动量守恒三大定理
动量、冲量及动量守恒定律

动量、冲量及动量守恒定律动量和动量定理一、动量1.定义:运动物体的质量和速度的乘积叫动量;公式p=m v;2.矢量性:方向与速度的方向相同.运算遵循平行四边形定则.3.动量的变化量(1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式).(2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量用带有正负号的数值表示,从而将矢量运算简化为代数运算(此时的正负号仅代表方向,不代表大小).4.与动能的区别与联系:(1)区别:动量是矢量,动能是标量.(2)联系:动量和动能都是描述物体运动状态的物理量,大小关系为E k=p22m或p=2mE k.二、动量定理1.冲量(1)定义:力与力的作用时间的乘积.公式:I=Ft.单位:牛顿·秒,符号:N·s.(2)矢量性:方向与力的方向相同.2.动量定理(1)内容:物体在一个运动过程中始末的动量变化量等于它在这个过程中所受力的冲量.(2)公式:m v′-m v=F(t′-t)或p′-p=I.3.动量定理的应用碰撞时可产生冲击力,要增大这种冲击力就要设法减少冲击力的作用时间.要防止冲击力带来的危害,就要减小冲击力,设法延长其作用时间.(缓冲)题组一对动量和冲量的理解1.关于物体的动量,下列说法中正确的是() A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向B.物体的动能不变,其动量一定不变C.动量越大的物体,其速度一定越大D.物体的动量越大,其惯性也越大2.如图所示,在倾角α=37°的斜面上,有一质量为5 kg的物体沿斜面滑下,物体与斜面间的动摩擦因数μ=0.2,求物体下滑2s的时间内,物体所受各力的冲量.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)3.(2014·西安高二期末)下列说法正确的是() A.动能为零时,物体一定处于平衡状态B.物体受到恒力的冲量也可能做曲线运动C.物体所受合外力不变时,其动量一定不变D.动能不变,物体的动量一定不变4.如图所示,质量为m的小滑块沿倾角为θ的斜面向上滑动,经过时间t1速度为零然后又下滑,经过时间t2回到斜面底端,滑块在运动过程中受到的摩擦力大小始终为F1.在整个过程中,重力对滑块的总冲量为()A.mg sin θ(t1+t2) B.mg sin θ(t1-t2) C.mg(t1+t2) D.05.在任何相等时间内,物体动量的变化总是相等的运动可能是()A.匀速圆周运动B.匀变速直线运动C.自由落体运动D.平抛运动题组二动量定理的理解及定性分析1跳远时,跳在沙坑里比跳在水泥地上安全,这是由于()A.人跳在沙坑的动量比跳在水泥地上的小B.人跳在沙坑的动量变化比跳在水泥地上的小C.人跳在沙坑受到的冲量比跳在水泥地上的小D.人跳在沙坑受到的冲力比跳在水泥地上的小2.一个小钢球竖直下落,落地时动量大小为0.5 kg·m/s,与地面碰撞后又以等大的动量被反弹.下列说法中正确的是()A.引起小钢球动量变化的是地面给小钢球的弹力的冲量B.引起小钢球动量变化的是地面对小钢球弹力与其自身重力的合力的冲量C.若选向上为正方向,则小钢球受到的合冲量是-1 N·sD.若选向上为正方向,则小钢球的动量变化是1 kg·m/s3.如图所示,一铁块压着一纸条放在水平桌面上,当以速度v抽出纸条后,铁块掉到地面上的P点,若以2v速度抽出纸条,则铁块落地点为()A.仍在P点B.在P点左侧C.在P点右侧不远处D.在P点右侧原水平位移的两倍处题组三动量定理的有关计算1.一辆轿车强行超车时,与另一辆迎面驶来的轿车相撞,两车车身因相互挤压,皆缩短了0.5 m,据测算两车相撞前速度约为30 m/s,则:(1)假设两车相撞时人与车一起做匀减速运动,试求车祸中车内质量约60 kg的人受到的平均冲力是多大?(2)若此人系有安全带,安全带在车祸过程中与人体的作用时间是1 s,求这时人体受到的平均冲力为多大?动量守恒定律一、系统、内力与外力1.系统:相互作用的两个或多个物体组成一个力学系统.2.内力:系统中,物体间的相互作用力.3.外力:系统外部物体对系统内物体的作用力.二、动量守恒定律1.内容:如果一个系统不受外力或者所受外力的矢量和为零,这个系统的总动量保持不变.2.表达式:对两个物体组成的系统,常写成:p1+p2p1′+p2′或m1v1+m2v2m1v1′+m2v2′.3.成立条件(1)系统不受外力作用.(2)系统受外力作用,但合外力为零.三、动量守恒定律的普适性动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域.四、对动量守恒定律的理解1.研究对象相互作用的物体组成的系统.2.动量守恒定律的成立条件(1)系统不受外力或所受合外力为零.(2)系统受外力作用,合外力也不为零,但合外力远远小于内力.此时动量近似守恒.