《材料物理化学》PPT课件

合集下载

物理化学 课件.ppt

物理化学 课件.ppt
Gi Gm
一定温度下,纯组分理想气体摩尔吉布斯自由能的微分可 表示为:
dGm Vmdp
如果在标准压力p0和任意压力之间积分上式,可得:
Gm (
p)
Gm (
p0)

RT
ln
p p0



0

RT
ln
p p0

(T , p) 0 (T ,
p0 ) RT
水和乙醇的例子
(1)偏摩尔量的定义
多组分系统的任一种容量性质X(X可分别代表V,U,H, S,A,G等),可以看作是温度T,压力p和各物质的量ni 的函数。
X f (T, p, n1, n2,)
当系统的状态发生任意无限小量的变化时,全微分dX可用 下式表示:
dX


X TBiblioteka p,nk dG idni 2(SO3)dn 2(SO2)dn (O2)dn
[2(SO3) 2(SO2 ) (O2 )]dn 当反应达到平衡时,dG=0,于是 2(SO3) 2(SO2 ) (O2 ) 0
2(SO3) 2(SO2 ) (O2 )
ln
p p0
上式即为理想气体化学势表达式。
(2)混合理想气体的化学势
i

i0

RT
ln
pi p0

混合气体总的吉布斯自由能:
G nii
(3)实际气体的化学势——逸度的概念
路易斯提出了校正因子γ,此时实际气体的化学势可以表示 为:



0

RT
ln
p
p0

dT

材料的物理、化学性能

材料的物理、化学性能
3
2 熔点
金属和合金从固态向液态转变时的温度称为熔点,金属都有固定的熔点。 按照熔点的高低,金属可分为易熔金属(熔点小于1 700℃)和难熔金属(熔点大 于1 700℃)。通常,材料的熔点越高,高温性能就越好。陶瓷熔点一般都显著高于金 属及合金的熔点,所以陶瓷材料的高温性能普遍比金属材料好。合金的熔点决定于它 的成分,例如,钢和生铁虽然都是铁和碳的合金,但由于含碳量不同,熔点也不同。 熔点对于金属和合金的冶炼、铸造、焊接是非常重要的工艺参数。
1 耐腐蚀性
耐腐蚀性是指材料抵抗介质侵蚀的能力,材料的耐腐蚀性常用每年腐蚀深度(mm/年) 来表示,一般非金属材料的耐腐蚀性比金属材料高得多。对金属材料而言,其腐蚀形式主要 有两种,一种是化学腐蚀,另一种是电化学腐蚀。化学腐蚀是金属直接与周围介质发生纯化 学作用,如钢的氧化反应;电化学腐蚀是金属在酸、碱、盐等电解质溶液中,由于原电池的 作用而引起的腐蚀,电化学腐蚀比化学腐蚀更常见。
8
6 磁性
金属材料在磁场中受到磁化的性能称为磁性。根据金属材料在磁场中受到磁化程 度的不同,可分为铁磁性材料(如铁、钴等)、顺磁性材料(如锰、铬等)和抗磁性 材料(如铜、锌等)三类。铁磁性材料在外磁场中能强烈地被磁化;顺磁性材料在外 磁场中只能微弱地被磁化;抗磁性材料能抗拒或削弱外磁场对材料本身的磁化作用。 工程上实用的强磁性材料是指铁磁性材料。
4
3 导热性
材料传导热量的能力称为导热性。导热性是金属材料的重要性能之一,在制定焊 接、铸造、锻造和热处理工艺时,必须考虑材料的导热性,防止金属材料在加热或冷 却过程中形成过大的内应力,以避免金属材料变形或破坏。导热性好的金属散热也好, 因此在制造散热器、热交换器与活塞等零件时,要选用导热性好的金属材料。通常情 况下,金属及合金的导热性远高于非金属材料。

清华大学-《物理化学》课件(830页全)

清华大学-《物理化学》课件(830页全)



F x
y


F x
z


F z
x
z x
y
此公式是以下数学处理方法的结果:
令:F f x, z

dF


F x
z
dx


F z
x
dz
在y不变的条件下此式两端同除以dx,得
F F F z x y x z z x x y
低压实际气体可近似当作理想气体
二、分压定律 (The Law of Partial Pressure) 1. 分压:在气体混合物中,定义
pB xB p
pB xB p p xB p
B
B
B
∴ pB代表组分气体B对气体混合物压力的贡献。
2. 分压定律: 对理想气体混合物
pBpxBFra biblioteknRT V
xB

(nxB ) RT V

nBRT V
∴ 在理想气体混合物中,任意组
分气体的分压等于同温下该气体 在容器中单独存在时的压力
§1-2 实际气体 (Real gas)
一、实际气体状态方程 (Equation of state for real gas)
问题提出: 用理想气体状态方程计算 实际气体,产生偏差。至今实 际气体状态方程已约200个
三、用压缩因子图计算实际气体 (Calculation of real gases with compression factor figure)
pV ZnRT pVm ZRT
(1) Z的意义:压缩因子。Z与1的差值 代表气体对理想气体的偏差 程度,理想气体的Z=1。

