变压器油的击穿电压
变压器油质及色谱分析

氧化安定性
变压器油在运行过程中不可避免地发生氧 化,在高温高负荷下,氧化会加速,油与 氧的化学反应称为油的氧化(或叫老化、 劣化)。而油抵抗氧化作用的能力,就称 为油的抗氧化安定性(或叫安定度)。
进行新油评价时,氧化安定性是一项重要 指标。
添加抗氧化剂可提高氧化安定性。
第十三页,共75页。
水分
第三十二页,共75页。
油中气体的色谱分析
① 由载流气体将已从油中脱出并待分析的气样(用进样注射 器从气路的进样口注入)带入色谱柱中;
水分
界面张力 25℃ mN/m 介质损耗因数 90℃
击穿电压 2.5mm间隙
kV
体积电阻率 90℃,Ω•m
油中含气量 体积分数%
油泥和沉淀物(质量分 数)%
设备电压等级/kV
各电压等级
各电压等级
各电压等级
各电压等级
330~1000及以上 220
110及以下
各电压等级
500-1000 ≤ 330
750-1000 500 330 220
CH4 C2H6 C2H4 C2H2 CO
了解过热故障点温度
了解有无放电现象或存在极高的过热故障点温度 了解固体绝缘的老化情况或内部平均温度是否过高
CO2 与CO结合,有时可了解固体绝缘有无热分解
第三十一页,共75页。
变压器油色谱分析步骤
包括取样、从油中脱出溶解气体及进行油 中气体的色谱分析。
变压器油的脱气方法一般采用机械振荡法, 仲裁方法采用水银真空泵法(托普勒泵 法)。
在变压器投用前应对其油品按GB/T 75952008中“投入运行前的油”的质量指标要 求作一次全分析,并进行气相色谱分析, 作为交接试验数据。
第二十六页,共75页。
绝缘油是什么

绝缘油的作用是什么?回答; 在高压电气设备中,有大量的充油设备(如变压器、互感器、油断路器等)。
这些设备中的绝缘油主要作用如下。
(1)使充油设备有良好的热循环回路,以达到冷却散热的目的。
在油浸式变压器中,就是通过油把变压器的热量传给油箱及冷却装置,再由周围空气或冷却水进行冷却的。
(2)增加相间、层间以及设备的主绝缘能力,提高设备的绝缘强度。
例如油断路器同一导电回路断口之间绝缘。
(3)隔绝设备绝缘与空气接触,防止发生氧化和浸潮,保证绝缘不致降低。
特别是变压器、电容器中的绝缘油,防止潮气侵入,同时还填充了固体绝缘材料中的空隙,使得设备的绝缘得到加强。
(4)在油路器中,绝缘油除作为绝缘介质之外,还作为灭弧介质,防止电弧的扩展,并促使电弧迅速熄灭。
绝缘油是什么?回答 ; 绝缘油是人工合成的液体绝缘材料,简称合成油。
由于矿物绝缘油是多种碳氢化合物的混合物,难以除净降低绝缘性能的组分,且制取工艺复杂,易燃烧,耐热性低,介电常数不高,因而人们研究、开发了多种性能优良的合成油。
针对变压器油,绝缘油都是怎么处理的?回答 ; 变压器油的绝缘强度指的是变压器油的击穿电压。
油被击穿的临界电压称为击穿电压,常以标准油杯的油耐压数值(kV)表示。
由此可知,击穿电压是变压器油绝缘性能的主要指标。
油的击穿电压太低,对切换开关或选择开关不能确保主通断触头在分接变换中的可靠熄弧,电弧重燃不熄导致级间短路发生,既损坏变压器级间绝缘,又可能造成OLTC烧毁或油室爆炸的重大事故;同时,导致OLTC主绝缘强度和内部绝缘强度的严重下降,若油的最小击穿电压低于绝缘应能耐受的电压,就会出现OLTC主绝缘和内部绝缘的闪络和严重短路事故。
因此,对OLTC油室使用的变压器油提出绝缘强度的要求。
对于不同绝缘水平的OLTC,其变压器油的击穿电压的要求有所不同。
理想纯净的油,单位体积的击穿概率呈正态分布,但运行中受过污染的变压器油,单位体积的击穿概率已不再呈正态分布。