(3)系统所受到的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒.3.动量守恒定律的几个性质(1)矢量性.公式中的v1、v2、v1′和v2′都是矢量,只有它们在同一直线上,并先选定正方向,确定各速度的正、负(表示方向)后,才能用代数方法运算.(2)相对性.速度具有相对性,公式中的v1、v2、v1′和v2′应是相对同一参考系的速度,一般取相对地面的速度.(3)同时性.相互作用前的总动量,这个“前”是指相互作用前的某一时刻,v1、v2均是此时刻的瞬时速度;同理,v1′、v2′应是相互作用后的同一时刻的瞬时速度.例1如图所示,A、B两物体质量之比m A∶m B=3∶2,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,地面光滑.当弹簧突然释放后,则()A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成系统的动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成系统的动量守恒C.若A、B所受的摩擦力大小相等,A、B组成系统的动量守恒D.若A、B所受的摩擦力大小相等,A、B、C 组成系统的动量守恒针对训练下列情形中,满足动量守恒条件的是()A.用铁锤打击放在铁砧上的铁块,打击过程中,铁锤和铁块的总动量B.子弹水平穿过放在光滑桌面上的木块的过程中,子弹和木块的总动量C.子弹水平穿过墙壁的过程中,子弹和墙壁的总动量D.棒击垒球的过程中,棒和垒球的总动量1.把一支弹簧枪水平固定在小车上,小车放在光滑水平地面上,枪射出一颗子弹时,关于枪、弹、车,下列说法正确的是()A.枪和弹组成的系统动量守恒B.枪和车组成的系统动量守恒C.枪弹和枪筒之间的摩擦力很小,可以忽略不计,故二者组成的系统动量近似守恒D.枪、弹、车三者组成的系统动量守恒2.木块a和b用一根轻弹簧连接起来,放在光滑水平面上,a紧靠在墙壁上.在b上施加向左的水平力使弹簧压缩,如图所示.当撤去外力后,下列说法正确的是()A.a尚未离开墙壁前,a和b组成的系统动量守恒B.a尚未离开墙壁前,a和b组成的系统动量不守恒C.a离开墙壁后,a和b组成的系统动量守恒D.a离开墙壁后,a和b组成的系统动量不守恒五、动量守恒定律简单的应用1.动量守恒定律不同表现形式的表达式的含义(1)p=p′:(2)Δp1=-Δp2(3)Δp=0 (4)m1v1+m2v2=m1v1′+m2v2′2.应用动量守恒定律的解题步骤(1)确定相互作用的系统为研究对象;(2)分析研究对象所受的外力;(3)判断系统是否符合动量守恒条件;(4)规定正方向,确定初、末状态动量的正、负号;(5)根据动量守恒定律列式求解.例2将两个完全相同的磁铁(磁性极强)分别固定在质量相等的小车上,水平面光滑.开始时甲车速度大小为3 m/s,乙车速度大小为2 m/s,方向相反并在同一直线上,如图所示.(1)当乙车速度为零时,甲车的速度多大?方向如何?(2)由于磁性极强,故两车不会相碰,那么两车的距离最小时,乙车的速度是多大?方向如何?题组一对动量守恒条件的理解1.关于系统动量守恒的条件,下列说法中正确的是()A.只要系统内存在摩擦力,系统的动量就不可能守恒B.只要系统中有一个物体具有加速度,系统的动量就不守恒C.只要系统所受的合外力为零,系统的动量就守恒D.系统中所有物体的加速度都为零时,系统的总动量不一定守恒2.如图所示,物体A的质量是B的2倍,中间有一压缩弹簧,放在光滑水平面上,由静止同时放开两物体后一小段时间内() A.A的速度是B的一半B.A的动量大于B的动量C.A受的力大于B受的力D.总动量为零3.在光滑水平面上A、B两小车中间有一弹簧,如图所示,用手抓住小车并将弹簧压缩后使小车处于静止状态.将两小车及弹簧看成一个系统,下面说法正确的是()A.两手同时放开后,系统总动量始终为零B.先放开左手,再放开右手后,动量不守恒C.先放开左手,后放开右手,总动量向左D.无论何时放手,两手放开后,在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零题组二动量守恒定律的简单应用4.在高速公路上发生一起交通事故,一辆质量为1 500 kg向南行驶的长途客车迎面撞上了一辆质量为3 000 kg向北行驶的卡车,碰撞后两辆车接在一起,并向南滑行了一小段距离后停下,根据测速仪的测定,长途客车碰前以20 m/s的速率行驶,由此可判断卡车碰撞前的行驶速率()A.小于10 m/s B.大于20 m/s,小于30 m/sC.大于10 m/s,小于20 m/s D.大于30 m/s,小于40 m/s5.将静置在地面上质量为M(含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v0竖直向下喷出质量为m的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( )A. m M v 0B. M m v 0C. M M -mv 0 D. m M -mv 0 6.