(|b-c|-1)2/b+c第六节直线相干和回归(一般考点)一.直线相干剖析的用处.相干系数及其意义相干剖析是研讨事物或现象之间有无关系.关系的偏向和亲密程度.相干系数:是定量暗示两个变量(X,Y)之间线性关系的偏向和亲密程度的指标,用r暗示,r=lxy/lxxlxy,其值在-1至+1间,r 没有单位.r呈正值,两变量间呈正相干,即两者的变更趋向是同向的,r=1时为完整正相干;如r呈负值,两变量呈负相干,即两者的变更趋向是反向的,r=-1时为完整负相干.r的绝对值越接近1,两变量间线性相干越亲密;越接近于0,相干越不亲密.当r=0时,解释X和Y两个变量之间无直线关系.二.直线回归剖析的感化.回归系数及其意义直线回归剖析的义务在于找出两个变量有依存关系的直线方程,以肯定一条最接近于各实测点的直线,使各实测点与该线的纵向距离的平方和为最小.这个方程称为直线回归方程,据此方程描写的直线就是回归直线.直线同归方程式的一般表达式Y=a+bX式中a为回归直线在Y轴上的截距,即a>0暗示直线与Y轴的交点在原点上方,<0在原点下方,a=0过原点.b为样本回归系数,即回归直线的斜率,暗示当X变动一个单位时,Y平均变动b个单位.b>0:暗示Y随X增大而增大b<0:暗示Y随X增大而削减b=0:暗示Y不随X变更而变更第七节统计表和统计图(重要考点)一.统计表原则:构造简略.层次分明.内容安插合理.重点凸起.数据精确.1.标题简洁表达表的中间内容,地位在表的上方.2.标目有横标和纵标目,横标目平日位于表内左侧;纵标目列在表内上方,其表达成果与主辞呼应.3.线条力图简洁,一般为三线表.4.用阿拉伯数暗示,如很多据或暂缺材料,也可用“-”或“…”来暗示.5.备注一般不列入表内,解释在表下.内容分列:一般按事物产生频率大小次序来分列,比较光鲜,重点凸起.二.统计图1.线图(line diagram)(常考!)材料性质:实用于持续变量材料.剖析目标:用线段的起落表达某事物的动态(差值)变更.2.半对数线图(semilogarithmic line graph)材料性质:实用于持续变量材料.剖析目标:用线段的起落表达事物的成长速度变更趋向.3.直方图(histogram)材料性质:实用于数值变量,持续性材料的频数表材料.剖析目标:直方图是以直方面积表达各组段的频数或频率.4.直条图(bar chart)材料性质:实用于彼此自力的材料.剖析目标:直条图是用等宽直条的和长短来暗示各统计量的大小,进行比较.5.百分条图(percentchart)材料性质:构成比.剖析目标:用长条各段的长度(面积)表达内部构成比.6.圆形图(circulargraph)(常考!)材料性质:构成比.剖析目标:用圆的扇形面积表达内部构成比.7.散点图(scatterdiagram)材料性质:双变量材料.剖析目标:用点的密集度和趋向表达两变量间的相干关系.8.统计地图(statistical map)材料性质:地区性材料.剖析目标:用不合纹线或色彩代表指标高下,解释地域散布.。
医学统计学复习重点

医学统计学复习重点统计设计:调查设计、实验设计第一章绪论1.基本概念:总体——根据研究目的确定,所有同质观察单位某种观察值的全体。
样本——总体中抽取的一部分具有代表性的个体组成的集合。
参数-—刻画总体特征的统计指标。
一般用希腊字母表示μ、σ、π统计量—-刻画样本特征的统计指标.抽取的样本不同,统计量会变化;一般用拉丁字母或英文字母表示、S、p抽样误差:个体变异所致,抽样研究中样本信息与总体特征间的差异。
抽样误差是不可避免的。
属于随机误差,无方向性,重复抽样可以呈现一定的规律性。
