乙烯氧氯化法生产氯乙烯 化工工艺学课件

乙烯氧氯化法生产氯乙烯 化工工艺学课件
乙烯氧氯化法生产氯乙烯 化工工艺学课件

乙烯氧氯化法生产氯乙烯化工工艺学课件乙烯氧氯化法生产氯乙烯

一、概述

1(氯乙烯的性质和用途

氯乙烯在常温常压下是一种无色的有乙醚香味的气体,沸点-13.9?,临界温度142?,临界压力为5.12MPa,尽管它的沸点低,但稍加压力,就可得到液体的氯乙烯。氯乙烯易燃,闪点小于-17.8?,与空气容易形成爆炸混合物,其爆炸范围为4,21.7,(体积)。氯乙烯易溶于丙酮、乙醇、二氯乙烷等有机溶剂,微溶于水,在水中的溶解度是0.001g,L。

氯乙烯具有麻醉作用,在20,40,的浓度下,会使人立即致死,在10,的浓度下,—小时内呼吸管内急动而逐渐缓慢,最后微弱以致停止呼吸。慢性中毒会使人有晕眩感觉,同时对肺部有刺激,因此,氯乙烯在空气中的允许浓度为500ppm。

氯乙烯是分子内包含氯原子的不饱和化合物。由于双键的存在,氯乙烯能发生一系列化学反应,工业应用最重要的化学反应是其均聚与共聚反应。

氯乙烯是聚氯乙烯的单体,在引发剂的作用下,易聚合成聚氯乙烯。氯乙烯也可以和其它不饱和化合物共聚,生成高聚物,这些高聚物在工业上和日用品生产上具有广泛的用途。因此,氯乙烯的生产在有机化工生产中占有重要的地位。

2(氯乙烯的生产方法

氯乙烯首先在工业上实现生产是在20世纪30年代,当时是使用电石水解成,乙炔和氯化氢进行加成反应得到的。其化学反应方程式为:

CaC + 2HO ? Ca(OH) + CH 22222

CH + HCl ?CHCHCl 222

50年代前,电石是由焦炭与生石灰在电炉中加热生成:

CaO+3C ? CaC + CO 2

随着氮乙烯需求量的增加,人们致力于寻找生产氯乙烯更廉价的原料来源。在50年代初期,乙烯成为生产氯乙烯更经济、更合理的原料。实现了由乙烯和氯气生产氯乙烯的工业生产路线。该工艺包括乙烯直接氯化生产二氯乙烷及二氯乙烷裂解生产氯乙烯。

随后,人们注意到二氯乙烷裂解过程,除生成氯乙烯外还生成氯化氢。由此,工业界想到由氢化氢可以连同乙炔生产工艺一起生产氯乙烯。

CH,CH十C1 ? CH C1—CHC1 22222

CH C1—CH C1 ? CH,CHC1十HC1 222

50年代后期,开发出乙烯氧氯化工艺以适应不断增长的对氯乙烯的需求。

在这个过程中,乙烯、氧气和氯化氢反应生成二氯乙烷,和直接氯化过程结合在一起,两者所生成的二氯乙烷一并进行裂解得到氯乙烯,这种生产方法称为平衡法。

至今世界上虽仍有少量的氯乙烯来自于电石乙炔及乙炔—乙烯混合法,而绝大部分氯乙烯是通过基于乙烯和氯气的平衡过程生产。平衡氧氯化生产工艺仍是已工业化的、生产氯乙

烯单体最先进的技术,在世界范围内,93,的聚氯乙烯树脂都采用由平衡氧氯化法生产的氯乙烯单体聚合而成。该法具有反应器能力大、生产效率高、生产成本低、单体杂质含量少和可连续操作等特点。

二、反应原理

乙烯氧氯化法生产氯乙烯,包括三步反应:

(1)乙烯直接氯化 CH=CH + Cl ? CHClCHCl 22222

(2)二氯乙烷裂解 2CHClCHCl ? 2CH=CHCl + 2HCl 222

(3)乙烯氧氯化 CH=CH + 2HCl + O ? CHClCHCl + HO 222222

总反应式 2CH=CH + Cl + O ? 2CH=CHCl + HO 222222

其工艺过程示意如图6—14。

图6,14乙烯平衡氧氯化法生产氯乙烯的工艺流程

此图可见,该法生产氯乙烯的原料只需乙烯、氯和空气(或氧),氯可以全部被利用,其关键是要计算好乙烯与氯加成和乙烯氧氯化两个反应的反应量,使1,2—二氯乙烷裂解所生成的HCl恰好满足乙烯氧氯化所需的HCl。这样才能使HCl在整个生产过程中始终保持平衡。该法是目前世界公认为技术先进、经济合理的生产方法。现将三步反应原理分别进行讨论:

1(主、副反应

(1)乙烯直接氯化部分

主反应: CH=CH + Cl ? CHClCHCl ?H , -171.7kJ,mo1 22222

该反应可以在气相中进行,也可以在溶剂中进行。气相反应由于放热大,散热困难而不易控制,因此工业上采用在极性溶剂存在下的液相反应,溶剂为二氯乙烷。副反应:

CHClCHCl + Cl ? CHClCHCl + HCl 2222

CHClCHCl + Cl ? CHClCHCl + HCl 22222

主要生成多氯乙烷。

乙烯中的少量甲烷和微量丙烯亦可发生氯代和加成反应形成相应副产物。

(2)二氯乙烷裂解部分

主反应:CHClCHCl CH=CHCl + HCl ?H , 79.5kJ,mo1 222

此反应是吸热可逆反应。

副反应:

CH=CHCl ?CH?CH + HCl 2

CH=CHCl + HCl ? CHCHCl 232

CHClCHCl ? H + 2HCl + 2C 222

n CH=CHCl 聚氯乙烯 2

(3)乙烯氧氯化部分

主反应:CH=CH + 2HCl + O ? CHClCHCl + HO ?H , -251kJ,mo1 222222

这是一个强放热反应。

副反应:

CH=CH + 2O ? 2CO + 2HO 2222

CH=CH + 3O ? 2CO + 2HO 22222

CH=CHCl + HCl ? CHCHCl 232

CHClCHCl CH=CHCl CHClCHCl 22222

还有生成其它氯衍生物的副反应反生。这些副产物的总量仅为二氯乙烷生成量的1,以下。

2(催化剂

乙烯液相氯化反应的催化剂常用FeCl。加入FeCl的主要作用是抑制取代反应,促进33

乙烯和氯气的加成反应,减少副反应增加氯乙烯的收率。

二氯乙烷裂解反应是在高温下进行,不需要催化剂。

乙烯氧氯化制二氯乙烷需在催化剂存在下进行。工业常用催化剂是以γ—A1O 为载体23的CuCl催化剂。根据氯化铜催化剂的组成不同,可分为单组分催化剂、双组分催化剂、多2

组分催化剂。近年来,发展了非铜催化剂。

三、操作条件

1(乙烯直接氯化部分

(1)原料配比

乙烯与氯气的摩尔比常采用1.1:1.0。略过量的乙烯可以保证氯气反应完全,使氯化液中

游离氯含量降低,减轻对设备的腐蚀并有利于后处理。同时,可以避免氯气和原料气中的氢

气直接接触而引起的爆炸危险。生产中控制尾气中氯含量不大于0.5%,乙烯含量小于1.5,。

(2)反应温度

乙烯液相氯化是放热反应,反应温度过高,会使甲烷氯化等反应加剧,对主反应不利;反应温度降低,反应速度相应变慢,也不利于反应。一般反应温度控制在53?左右。 (3)反应压力