2变压器油试验相关知识

闪点(flash point)---在规定试验条件下,试验火焰引起试样蒸气着火,并使火焰蔓延至液体表面的最低温度,修正到101. 3 kPa大气压下。
表示石油产品着火性之难易及其中含轻质馏分的多少。
油品可能形成的轻质分解物在密闭容器内蒸发,一旦遇空气混合后,有着火或爆炸的危险,是有关安全防火的一个重要指标。
方法:GB/T 261-2008《闪点的测定宾斯基-马丁闭口杯法》精密度:同一操作者重复测定两个结果之差不得超过0.029与两次结果平均值的乘积标准(℃):≥135参照:GB 2536-2011《电工流体变压器和开关用的未使用过的矿物绝缘油》GB/T 7595-2008《运行中变压器油质量》Q/CSG 114002-2011《电力设备预防性试验规程》测定时的注意事项油杯中试样的量,要正好到刻度线;油量过多则测定结果偏低;油量少结果偏高。
点火用的火焰大小要严格按规定,调整其直径为3~4mm;严格控制加温速度,不能过快或过慢;过快结果偏低。
如果油样中含有未溶解的水时,要先脱水;为了避免气流的影响,闪点测定器要放在避风的地点。
油品中的水溶性酸:能溶于水的矿物酸主要是硫酸及其衍生物,包括磺酸和酸性硫酸酯;以及低分子有机酸(HCOOH、CH3COOH和C2H5COOH等)。
油中水溶性酸的来源:油品在炼制和再生过程中,由于清洗和中和的不完全而残留于油中。
油品在储运和使用过程中,由于污染和油品自身氧化而产生。
pH是表示溶液氢离子[H+]浓度的一种方法。
pH代表氢离子浓度的负对数,pH=-lg [H+]。
氢离子浓度越大,pH值越低。
测定方法:GB/T 7598-2008《运行中变压器油水溶性酸测定法》此方法是以等体积的蒸馏水和试油混合摇动,取其水抽出液并加入指示剂,在比色管内与标准色级进行比色,测定结果以pH值表示。
NB/SH/T 0836-1988《石油产品水溶性酸及碱测定法》此方法是用蒸馏水或乙醇水溶液抽提试样中的水溶性酸或碱,然后分别用甲基橙或酚酞指示剂检查抽出液颜色的变化情况,或用酸度计测定抽提物的pH值,以判断有无水溶性酸或碱的存在。
变压器油基本知识

变压器油基本知识一、变压器油的作用1、绝缘因为油是流动的液体,它能够充满变压器内各部件之间的任何空隙而将空气排除,从而避免了各部件与空气接触受潮而引起的绝缘降低。
此外, 变压器油的绝缘强度比空气大,变压器内充满变压器油后,使绕组与绕组之间、绕组与铁芯之间、绕组与油箱外壳之间均保持良好的绝缘,从而增加了变压器的绝缘强度。
2、散热变压器油具有良好的散热作用,在运行中,靠近绕组与铁芯部分的变压器油受热后,温度升高,体积膨胀,因其比重减小而上升,经冷却装置冷却后,再进入变压器油箱底部,从而形成油的循环。
油循环使绕组和铁芯得到冷却,改善了变压器的运行条件。
3、防腐变压器油能使木质及纸绝缘保持原有的化学和物理性能,并使金属得到防腐作用,使变压器绝缘保持良好状态。
二、变压器油的主要性能指标1、比重变压器油在20-40℃时的比重不超过0.895,由于变压器油的比重小,使油内的杂质和水分容易沉淀。
2、粘度变压器油在50℃时的粘度不超过9.6cst,由于变压器油的粘度小,它的对流散热作用较好。
3、闪点闪点是指变压器油加热后产生的蒸气与空气混合,遇到明火能发生燃烧的最低温度。
闪点表示变压器油的蒸发度,油的闪点越低,其蒸发度越高。
变压器油蒸发时使成分变坏,粘度加大,体积减小,并可能产生爆炸性气体,因此油的闪点越高越好,一般应不低于135℃。