小概率事件P≤0。
052.*统计工作的四个步骤:设计、收集资料、整理资料、分析资料。
(用工作实例解释)第二章调查研究设计第三章实验研究设计1.调查研究(观察性研究):特点:无人为施加处理因素调查研究的分类:按调查涉及的对象划分:全面调查(普查)、抽样调查、典型调查注意:收集的资料要有可比性*随机抽样方法(做统计推断有意义):单纯随机抽样、系统抽样、分层抽样、整群抽样非随机抽样方法(不能做统计推断,可能有偏差):偶遇抽样、判断抽样、滚雪球抽样等2.实验研究特点:与调查研究最本质的区别:根据研究目的主动施加干预措施实验设计的三个基本要素:受试对象、处理因素、实验效应实验设计的基本原则:对照原则、随机化原则、重复原则第四章定量资料的统计描述第五章定性资料的统计描述1.定量资料(1)定量资料——*频数分布表、直方图、箱式图—-判断分布类型——(2)描述离散趋势的统计指标:✓极差R=最大值—最小值、✓四分位数间距Q:常用于描述*偏态分布资料的离散趋势、一端或两端无确切值的资料、分布不明确资料✓方差(总体、样本S2)&标准差(、S):*正态或近似正态分布✓变异系数(3)(4)正态分布及其应用:**制定医学参考值范围步骤:判断分布类型-—正态分布-—*双侧95%参考值范围:±1.96S、单侧95%参考值范围:下限为—1。
64S、上限为+1。
(完整版)医学统计学复习要点

(完整版)医学统计学复习要点第⼀章绪论1、数据/资料的分类:①、计量资料,⼜称定量资料或者数值变量;为观测每个观察单位某项治疗的⼤⼩⽽获得的资料。
②、计数资料,⼜称定性资料或者⽆序分类变量;为将观察单位按照某种属性或者类别分组计数,分组汇总各组观察单位数后⽽得到的资料。
③、等级资料,⼜称半定量资料或者有序分类变量。
为将观察单位按某种属性的不同程度分成等级后分组计数,分类汇总各组观察单位数后⽽得到的资料。
2、统计学常⽤基本概念:①、统计学(statistics)是关于数据的科学与艺术,包括设计、搜集、整理、分析和表达等步骤,从数据中提炼新的有科学价值的信息。
②、总体(population)指的是根据研究⽬的⽽确定的同质观察单位的全体。
③、医学统计学(medical statistics):⽤统计学的原理和⽅法处理医学资料中的同质性和变异性的科学和艺术,通过⼀定数量的观察、对⽐、分析,揭⽰那些困惑费解的医学问题背后的规律性。
④、样本(sample):指的是从总体中随机抽取的部分观察单位。
⑤、变量(variable):对观察单位某项特征进⾏测量或者观察,这种特征称为变量。
⑥、频率(frequency):指的是样本的实际发⽣率。
⑦、概率(probability):指的是随机事件发⽣的可能性⼤⼩。
⽤⼤写的P表⽰。
3、统计⼯作的基本步骤:①、统计设计:包括对资料的收集、整理和分析全过程的设想与安排;②、收集资料:采取措施取得准确可靠的原始数据;③、整理资料:将原始数据净化、系统化和条理化;④、分析资料:包括统计描述和统计推断两个⽅⾯。
第⼆章计量资料的统计描述1. 频数表的编制⽅法,频数分布的类型及频数表的⽤途①、求极差(range):也称全距,即最⼤值和最⼩值之差,记作R;②、确定组段数和组距,组段数通常取10-15组;③、根据组距写出组段,每个组段的下限为L,上限为U,变量X值得归组统⼀定为L≤X<U,最后⼀组包括下限。
最新电大《实用卫生统计学》作业部分参考答案参考知识点复习考点归纳总结

三一文库()*电大考试*《实用卫生统计学》作业部分参考答案作业一、名词解释1、变异:同一性质的事物,其观察值之间的差异,统计上称为变异。