从乙烯氯化反应式可看出,加压对反应是有利的。但在生产实际中,若采用加压氯化,必须用液化氯气的办法,由于原料氯加压困难,故反应一般在常压下进行。

2(二氯乙烷裂解部分

(1)原料纯度

在裂解原料二氯乙烷中若含有抑制剂,则会减慢裂解反应速度并促进生焦。在二氯乙烷中能起强抑制作用的杂质是1,2—二氯丙烷,其含量为0.1,0.2,时,二氯乙烷的转化率就会下降4,10,。如果提高裂解温度以弥补转化率的下降,则副反应和生焦量会更多,而且1,2—二氯丙烷的裂解产物氯丙烯具有更强的抑制裂解作

用。杂质l,1—二氯乙烷对裂解反应也有较弱的抑制作用。其它杂质如二氯甲烷、三氯甲烷等,对反应基本无影响。铁离子会加

-4速深度裂解副反应,故原料中含铁量要求不大于10。水对反应虽无抑制作用,但为了防止

-6对炉管的腐蚀,水分含量控制在5×10以下。

(2)反应温度

二氯乙烷裂解是吸热反应,提高反应温度对反应有利。温度在450?时,裂解反应速度很慢,转化率很低,当温度升高到500?左右,裂解反应速度显著加快。

但反应温度过高,二氯乙烷深度裂解和氯乙烯分解、聚合等副反应也相应加速。当温度高于600?,副反应速度将显著大于主反应速度。因此,反应温度的选择应从二氯乙烷转化率和氯乙烯收率两方面综合考虑,一般为500,550?。

(3)反应压力

二氯乙烷裂解是体积增大的反应,提高压力对反应平衡不利。但在实际生产中常采用加压操作,其原因是为了保证物流畅通,维持适当空速,使温度分布均匀,避免局部过热;加压还有利于抑制分解生炭的副反应,提高氯乙烯收率;加压还利于降低产品分离温度,节省冷量,提高设备的生产能力。目前,工业生产采用的有低压法(,0.6MPa)、中压法(1MPa)和高压法(,1.5MPa)等几种。

(4)停留时间

停留时间长,能提高转化率,但同时氯乙烯聚合、生焦等副反应增多,使氯乙烯收率降低,且炉管的运转周期缩短。工业生产采用较短的停留时间,以获得高收率并减少副反应。通常停留时间为10s左右,二氯乙烷转化率为50,60,。

3(乙烯氧氯化部分

(1)反应温度

乙烯氧氯化反应是强放热反应,反应热可达251kJ,moI,因此反应温度的控制十分重要。升高温度对反应有利,但温度过高,乙烯完全氧化反应加速,CO和CO 的生成量增多,2

副产物三氯乙烷的生成量也增加,反应的选择性下降。温度升高催化剂的活性组分CuCl2挥发流失快,催化剂的活性下降快,寿命短。一般在保证HCl的转化率接近全部转化的前

提下,反应温度以低些为好。但当低于物料的露点时,HCl气体就会与体系中生成的水形成盐酸,对设备造成严重的腐蚀。因此,反应温度一般控制在

220,300 ?。

(2)反应压力

常压或加压反应皆可,一般在0.1,1MPa。压力的高低要根据反应器的类型而定,流化床宜于低压操作,固定床为克服流体阻力,操作压力宜高些。当用空气进行氧氯化时,反应气体中含有大量的惰性气体,为了使反应气体保持相当的分压,常用加压操作。 (3)原料配比

按乙烯氧氯化反应方程式的计量关系,CH:HC1:O,1:2:0.5(摩尔)。在正常操作情况下,242

CH稍有过量,O过量50,左右,以使HC1转化完全。实际原料配比为C

H:HC1:O,2422421.05:2:0.75,0.85(摩尔)。若HC1过量,则过量的HCl会吸附在催化剂表面,使催化剂颗粒胀大,使密度减小;如果采用流化床反应器,床层会急剧升高,甚至发生节涌现象,以至不能正常操作。CH稍过量,可保证HC1完全转化,但过量太多,尾气中CO和CO的含量242增加,使选择性下降。氧的用量若过多,也会发生上述现象。