4、凝固点变压器油的粘度随温度而变化,温度越低,粘度越大。
当温度低到一定程度,变压器油不再流动而凝固,这时的温度称为变压器油的凝固点。
变压器油的标号表示出凝固点的温度,如25号变压器油是表示变压器油在-25℃时凝固;45号变压器油表示变压器油在-45℃时凝固。
凝固点低,油的对流散热性能好。
因此凝固点越低越好。
5、酸价表示变压器油中游离酸的含量。
酸价的大小表明变压器油的氧化程度和劣化程度。
其大小用中和一克油中的全部游离酸所需要的氢氧化钾的毫克数(KOHmg/g油)来表示。
酸价越高,说明氧化越严重,因此变压器油的酸价越低越好。
高电压技术简答题(重点理论)

③线路接好后,可按顺时针方向转动摇把,摇动的速度应由慢而快,当转速达到每分钟120转左右时(ZC-25型),保持匀速转动,并且要边摇边读数,不能停下来读数。
1.汤逊放电理论
汤逊理论的基本观点:电子碰撞电离是气体电离的主要原因;正离子碰撞阴极表面使阴极表面逸出电子是维持气体放电的必要条件;阴极逸出电子能否接替起始电子的作用是自持放电的判据。它只适用于低气压、短气隙的情况。
2.流注放电理论
气体放电流注理论以实验为基础,它考虑了高气压、长气隙情况下空间电荷对原有电场的影响和空间光电离的作用。
③防止雷击闪络后建立稳定的工频电弧;
④防止工频电弧后引起中断电力供应。
15.避雷线架设问题
35kV及以下线路一般不全线架设避雷线的原因:
①绝缘水平低,容易遭“反击”;
②35kV及以下系统采用中性点非有效接地方式,一相接地故障的后果并不严重;
③一相接地后,起相当于避雷线的作用。
16.发电厂、变电所防直击雷的基本原则
(4)引起波的衰减与变形。由于电晕要消耗能量,消耗能量的大小又与电压的瞬时值有关,故将使行波发生衰减的同时伴随有波形的畸变。
13.阀式避雷器的结构及作用
阀式避雷器是由装在密封瓷套中的多组火花间隙和多组非线性阀片电阻串联组成。它分普通型和磁吹型两大类。阀式避雷器是发电厂、变电所中设备对侵入波的主要防护装置。
防护措施:为了对付这种过电压,最根本的防护方法就是不让断续电弧出现,这可以通过改变中性点接地方式来实现。
变压器绝缘油试验

定义和控制指标
变压器绝缘油试验 2.4水溶性酸(PH值)
定义和质量指标 测试方法名称及标 准号 方法概要 测试要点
是指油品加工 及储存过程中 造成油中的水 溶性矿物酸, 溶性矿物酸, 主要是硫酸及 其衍生物。 其衍生物。指 标:投入运行 前的油> 前的油>5.4 运行油≥ 运行油≥4.2
运行中变压器 油水溶性酸测 定法GB/T7598 GB/T7598定法GB/T75982008
1、仪器设 备及试验步 骤严格按规 定执行; 定执行; 2、试验报 告应记述使 用电极的类 型。 国内: 国内:平板型 2.5mm间隙 间隙) (2.5mm间隙)
变压器绝缘油试验
2. 绝缘油的试验项目 1 2 3 4
将试油注至油杯环状刻线处,然后 试油在不断搅拌情况下升温:试油闪点高于 试油温度达到预防闪点前10℃时, 在试油液面上出现出现蓝色火焰时, 盖上清洁、干燥的杯盖,插入 温度 50℃时,开始加热速度要均匀上升, 作点火试验。闪点在104℃以上的 立即记下该温度。继续升高2℃再点 计,并将油杯放在空气浴中。 并定期进行搅拌。到预防闪点前 试油,则没升温2℃点火一次。点火 火,如再次出现闪火时,则前次闪 40℃时,调整加热速度,使在 预计 时应停止搅拌,但无论是否闪火, 火的温度,即为试油的闪点;在最 闪点前20℃时,升温速度能控制在 开盖时间不得超过1.5S。如果不闪 初闪火后,如再进行点火却不闪火, 2~3℃/min。 火,再继续搅拌,重复点火试验。 应更换试油,重作试验。