质量为M 的木块在光滑水平面上以速度v 1向右运动,质量为m 的子弹以速度v 2水平向左射入木块,要使木块停下来,必须使发射子弹的数目为(子弹留在木块中不穿出)( )A.(M +m )v 1m v 2B.M v 1(M +m )v 2C.M v 1m v 2D.m v 1M v 27.质量为M 的小船以速度v 0行驶,船上有两个质量均为m 的小孩a 和b ,分别静止站在船头和船尾.现小孩a 沿水平方向以速率v (相对于静止水面)向前跃入水中,然后小孩b 沿水平方向以同一速率v (相对于静止水面)向后跃入水中,则小孩b 跃出后小船的速度方向________,大小为________(水的阻力不计).题组三 综合应用8.光滑水平面上一平板车质量为M =50 kg ,上面站着质量m=70 kg的人,共同以速度v0匀速前进,若人相对车以速度v=2 m/s向后跑,问人跑动后车的速度改变了多少?。
动量定理及动量守恒定律

20
动量定理及动量守恒定律
oy N1 − m1g = 0 又f1max = N1μ1
以 m2 为隔离体,m2 受重力W = m2 g ;桌面的支持力 N2 ; m1 的压力 N1′ (大小与 N1 相等); m1 作用在 m2 上的最大静摩擦力 f1max′(大小与 f1max 相等) ;桌面作用在 m2 上的
oA y A W3 − TA′ − TB′ = m3a3
(7)
因为不计滑轮及绳的质量,不计轴承摩擦. 且已知绳不可伸长.
∴ TA = TB = TA′ = TB′ = T
f A ,绳的拉力 TA , A 的动力学方程为
动量定理及动量守恒定律
W1 + N A + f A + TA = m1a1 建立如图 3.5.7(1)所示的坐标系 oA − xA y A .
oA xA TA − f A = m1a1
(1)
oA y A W1 − N A = 0
(2)
且 fA = NAμ
动量定理及动量守恒定律
第三章 动量定理及动量守恒定律
(Momentum and Conservation Law of Momentum)
一、内容简介(Abstract) 1.牛顿第一定律(Newton’s first law)
孤立质点静止或作等速直线运动,即质点在不受力或所受力的合力为零时,将保持静 止或匀速直线运动状态不变.(惯性定律) 2.牛顿第三定律(Newton’s third law)
g
y
x o
N
2
α m2
a2
W2
N1′
图3.5.(5 3)
y′
N1 f∗
m1
1.6 动量 动能 角动量

v 2 x = 2v x = 100m / s v 2 y = v1 y = 14.7m / s
设爆炸后第二块飞行t 落地距原点距离为s, 设爆炸后第二块飞行 2秒,落地距原点距离为 , 则:
Mgx 而已落到桌面上的柔绳的重量为: 而已落到桌面上的柔绳的重量为 mg =
所以: 所以 F总 = F + mg = 2 Mgx
L
L
Mgx +
L
= 3mg
3,动量守恒定律 , (1) 质点动量守恒定律 t 由质点动量定理, 由质点动量定理,有: I = ∫t F dt = p2 p1
2 1
若质点所受合外力为零, 则有: 若质点所受合外力为零,即 F = 0则有
dt
dt
根据动量定理,桌面对柔绳的冲力为 根据动量定理,桌面对柔绳的冲力为: dx ρ dx dP dt =- ρ v 2 ′= = F dt dt 柔绳对桌面的冲力F=- =-F′ 柔绳对桌面的冲力 =- 即: M 2 2 2 F = ρv = v ,v = 2 gx ,F = 2 Mgx / L L
s1 = v x t 0 v2 y h = 2g 0 = v y gt
t = 2 s v x = 50m / s
v2
v1
θ
19.6m
s1
设爆炸后第二块速度为v 设爆炸后第二块速度为 2与水平方向夹角为θ,则 由动量守恒得: 由动量守恒得 1 mv cosθ = 1 mv = mv
t ′ = 1s,h = 19.6m 1 2 由题意得: 由题意得 h = v1t ′ gt ' 2
质点动力学的三个基本定律

质点动力学的三个基本定律
质点动力学的三个基本定律分别是:牛顿运动定律,动量定理和动量守恒定律,角动量定理和角动量守恒定律。
牛顿运动定律第一定律(惯性定律):任何质点如不受力的作用,则将保持原来静止或匀速直线运动状态。
第二定律:质点的质量与加速度的乘积等于作用于质点的力的大小,加速度的方向与力的方向相同。
第三定律:对应每个作用力必有一个与其大小相等、方向相反且在同一直线上的反作用力。
物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量(用字母I表示),即力与力作用时间的乘积,数学表达式为:
I=FΔt=Δp=mΔv=mv2-mv1
式中F指物体所受的合外力,mv1与mv2为发生Δt的初末态动量。
该式为矢量式,列式前一定要规定正方向!