2、统计推断:根据样本资料的特性对总体的特性作估计或推论的方法称统计推断,常用方法是参数估计或假设检验。
3、标准差:是反映计量资料全部观察值离散程度的统计指标,用于描述对称分布资料,尤其正态分布资料的离散趋势4、均数:是反映计量资料全部观察值平均水平的统计指标,适用于对称分布尤其是正态分布资料5、动态数列:是一系列按时间顺序排列起来的统计指标,包括绝对数、相对数或平均数,用以说明事物在时间上的变化和发展趋势。
二、填空题1、计量资料是指(用度量衡的方法测定每个观察单位的某项研究指标量的大小获得的连续型资料);常用的统计指标有(平均数)、(标准差);常用字的统计方法有(t检验),(u检验),(直线相关与回归)。
2、收集统计资料的三个基本要求(完整、正确和及时),(要有足够的数量),(资料的代表性和可比性)。
3、描述计量资料离散趋势的常用指标有(极差)、(四分位数间距)、(方差和标准差)、(变异系数)4、描述计量资料集中趋势的常用指标有(均数)、(几何均数)、(中位数)。
5、常用相对数有(构成比)、(率)、(相对比)三、选择题1、A2、D3、B4、C5、D6、D7、D8、A9、D 10、C四、简答题1、卫生事业管理专业与卫生统计学的关系?卫生事业管理的研究对象也存在许多不确定性,因此,要利用卫生统计这个有效工具,充分发挥卫生统计的信息、咨询、监督的整体功能,为满足决策机构管理和卫生服务研究的需要。
2、简述总体和样本的关系。
样本是从总体中随机抽取的一部分有代表性的个体组成,除了数量比总体少,其他构成均与总体一样,是总体具体而微的缩影。
3、见教材P27表2.94、见教材P27表2.105、简述率的标准化的基本思想?直接标准化法需要哪些条件?当不同人群的总率进行比较时,若其人群的内部构成存在差异,而年龄、性别等因素对率有影响。
卫生统计学名词解释和简答题

卫生统计学一、名词解释1、总体:根据研究目的确定的同质观察单位的观察值全体所构成的集合。
2、样本:从研究总体中抽取的一部分满足代表性的个体观察值所构成的集合。
3、抽样误差:在同一总体中随机抽取样本含量相同的若干样本时,样本指标之间的差异以及样本与总体指标的差异,称为抽样误差。
4、计量资料定量资料(quantitative data ):亦称计量资料,其变量值是定量的,表现为数值大小,一般有度量衡单位,如上例中的身高(cm)、体重(kg)资料等均为定量资料。
5、定性资料:定性资料(qualitative data ):亦称分类资料(categorical data ),其观察值是定性的,表现为互不相容的类别或属性,一般无度量衡单位。
可进一步细分为以下两种资料。
6、变异系数:变异系数是一种相对变异指标,常用于比较度量单位不同或单位相同但均数相差悬殊的两组或多组对称分布特别是正态分布资料的变异程度。
7、回归系数:b称为回归系数(coefficient of regression),含义为当x每变化1个单位,因变量γ平均变化b个单位。
8、决定系数:也称判定系数或者拟合优度。
它是表征回归方程在多大程度上解释了因变量的变化,或者说方程对观测值的拟合程度如何。
9、率:说明某现象发生的频率或强度的指标。
10、构成比:说明事物内部各组成部分所占的比重,不能说明某现象发生的频率或强度大小。
11、粗出生率:指某年某地平均每千人口的活产数,是反映一个国家或地区的人口自然变动的基本指标。
12、粗死亡率:指某地某年平均每千人口中的死亡数,反映当地居民总的死亡水平。
二、简答题1.简述方差分析的基本思想和应用条件。
方差分析的基本思想:将全部观察值之间的变异按照设计的要求和分析的需要分解成两个或多个部分,然后再作分析。