变压器绝缘油试验
2.2试验判断油的质量
试验项目
击穿电压
闪点
酸值
水溶性值
变压器绝缘油试验
2. 绝缘油的试验项目 绝缘油绝缘强度试验步骤 1
试验应在室温15试验应在室温 35℃,湿度不高于 ℃ 75%的条件下,当 的条件下, 的条件下 准备工作全部就绪 后,准备升压
变压器油试验与取样

变压器油试验与取样摘要:本文介绍了变压器中大量使用的绝缘油的试验项目:击穿电压和介质损失因数,并且对试验结果的准确性产生较大影响的取样环节做了详细的说明。
关键词:变压器油;试验;取样变压器油是将石油中润滑油馏分进行各种化学和物理精制后调入有关添加剂而成的一种矿物绝缘油。
尽管变压器油用于油浸式变压器、互感器、电抗器等多种设备中,但它和变压器的的关系最为密切。
首先,变压器是所有电器设备中最早使用变压器油的。
其次变压器中使用变压器油的数量比其他电气设备中使用的变压器油多得多。
随着电力变压器朝超高压大容量方向发展,变压器的绝对体积也在逐渐增大,用油量也在不断增加。
变压器油始终占据着变压器液体介质的统治地位。
变压器油和变压器的这种密切关系是由变压器油下列的独特功能决定的:绝缘强度高;冷却效果好;将纤维素和其他材料的氧含量减少到最低程度。
1变压器油试验的意义为确保变压器安全可靠运行,变压器油必须充分发挥其前述功能,而要确保变压器油的功能,就要保证变压器油的质量,也就必须对变压器油做各种试验。
这就是变压器油试验的意义。
随着超高压大容量变压器的不断发展,变压器油试验也就越来越重要了,目前已成为变压器的一项必不可少的试验项目。
下面介绍两种常见的变压器油试验:击穿电压和介质损失因数2试验内容2.1击穿电压对于变压器油均匀施加电压,当电压达到某一值时,变压器油将遭受破坏而失去电阻、伴随着电弧的产生而发生导电,这一电压叫做变压器油的击穿电压,常用kV表示。
击穿电压和试验条件紧密相关,这些条件包括:施加电压的波形、频率、峰值因数、试验变压器的短路电流、电极的形状、电极间距离、电极表面形状、油杯容积、升压速度、试验时的温度、湿度。
由于平行试验分散性大,故一般要做几次试验,取所有结果的平均值。
这样,从油倒入油杯到首次击穿的时间、每次击穿的间隔时间、间隔期间内是否搅拌油样也都影响试验结果,成为必须严加控制的试验条件。
在所有这些条件中,电极的形状、电极间距、电极表面状况对试验结果影响最为明显。
自学考试《高电压技术》习题答案

1-1、气体带电质点的产生和消失有哪些主要方式?1-2、什么叫自持放电?简述汤逊理论的自持放电条件。
1-3、汤逊理论与流注理论的主要区别在哪里?它们各自的适用范围如何?1-4、极不均匀电场中有何放电特性?比较棒—板气隙极性不同时电晕起始电压和击穿电压的高低,简述其理由。
1-5、电晕放电是自持放电还是非自持放电?电晕放电有何危害及用途?1-6、什么是巴申定律?有何种情况下气体放电不遵循巴申定律?1-7、雷电冲击电压下间隙击穿有何特点?冲击电压作用下放电时延包括哪些部分?用什么来表示气隙的冲击特性?1-8、什么叫伏秒特性?伏秒特性有何意义?1-9、影响气体间隙击穿电压的因素有哪些?提高气体间隙击穿电压有哪些主要措施。
1-10、沿面闪络电压为什么低于同样距离下纯空气间隙的击穿电压?1-11、分析套管的沿面闪络过程,提高套管沿面闪络电压有哪些措施?1-12、试分析绝缘子串的电压分布及改进电压分布措施。
1-13、什么叫绝缘的污闪?防止绝缘子污闪有哪些措施?2-1、列表比较电介质四种极化形式的形成原因、过程进行的快慢、有无损耗、受温度的影响。