动量守恒定律是现代物理学中三大基本守恒定律之一,若一个系统不受外力或所受合外力为零时,该系统的总动量保持不变。
角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律;反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质
点和质点系围绕该点(或轴)运动的普遍规律。
角动量守恒定律是对于质点,角动量定理可表述为质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。
动量守恒定律 (共19张PPT)

A
总
结
F外 0
F x =0
F y =0
5、斜面B置于光滑水平面上,物体A沿 光滑斜面滑下,则AB组成的系统动量守 恒吗? 光滑
x
光滑
F外 0
F x =0
F y 0
空中爆炸
F外 0
但是F 内 ?
F x 0
F y 0
F
外
3. 成立条件
(1) 系统不受外力或所受外力的矢量和为零。
4、动量的变化P
1、表达式:
P2
P1
△P
P=P2-P1 =mv2-mv1=m(v2-v1)
2、运算:
(1)成θ角,平行四边形定则 (2)在一条直线上,确定正方向后,用正 负表示方向,就转化为代数运算
3、方向:与速度变化量的方向相同。
预 学
理解三个概念:
(请自主阅读教材P12)
1. 系统:相互作用的 两个或多个物体 组成的整体。系统可按 解决问题的需要灵活选取。
这个系统的总动量保持不变。
m11 m2 2 m11 m2 2
二、动量守恒定律成立的条件 1. 系统不受力,或者 F外合 = 0 2. F内 >> F外合
3. 若系统在某一方向上满足上述 1 或 2,则在该方向上系
统的总动量守恒。
三、应用动量守恒定律解决问题的基本步骤
定系统
判条件
2. 动量守恒定律是一个 独立的实验定律 ,它适用于目前为 止物理学研究的 一切 领域。
3. 与牛顿运动定律相比较,动量守恒定律解决问题优越性表 现在哪里? 动量守恒定律只涉及始末两个状态,与过程中力的 细节无关,往往能使问题大大简化。
课 堂 总 结
三大守恒方程和热力学三大定律的区别

三大守恒方程和热力学三大定律的区别下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!三大守恒方程和热力学三大定律的区别在物理学和热力学中,有几个重要的理论概念被广泛讨论和研究。
运动学三大定律

解题思路
m
v0
1)相互作用的物体系统动量守恒
2)系统机械能变化外力做功能量转化
——系统动能定理
v0
M
m
v0
M
V V
m
M
高考复习
运动学三大定律
1、力学观点:牛顿定律和运动定律 解决:研究某一物体所受力与运动状态的关系---------匀变速运动
2、动量观点:动量定理
动量守恒定m1v1+m2v2=m’1v’1+m’2v’2
解决:1)涉及时间(力的瞬时作用)优先考虑动量定理 2)若研究对象为一物体系统,且它们之间有相互 作用 时,优先考虑动量守恒定律
3、 能量观点: 动能定理、机械能守恒定律、功能关系、 能的转化和守恒定律 .
解决 : 1)涉及功和位移时优先考虑动能定理
2)若研究的对象为一物体系统,且它们之 间有相互作用时,优先考虑两大守恒定律
3)出现相对路程的则优先考虑能量守恒定律
解题思路
1、优先选用动量观点和能量观点; 2、在涉及加速度问题时就必须用力的观点. 3、有些综合问题,用到的观点不只一个,因此,三种 观点不要绝对化.
解题程序
①正确确定研究对象(多个物体组成的系统:要明确研究 对象是某一隔离体还是整体组成的系统);
②.正确分析物体的受力情况和运动情况,画出力的 示意图,运动的位置图.