方差分析的应用条件为:1、各样本是相互独立的随机样本;2、各样本均来自正态分布总体;3、各样本的总体方差相等,即方差齐。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卫生统计学统计工作基本步骤:统计设计(调查设计和实验设计)、资料分析{收集资料、整理资料、分析资料【统计描述和统计推断(参数估计和假设检验)】。
★统计推断:是利用样本所提供的信息来推断总体特征,包括:参数估计和假设检验。
a参数估计是指利用样本信息来估计总体参数,主要有点估计(把样本统计量直接作为总体参数估计值)和区间估计【按预先设定的可信度(1-α),来确定总体均数的所在范围】。
b假设检验:是以小概率反证法的逻辑推理来判断总体参数间是否有质的区别。
变量资料可分为定性变量、定量变量。
不同类型的变量可以进行转化,通常是由高级向低级转化。
资料按性质可分为计量资料、计数资料和等级资料。
定量资料的统计描述1频率分布表和频率分布图是描述计量资料分布类型及分布特征的方法。
离散型定量变量的频率分布图可用直条图表达。
2频率分布表(图)的用途:①描述资料的分布类型;②描述分布的集中趋势和离散趋势;③便于发现一些特大和特小的可疑值;④便于进一步的统计分析和处理;⑤当样本含量足够大时,以频率作为概率的估计值。
★3集中趋势和离散趋势是定量资料中总体分布的两个重要指标。
(1)描述集中趋势的统计指标:平均数(算术均数、几何均数和中位数)、百分位数(是一种位置参数,用于确定医学参考值范围,P50就是中位数)、众数。
算术均数:适用于对称分布资料,特别是正态分布资料或近似正态分布资料;几何均数:对数正态分布资料(频率图一般呈正偏峰分布)、等比数列;中位数:适用于各种分布的资料,特别是偏峰分布资料,也可用于分布末端无确定值得资料。
(2)描述离散趋势的指标:极差、四分位数间距、方差、标准差和变异系数。
四分位数间距:适用于各种分布的资料,特别是偏峰分布资料,常把中位数和四分位数间距结合起来描述资料的集中趋势和离散趋势。
方差和标准差:都适用于对称分布资料,特别对正态分布资料或近似正态分布资料,常把均数和标准差结合起来描述资料的集中趋势和离散趋势;变异系数:主要用于量纲不同时,或均数相差较大时变量间变异程度的比较。
标准差的应用:①表示变量分布的离散程度;②结合均数计算变异系数、描述对称分布资料;③结合样本含量计算标准误。
定性资料的统计描述1定性资料的基础数据是绝对数。
描述一组定性资料的数据特征,通常需要计算相对数。
定性变量可以通过频率分布表描述其分布特征。
学中的相对危险度RR=P1/P0也是相对比指标。
3应用相对数应该注意:①防止概念混淆,避免以比代率的错误现象;②计算相对数时分母应有足够数量,如果例数较少会使相对数波动较大,应该使用绝对数;③正确的计算频率(或强度)指标的合计值。
当分组的资料需要合并起来估计频率(或强度)时,应将各组频率的分子相加作为合并估计的分子,各组的分母相加作为合并估计的分母;④频率型指标的解释要紧扣总体和属性;⑤相对数间比较要具备可比性:要注意观察对象是否同质、研究方法是否相同、观察时间是否一致、观察对象内部结构是否一致、对比不同时期资料应注意客观条件是否相同;⑥正确进行相对数的统计推断:在随机抽样的情况下,从样本估计值推断总体相对数应该考虑抽样误差,因此要进行参数估计和假设检验。
4医学人口统计资料主要来源为日常工作记录(报告单、卡、册)、统计报表、人口调查(普查和抽样调查)。
5描述人口学特征的常用指标一般有人口总数和反映人口学基本特征的某些指标。