2-2、说明绝缘电阻、泄漏电流、表面泄漏的含义。
2-3、说明介质电导与金属电导的本质区别。
2-4、何为吸收现象,在什么条件下出现吸收现象,说明吸收现象的成因。
2-5、说明介质损失角正切值的物理意义,其与电源频率、温度和电压的关系。
2-6、说明变压器油的击穿过程以及影响其击穿电压的因素。
2-7、比较气体、液体、固体介质击穿场强数量级的高低。
2-8、说明固体电介质的击穿形式和特点。
2-9、说明提高固体电介质击穿电压的措施。
2-10、说明造成固体电介质老化的原因和固体绝缘材料耐热等级的划分。
3-1 绝缘预防性试验的目的是什么?它分为哪两大类?3-2、用兆欧表测量大容量试品的绝缘电阻时,为什么随加压时间的增加兆欧表的读数由小逐渐增大并趋于一稳定值?兆欧表的屏蔽端子有何作用?3-3、何谓吸收比?绝缘干燥时和受潮后的吸收现象有何特点?为什么可以通过测量吸收比来发现绝缘的受潮?3-4、给出被试品一端接地时,测量直流泄漏电流的接线图?说明各元件的名称和作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器油得击穿电压
将电压施加于绝缘油时,随着电压增加,通过油得电流剧增,使之完全丧失所固有得绝缘性能而变成导体,这种现象称为绝缘油得击穿。
绝缘油发生击穿时得临界电压值,称为击穿电压,此时得电场强度,称为油得绝缘强度,表明绝缘油抵抗电场得能力。
击穿电压U (kV)与绝缘强度E (kV/cm)得关系为
E=U/d (2-26)
式中d-电极间距离(cm)。
纯净绝缘油与通常含有杂质得绝缘油具有不同得击穿机理。
前者得击穿就是由于游离所引起,可用气体电介质击穿得机理来解释,即在高电场强度下,油分子碰撞游离成正离子与电子,进而形成了电子崩。
电子崩向阳极发展,而积累得正电荷则聚集在阴极附近,最后形成一个具有高电导得通道,导致绝缘油得击穿。
通常绝缘油总就是或多或少含有杂质,在这种情况下,杂质就是造成绝缘油击穿得主要原因。
油中水滴、纤维与其她机械杂质得介电系数ε比油得要大得多(纤维得ε=7,水得ε=80,而变压器油得ε≈2、3),因此在电场作用下,杂质将被吸引到电场强度较大得区域,在电极间构成杂质“小桥”,从而使油得击穿强度降低。
如杂质足够多,则还能构成贯通电极间隙得“小桥”,流过较大得泄漏电流,使之强烈发热,并使油与水局部沸腾与气化,结果击穿就沿此“气桥”而发生。
下面分别分析影响绝缘油击穿电压得各主要因素。
(1)测量绝缘油击穿强度时采用得电极材料、电极形状与电极面积
对油得绝缘强度有影响。
根据试验数据得知,在同样得试验条件下,不同电极材料测量得同种油样绝缘强度得排列顺序为Fe<黄铜<Pb<Cu<Al<Au<Zn<Ag,即采用铁电极测得值最低,而采用银电极得测得值最高。
若按金属得导热性排序,则可得到排列顺序为Pb<Fe<黄铜<Zn<Al<Au<Cu<Ag。
可以瞧出,除个别例外,大体上绝缘强度就是随电极金属导热性增加而提高得。
通常就是用黄铜而不就是用紫铜来制造电极,因为紫铜容易在表面上生成一层氧化膜;而在变压器中实际采用得材料却就是纯铜(紫铜),而不就是黄铜(铜锌合金)。
研究这两种材料制造得标准电极测得得变压器油绝缘强度如表2-24所示。
可以瞧出,纯铜电极得测得值比黄铜电极得测得值高,二者相差不超过10%~15%。
因此可以说,采用黄铜电极比用纯铜电极得试验条件更严格。
表2-24 电极材料对油绝缘强度得影响
此外,电极形状、电极尺寸、电极之间得距离以及油杯得形状与容量都对击穿电压有影响。