(4)原料气纯度

原料乙烯纯度越高,氧氯化产品中杂质就越少,这对二氯乙烷的提纯十分有利。原料气中的乙炔、丙烯和C烯烃含量必须严格控制。因为它们都能发生氧氯化反应,而生成四氯乙烯、4

三氯乙烯、1,2—二氯丙烷等多氯化物,使产品的纯度降低而影响后加工。原料气HC1主要由二氯乙烷裂解得到,—般要进行除炔处理。

(5)停留时间

要使HCl接近全部转化,必须有较长的停留时间,但停留时间过长会出现转化率下降的现象。这可能是由于在较长的停留时间里,发生了连串副反应,二氯乙烷裂解产生HCl和氯乙烯。在低空速下操作时,适宜的停留时间—般为5,10s。

四、工艺流程

1(乙烯直接氯化生产二氯乙烷的工艺流程

乙烯液相氯化生产二氯乙烷,催化剂为FeCl。早期开发的乙烯直接氯化流程,大多采3

用低温工艺,反应温度控制在53?左右。乙烯液相氯化生产二氯乙烷的工艺流程如图6—15所示。

乙烯液相氯化是在气液鼓泡塔反应器(1)中进行,氯化塔内部安装有套筒内件,内充以铁环和作为氯化液的二氯乙烷液体,乙烯和氯气从塔底进入套筒内,溶解在氯化液中而发生加成反应生成二氯乙烷。为了保证气液相的良好接触和移除反应释放出的热量,在氯化塔外连通两台循环冷却器(2)。反应器中氯化液由内套筒溢流至反应器本体与套筒间环形空隙,再用循环泵将氯化液从氯化塔下部引出,经过滤器(4)过滤后,把反应生成的二氯乙烷送至洗涤分层器(5),其余的经循环冷却器(2)用水冷却除去反应热后,循环回氯化塔。在反应过程中损失的FeCl 的补充是通过将FeCl溶解在循环液内,从氯化塔的上部加入,氯化液中334FeCl的浓度维持在2.5×l0左右。3

图 6-15 乙烯液相氯化生产二氯乙烷工艺流程图

1-氯化塔;2-循环冷却器;3-催化剂溶解槽;4-过滤器;5、6-洗涤分层器

随着反应的进行,产物二氯乙烷不断地在反应器内积聚,通过反应器侧壁溢流口将产生的氯化液移去,从而保证了反应器内的液面恒定。反应产物经过滤器(4)过滤后,送入洗涤分层器(5、6),在两级串联的洗涤分层器内经过两次洗涤,除去其中包含的少量FeCl和HCl,3所得粗二氯乙烷送去精馏。氯化塔顶部逸出的反应尾气经过冷却冷凝回收夹带的二氯乙烷后,送焚烧炉处理。

低温氯化法反应所释放出的大量热量没有得到充分利用,而且反应产物夹带出的催化剂需经水洗处理,洗涤水需经汽提,故能耗较大;反应过程中需不断补加催化剂,过程的污水还需专门处理。为此,近年来开发出高温工艺,使反应在接近二氯乙烷沸点的条件下进行。二氯乙烷的沸点为83.5?,当反应压力为0.2,0.3MPa 时,操作温度可控制在120 ?左右。反应热靠二氯乙烷的蒸出带出反应器外,每生成lmo1二氯乙烷,大约可产生6.5mo1二氯乙烷蒸气。由于在液相沸腾条件下反应,未反应的乙烯和氯会被二氯乙烷蒸气带走,而使二氯乙烷的收率下降。为解决此问题,高温氯化反应器设计成一个U形循环管和一个分离器的组合体。高温氯化法的工艺流程如图6—16所示。

乙烯和氯通过喷散器在U形管上升段底部进入反应器(1),溶解于氯化液中立即进行反应生成二氯乙烷,由于该处有足够的静压,可以防止反应液沸腾。至上升段的三分之二处,反应已基本完成,然后液体继续上升并开始沸腾,所形成的气液混合物进入分离器(B)。离开分离器的二氯乙烷蒸气进入精馏塔(2),塔顶引出包括