人口学的基本特征包括性别、年龄、文化、职业等,最常用来描述人口结构的是性别和年龄。
人口学特征指标:老年人口系数、少儿人口系数、负担系数、老少比、性别比。
6有关生育的常用指标有出生率、生育率和人口再生产指标。
测量生育水平的统计指标:粗出生率、总生育率、年龄别生育率、总和生育率。
测量人口再生育的统计指标:自然增长率、粗再生率和净再生率。
7常用的死亡统计指标有:粗死亡率、年龄别死亡率、婴儿死亡率、新生儿死亡率、围生儿死亡率、死因别死亡率、某病病死率和死因构成等。
8疾病统计资料主要来源于:疾病报告和报表材料、医疗卫生工作记录、疾病专题调查资料。
9⑴标准化:两个率或多个率之间进行比较时,为消除内部构成不同的影响,采用统一的标准,对两组或多组资料进行校正(调整),计算得到标准化率后再做比较的方法,称为~。
其目的是统一内部构成,消除混杂因素,是资料具有可比性。
⑵应用标准化法的注意事项:①标准化法的应用范围很广。
当某个分类变量在两组中分布不同时,这两个分类变量就成为两组频率比较的混杂因素,标准化的目的是消除混杂因素。
②标准化后的标准化率,已经不再反映当时当地的实际水平,只表示相互比较的资料间的相对水平。
③标准化法实质是找一个标准,使两组得意在一个共同的平台上进行比较。
选择不同的标准,算出的标准化率也会不同,比较的结果也未必相同,因此报告比较结果时必须说明所选用的标准和理由④两样本标准化率是样本值,存在抽样误差。
比较两样本标准化率,当样本含量较小时,还应作假设检验。
10常用的动态数列分析指标有:绝对增长量、发展速度与增长速度、平均发展速度与平均增长速度。
(1)绝对增长量:是说明事物在一定时期增长的绝对值,可分为:累计增长量(报告期指标与基线期指标之差)和逐年增长量(报告期指标与前一期指标之差)。
(2)发展速度与增长速度:均为相对比,说明事物在一定时期的变化,可计算定基比(即报告期指标与基线期指标的比:a n/a0)和环比(报告期指标与其前一期指标之比:a n/a n-1)。
增长速度表示的是净增长速度,增长速度=发展速度-100%。
(3)平均发展速度与平均增长速度:用于概括某现象在一段时期中的平均变化。
平均发展速度是发展速度的几何平均数,平均发展速度=naan,平均增长速度=平均发展速度-100%。
11统计表和统计图是描述资料特征、呈现统计分析结果的重要工具。
统计表结构标题、标目、线条、数字和备注。
12常用统计图用途:①条图:适用于相互独立的资料(资料有明确分组、不连续);②百分条图、圆图适用于构成比资料;③线图适用于连续性资料,表达事物的动态变化(绝对差值);半对数线图适用于连续性资料,表达事物的发展速度(相对比);④直方图用于描述连续变量的频数分布;⑤散点图适用于双变量资料,用点的排列趋势和密集度表示两变量的相关关系。
常用概率分布1正态分布(连续型随机变量的概率分布)(1)正态概率密度曲线特点:①关于x=μ对称;②在x=μ处取得该概率密度函数的最大值,在x=μ±σ处有拐点;③曲线下面积为1;④正态分布有两个参数:位置参数μ(决定曲线在横轴上的位置)和变异参数σ(决定曲线的形状);⑤μ±1.64σ面积为90%,μ±1.96σ面积为95%,μ±2.58σ面积为99%。
(2)Z 变换与标准正态分布:对于任意一个服从正态分布N (μ,σ2)的随机变量,可作Z 变:Z=σμ-x ,变换后的z 值仍然服从正态分布,且其总体均数为0、总体标准差为1,称此为标准正态分布,用N (0,1)表示。
Φ(z )为标准正态分布Z 变量的累积面积,-∞→Z 的面积,即下侧累计面积。