研究表明,球形电极对油质最敏感;其次就是平板式电极;而一种所谓“台阶式塔形电极”,由于建立起得电场极不均匀,所以几乎瞧不出油质污染对绝缘强度得影响。
圆盘电极边缘若不就是圆弧而就是存在尖锐得棱角,则对绝缘强度有很大影响,这就是由于油中极性杂质将被吸引到这些局部高场强得地方,从而减轻了油得不均匀性。
因此,电
极边缘有棱角时,受潮油得绝缘强度总就是比均匀电场时偏高。
当电极之间得距离足够小时,油得绝缘强度随电极面积得增加而减小,但就是当电极间距离大于1mm时,这种依赖关系就不存在了。
电极间距离对油绝缘强度得影响如图2-43与图2-44所示。
电极间距离、电极形状与尺寸得影响实际上就是电场均匀性得影响,因此电极与油杯得设计要保证电场得均匀性与油中杂质得均匀分布,而在油第一次击穿后所产生得残炭要有足够自净时间,不致影响同一油样后来得击穿电压测量。
(2)施加电压得频率与加压速度都对油得绝缘强度有影响。
表2-25列出了频率对油绝缘强度得影响。
随着油纯度得提高,其绝缘强度与频率之间得依赖关系逐渐减弱。
表2-25 频率对油绝缘强度得影响
随着施加电压得速度减缓,由于在电极之间得空间内吸引了大量得低沸点杂质,所以油得绝缘强度会有所降低。
各国采用得电极形式、
尺寸与电极间距离有所不同,规定得升压速度也有区别。
在我国GB/T 507-2002《绝缘油击穿电压测定法》中对此有明确规定。
(3)油得绝缘强度与温度得关系取决于油得纯净程度。
充分干燥并脱气得油,在20~120℃温度范围内,油得绝缘强度几乎没有变化。
当油中含有水分时,则油得绝缘强度随温度得升高而增加,并在60~80℃达到最大值。
当温度继续升高时,油绝缘强度有所降低,如图2-45所示。
对此得解释就是:随着温度升高,油中水分因蒸发而减少会全部或部分由悬浮态转变为溶解态,故绝缘强度增高。
当达到最大值后继续升高温度,油中水分与油得轻质成分气化形成气泡使绝缘强度降低。
1干燥得油;2-油+0、01%水分(加热过程中测得得曲线);3-油+0、01%水分(在冷却过程中测得得曲线);4-油+0、05%水分(加热过程中测得得曲线);5-油+0、1%水分(在加热过程中测得得曲线)
图2-45 油得绝缘强度与温度得关系
(4)水分对油得绝缘强度有重要影响。
油就是否易受潮与其化学成分与油中极性杂质得存在有关。
使油绝缘强度降低得主要原因就是悬浊态水,分子溶解态水对油绝缘强度得影响要小得多。
油中水分对绝缘强度得影响如图2-46所示。
图2-46 在标准油杯中变压器油得工频击穿电压Ub与含水量得关系
(5)机械杂质(纤维等)与极性杂质对油绝缘强度存在影响。
由图2-47可知,各种油得绝缘强度随着受潮时间得延长而降低就是很明显得。
纤维在吸潮后更容易在高场强下形成“小桥”,导致绝缘强度降低。
颗粒含量对油绝缘强度及含水量关系得影响,如图2-48所示。
图2-47空气湿度为98%时几种受潮油绝缘强度与受潮时间得关系
图2-48油得绝缘强度(击穿电压Uh)与含水量与悬浮颗粒含量得关系
1-纯油;2-含1、76mg炭;3-含0、21mg纤维;4-含1、12mg纤维极性物质对油得电导率与绝缘强度得影响取决于它们在油中得存在状态,大致具有如表2-26所示得规律。
表2-26 极性物质对油得电导率与绝缘强度得影响
(6)溶解气体对绝缘强度有很大影响,如表2-27所示。
湿度不同得空气对油绝缘强度得影响如表2-28所示。
未经深度脱气得绝缘油通常含有气泡,它会显著降低油得绝缘强度。
油中生成气泡得可能原因将在3、6节中阐述。
表2-27 溶解气体对油绝缘强度得影响
表2-28 湿度不同得空气对油绝缘强度得影响。