③、根据上述情况确定选用什么规律,并列方程求解.
定律的应用
例1.质量M=4kg、长L=3m的木板,在F=8N的水平
恒力作用下,正以v0=2m/s的速度在水平地面上向右匀
它与地面间的动摩擦因素μ1=0.1,另一质量m2=1.98kg 的木块静止于木板的左端,它与长木板间的动摩擦因素μ2
质点系的动量定理 动量守恒定律

m(vx V ) MV = 0
解得
பைடு நூலகம்
vx =
m+M V m
设m在弧形槽上运动的时间为t,而m相对于M在水平方向移动距离为R, 故有 t M+m t R = ∫ vx dt = Vdt 0 m ∫0 于是滑槽在水平面上移动的距离
S = ∫ Vdt =
0 t
m R M+m
§3.动量守恒定律 / 二、注意几点及举例 动量守恒定律
若x方向 ∑ Fx = 0 , 则∑ mivi 0 x = ∑ mivix 方向 若y方向 ∑ Fy = 0 ,则∑ mivi 0 y = ∑ miviy 方向 4.自然界中不受外力的物体是没有的,但 自然界中不受外力的物体是没有的, 自然界中不受外力的物体是没有的 如果系统的内力 外力, 内力>>外力 如果系统的内力 外力,可近似认为动量 守恒。 守恒。 如打夯、 如打夯、火箭发 射过程可认为内力 内力>> 射过程可认为内力 外力, 外力,系统的动量守 恒。
Fdt=(m+dm)v-(mv+dm0)=vdm=kdt v
则
F = kv = 200 × 4 = 8 ×102 N
一、动量守恒 由质点系的动量定理: 由质点系的动量定理:
∫ ( ∑ Fi外 )dt = P P0 = P
t t0
动量守恒条件: 动量守恒条件:
P P0 = 0
当 ∑ Fi外 = 0 时
第四节 质点系的动 量定理
一、质点系的动量定理 两个质点组成的质点系, 两个质点组成的质点系, 对两个质点分别应用 质点的动量定理: 质点的动量定理: t ∫t ( F1 + f12 )dt = m1v1 m1v10
0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量守恒三大定理
动量守恒是物理学中的一个基本定律,它描述了一个物体的动能、速度和质量在运动中的变化。
这个定律非常重要,因为它可以让我们更好地理解物理问题并作出正确的预测。
动量守恒包括三个定理,下面将分别进行介绍。
一、质心动量守恒定理
质心动量守恒定理指的是,在孤立系统中,系统的质心动量总是守恒不变的。
所谓孤立系统,就是指系统内部没有与外界发生能量交换和质量交换的情况。
举个例子,一架宇宙飞船在太空中飞行,不受到外力的作用,那么它的质心动量就是守恒的。
质心动量守恒定理是物理学的基础之一,因为它可以让我们更好地理解物理系统的运动情况。
在宇宙空间中,质心动量守恒定理被广泛应用于星际尘埃、彗星和行星的研究中。
在地球上,它也是描述汽车、火车和飞机运动的基础。
二、角动量守恒定理
角动量守恒定理指的是,在孤立系统中,系统总的角动量守恒不变。
所谓角动量,就是物体围绕着某个固定的点旋转时的动量。
例如,一个旋转的陀螺,在旋转的过程中具有角动量。
在日常生活中,我们经常可以看到这个定理的应用。
例如,一个冰滑道上的溜冰运动员双臂伸开自转,“安静”的旋转中让身体内部的能量完全转化为旋转能量的同时增加角动量。
同样地,在双人滑比赛中,运动员通过旋转身体的方式,可以更好地控制身体的角动量,从而达到更好的竞技效果。
三、动量守恒定理
动量守恒定理是最重要的定理之一,它指的是,如果物体在自由运动过程中,没有受到外力的作用,那么它的动量就是守恒的。
换句话说,如果一个物体在没有受到外部作用力的情况下运动,那么它的动量将保持不变。
动量守恒定理广泛应用于各个领域,例如:机械、光学、量子力学、天文学以及地球物理学等。
例如,物体在自由落体过程中,它的动量就是守恒的;在弹性碰撞中,被击中物体的动量和击打物体的动量分别守恒;在任意物体运动的过程中,如果不受到外力的作用,那么它的动量总是保持不变的。
总之,动量守恒三大定理是物理学中的重要定理,它们可以帮助我们更好地理解不同领域的物理问题,从而做出正确的预测。
这些定理对于物理学家来说,是探索自然科学的基础。