《物理化学》第十章 电解与极化作用PPT课件

《物理化学》第十章 电解与极化作用PPT课件

(1)电解时那种物质先析出,初始电压是多少?
(2)当第二种金属析出时,电压应为多少?此时 溶液中第一种金属的残余浓度是多少?
(3) 当电压加到多大时,H2开始析出?
已知H2在Cu上的超电势为1V,在Zn上的超电势 为1.3V, 在 Pt上的超电势可忽略不计。
氢析出超电势较大, 且在不同金属上超电势不
同, 不能忽略. 由于超电势存在, 氢析出电势向负向
移动.
例1 电解 AgNO3(a± = 1) 水溶液. 解: 在阴极上析出反应:
Ag (a 1) e Ag(s)
Ag,析
θ Ag
0.799V
H (a
10-7 )
e
1 2
H2(
pθ )
H2 ,析 0.414V H2
2 1
E分解 电压E
测定分解电压时的电流-电压曲 线
实际分解电压
要使电解池顺利地进行连续反应,除了克服作 为原电池时的可逆电动势外,还要克服由于极化在 阴、阳极上产生的超电势(阴) 和(阳) ,以及克服电 池电阻所产生的电位降 IR。这三者的加和就称为实 际分解电压。
E(分解) E(可逆) E(不可逆) IR
§10.2 极化作用
例如电解一定浓度的硝酸银溶液
阴极反应
Ag+ (mAg+ ) e Ag(s)
电解时
可逆
Ag |Ag
RT F
ln
1 aAg+
不可逆
Ag |Ag
RT F
ln
1 ae,Ag
阴 (可逆 不可逆)阴 RT ln aAg
F
ae,Ag
> ae,Ag < aAg 可逆
不可逆
阳极上有类似的情况,但 可逆 < 不可逆

材料表面的物理化学特征

材料表面的物理化学特征
固体材料的界面 (l)表面 —固体材料与气体(空气)的分界面。
(2)晶界 —多晶材料内部成分、结构相同而取向 (或亚晶界)不同晶粒(或亚晶)之间的界面。
(3)相界 —固体材料中成分、结构不同的两相之
间的界面。
2.1 固体表面相组织
2.1 固体表面的结构
要用来制造工程建筑中的构件,机 械装备中的零件以及工具、模具等。
功能材料—利用物质的各种物理和化学特性
及其对外界环境敏感的反应,实现 各种信息处理和能量转换的材料。
2.1 固体表面的结构
按原子、 离子或 分子排 列情况
键分类
晶体:长程有序、布拉菲点阵
非晶体:短程有序,1~2nm内原子分布仍
有一定的配位关系,原子间距和 成键健角等都有一定特征
复相系——在一定温度和压力下,含有多个 相的系统为复相系。
2.1 固体表面的结构
固体材料的界面
我们熟知的表面包括固体和空气(气体)的界面 或固体和液体的界面等,这些表面在工程上是最
有意义的。但是真正的表面是指晶体的三维周期 结构和真空之间的过渡区域,它所包括的所有原
子层不具备体相的三维周期性。
表面晶面不同:断键数不同,表面能不同,表面能呈现
各向异性 ➢ FCC (100):4断键,表面能高
➢ FCC (111):3断键,表面能低
2.1 固体表面的结构
什么是相?
• 物质存在的某种状态或结构,通常称为 某一相。严格地说,相是系统中均匀的、 与其他部分有界面分开的部分。
指这部分的成分和性质从给定范围或宏 观来说是相同的,或是以一种连续的方 式变化,也就是没有突然的变化。
➢例如,当氧吸附在Pt(100)面上时,将生成(5×1)的 表面结构,把体相的面心立方结构转变为密排六方结 构。

无机材料物理化学

无机材料物理化学

2、离子大小的适应性

离子的大小与粘土构造的适应性,也是影响吸附牢固程 度的重要因素之一。如果一个离子的大小正好适合于固 相表面的一个交换点,则必然会比一个大小不相适应的 离子吸附更牢一些。
离子交换能力的顺序 H+>Al3+>Ba2+>Sr2+>Ca2+>Mg2+>NH4+>K+>Na+>Li+ 这一顺序表明当离子浓度相等的水溶液中,位于顺序前 面的离子能交换出后面的离子。
一、带电理论
1、永久负电荷 粘土晶格内某些离子和外界离子臵换后产生的,如 硅氧四面体中Si4+被Al3+所转换,或铝氧八面体中三 价的铝被二价镁、铁所臵换。这种负电荷的数量取 决于晶格中离子臵换的数量。 粘土颗粒的永久负电荷大部分分布在层状铝硅酸盐 的板面上,这种电荷所吸附的阳离子是可交换的, 是以静电力保持的。
小结: 电解质浓度的增加,ζ-电位降低; 电价越高,ζ-电位越小; 参考:课本图2-4-3和2-4-4
第二节 离子交换和胶团中的结合水
一、离子交换 由于各种阳离子的被吸附能力不同,因而已被 吸附在粘土颗粒上的阳离子,就可能被吸附能 力更强的离子所臵换。例如交换反应如下: 2Na-粘土+ Ca2+≡Ca-粘土+2Na+ 利用离子交换可以提纯粘土:

电解质浓度
液相中电解质的浓度越高,则反号离子的浓度
愈高,随着溶液中反号离子的增加,双电层的
固定层中的反号离子数量也相应地增多,ζ-电 位降低;
当电解质浓度足够大时,可使滑动电位ζ等于零, 此时状态称为等电点。具体见图

高分子物理化学全套PPT课件课件

高分子物理化学全套PPT课件课件
通过深入研究高分子材料的微观结构和宏观性能之间的关系,为高分 子材料的设计和制备提供理论指导。
探索新型高分子材料的合成方法
发展新型的高分子合成方法,实现高效、环保、低成本的合成,提高 高分子材料的性能和功能。
拓展高分子材料的应用领域
将高分子材料应用于新能源、生物医学、环保等领域,开发具有创新 性和实用性的高分子材料。
高分子物理化学的发展历程
• 总结词:高分子物理化学的发展历程包括起步阶段、成长阶段和繁荣阶段,其 发展推动了人类社会的进步。
• 详细描述:高分子物理化学的发展历程可以追溯到20世纪初,当时科学家开 始对高分子物质进行研究,并发现了高分子化合物的长链结构和多分散性等特 点。随着研究的深入,人们逐渐认识到高分子物质的结构和性质在不同尺度上 存在差异,并开始从微观到宏观的不同尺度上进行研究。在成长阶段,高分子 物理化学的研究领域不断扩大,涉及的学科也越来越多,如物理学、化学、生 物学等。同时,人们开始将高分子物理化学应用于实际生产和生活中,推动了 相关产业的发展。进入21世纪后,随着科学技术的发展和人类对物质世界的 认识不断深入,高分子物理化学的研究进入繁荣阶段。人们开始深入研究高分 子物质的结构和性质,探索其在不同环境下的变化规律和机制,为解决实际问 题提供更加精准的理论支持。同时,随着计算机技术和数值模拟方法的不断发 展,人们可以更加方便地模拟和预测高分子物质的行为和性能,进一步推动相 关领域的发展。总之,高分子物理化学的发展历程是一个不断创新和发展的过 程,其发展推动了人类社会的进步。
高分子物理化学全套 ppt课件
目录
• 高分子物理化学概述 • 高分子结构与性质 • 高分子合成与制备 • 高分子反应与改性 • 高分子材料性能与应用 • 高分子物理化学前沿研究

《物理化学第4版》第四章4-2 偏摩尔量ppt课件

《物理化学第4版》第四章4-2 偏摩尔量ppt课件

def
V nB
T
,
p,n
CB
VB 的物理意义可理解为:在等温、等 压以及除B 物质的量 nB 之外其它组分物 质的量保持不变条件下,V 随 nB的变化 率.
4
也可以理解为:在T、p条件下, 向一个包含物 质的量无比巨大的系 统中加入 1mol 物质B 引起的系统体 积 V 的变化。
例如: 25℃和p, 向一大池某浓度的乙 醇水溶液中加入1mol的水(18.0cm3), 而整池溶液的体积增大了17.3cm3 ,则此 时水的偏摩尔体积为17.3 cm3mol-1。
V2/cm3mol-1=(V/n2)T,p,n1 =234.69[(b/b) -0.07]
b2=0.05 molkg-1时, V2/cm3mol-1= -1.39
20
V=n1V1+n2V2 V1/cm3mol-1= (V-n2V2) /n1 1000g水中, n2=b21kg=0.05mol; n1=1000g/18.02 gmol-1=55.49mol,
例如乙醇水溶液的体积为: V=n乙醇V乙醇+n水V水
12
单组分系统中,体积对物质的摩尔体 积具有加和性,
多组分系统的体积对物质的摩尔体积
不具有加和性,V混合 nB V*m,B, 对偏摩
尔体积具有加和性。
13
集合公式同样适用于任一广延性质。如: U = nB UB ; H = nB HB ; S = nB SB ; A= nB AB ; G = nB GB ;
偏摩尔量在少数情况下可能为负值。 例如当质量摩尔浓度小于0.07 molkg-1 时,向MgSO4稀溶液中继续加入 MgSO4,系统的体积不增大却减小, 对应MgSO4的偏摩尔体积小于零。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档