★(3)正态分布的应用:①确定医学参考值范围:是指特定的“正常”人群(排除了对所研究的指标有影响的的疾病和有关因素的特定人群)的解剖、生理、生化指标及组织代谢产物含量等数据中大多数个体的取值所在范围,习惯用该人群的95%的个体某项医学指标的取值范围作为该指标的医学参考值范围。
方法:a 百分位数法:适用于任何分布类型的资料;b 正态分布法。
②质量控制图:如果某一波动仅仅由个体差异或随机测量误差所致,那么观察结果服从正态分布。
控制图共有7条水平线,中心线位于总体均数μ处,警戒限位于μ±2σ处,控制限位于μ±3σ处,此外还有两条位于μ±σ处。
★(4)确定医学参考值的步骤:①从“正常人”总体中抽样,明确研究总体;②用统一和准确的方法测定相应的指标;③根据不同的用途选定适当的百分界限,常用95%;④根据此指标的实际意义,决定单侧范围还是双侧范围;⑤根据此指标的分布决定计算方法,常用的计算方法:正态分布法、百分位数法。
2二项分布:(1)是一种离散型随机变量的分布类型。
如果每个观察对象阳性结果的发生概率为π,阴性结果的发生概率为(1-π);而且每个观察对象的结果是相互对立的,那么,重复观察n 个人,发生阳性结果的人数X 的概率分布为而二项分布,记作B (n ,π)。
二项分布的概率函数P (X )=x n C πX (1-π)n-x , x n C =)!(!n!X n X - ⑵适用条件:①每次实验只有两种互斥的结果;②各次实验互相独立;③发生成功事件的概率恒定。
⑶分布特征:二项分布的特征由二项分布的参数π以及观察的次数n 决定。
①图形分布特征:二项分布图的高峰在μ=n π处或附近;π=0.5时,图形对称;π≠0.5时,分布不对称,且对同一n ,π离0.5愈远,对称性愈差。
对于同一π,随着n 的增大,分布趋于对称。
当n →∞时,只要π不太靠近0或1(特别是当n π和n (1-π)均大于5时),二项分布趋于对称。
②二项分布的均数和标准差:若X 服从二项分布B (n ,π),则X 的总体均数为μ=n π,总体方差为σ2=n π(1-π),总体标准差为σ=π)π(-1n ;若将出现阳性结果的频率记为:P=n X ,则样本率P 的总体均数为μP =π,总体方差为σ2p =nπ)π(-1,总体标准差为σp =n π)π(-1,σp 是频率P 的标准差,又称频率的标准误,反映阳性频率的抽样误差大小。
⑷累积概率计算:①二项分布出现阳性的次数至多为k 次的概率为:P (X ≤k )=X X X n X n -=--∑n x k0)1()!(!!ππ②出现阳性的次数至少为k 次的概率为:P (X ≥k )=X k X X n X n -=--∑n x n )1()!(!!ππ。
3 Poisson 分布:⑴是一种离散型随机变量的分布类型,是二项分布的特例,用以描述单位时间、空间、面积等的罕见事件发生次数的概率分布。
一般记作P (λ),λ是Poisson 分布的唯一参数。
总体均数为λ=n π。
前提条件:互斥、独立、恒定。
⑵概率函数为:P (X )=e -λ!X Xλ,X 为观察单位内稀有事件的发生次数,e=2.71828。
⑶分布特性:Poisson 分布是非对称的,总体参数λ值越小,分布越偏;随着λ→∞,分布趋于对称,当λ≥20时,Poisson 分布资料可按正态分布处理。
①Poisson 分布总体均数与总体方差相等,均为λ;②Poisson 分布的观察结果可加性,即对于服从Poisson 分布的m 歌互相独立的随机变量X1、X2…Xm ,它们的和也服从Poisson 分布,其均数为这个m 随机变量的均数之和。