少量未转化乙烯的轻组分,经塔顶冷凝器冷凝后,送入气液分离器。气相送尾气处理系统,液相作为回流返回精馏塔塔顶。塔顶侧线获得产品二氯乙烷;塔釜重组分中含有大量的二氯乙烷,大部返回反应器,少部分送二氯乙烷—重组分分离系统,分离出三氯乙烷、四氯乙烷后,二氯乙烷仍返回反应器。

A-U型循环管;B-分离器;1-反应器;2-精馏塔

图6-16高温氯化法制取二氯乙烷的工艺流程

高温氯化法的优点是二氯乙烷收率高,反应热得到利用;由于二氯乙烷是气相出料,不会将催化剂带出,所以不需要洗涤脱除催化剂,也不需补充催化剂;过程中没有污水排放。尽管如此,这种型式的反应器要求严格控制循环速度,循环速度太低会导致反应物分散不均匀和局部浓度过高,太高则可能使反应进行的不完全,导致原料转化率下降。

与低温氯化法相比,高温氯化法可使能耗大大降低,原料利用率接近99,,二氯乙烷纯度可超过99.99,。

2(二氯乙烷裂解制氯乙烯工艺流程

由乙烯液相氯化和氧氯化获得的二氯乙烷,在管式炉中进行裂解得产物氯乙烯。管式炉的对流段设置有原料二氯乙烷的预热管,反应管设置在辐射段。二氯乙烷裂解制氯乙烯的工艺流程如图6—17所示。

用定量泵将精二氯乙烷从贮槽(1)送入裂解炉(2)的预热段,借助裂解炉烟气将二氯乙烷物料加热并达到—定温度,此时有一小部分物料未气化。将所形成的气—

液混合物送入分离器(3),未气化的二氯乙烷经过滤器(8)过滤后,送至蒸发器(4)的预热段,然后进该炉的气化段气化。气化后的二氯乙烷经分离器(3)顶部进入裂解炉(2)辐射段。在0.558MPa和500,550?条件下,进行裂解获得氯乙烯和氯化氢。裂解气出炉后,在骤冷塔(5)中迅速降温并除炭。为了防止盐酸对设备的腐蚀,急冷剂不用水而用二氯乙烷,在此未反应的二氯乙烷会部分冷凝。出塔气体再经冷却冷凝,然后气液混合物一并进入氯化氢塔(6),塔顶采出主要为氯化氢,经致冷剂冷冻冷凝后送入贮罐,部分作为本塔塔顶回流,其余送至氧氯化部分作为乙烯氧氯化的原料。

1-二氯乙烷贮槽;2-裂解反应炉;3-气液分离器;4-二氯乙烷蒸发器;5-骤冷

塔;6-氯化氢塔;7-氯乙烯塔;8-过滤器

图6-17二氯乙烷裂解制取氯乙烯的工艺流程

骤冷塔塔底液相主要含二氯乙烷,还含有少量的冷凝氯乙烯和溶解氯化氢。这股物料经冷却后,部分送入氯化氢塔进行分离,其余返回骤冷塔作为喷淋液。

氯化氢塔的培釜出料,主要组成为氯乙烯和二氯乙烷,其中含有微量氯化氢,该混合液送入氯乙烯塔(7),塔顶馏出的氯乙烯经用固碱脱除微量氯化氢后,即得纯度为99.9,的成品氯乙烯。塔釜流出的二氯乙烷经冷却后送至氧氯化工段,一并进行精制后,再返回裂解装置。 3(以空气作氧化剂的乙烯流化床氧氯化制二氯乙烷的工艺流程

乙烯氧氯化反应部分的工艺流程如图6—18所示。

1-加氢反应器;2-汽水分离器;3-流化床反应器;4-催化剂贮槽;5-空气压缩机图6-18流化床乙烯氧氯化制二氯乙烷反应部分工艺流程图来自二氯乙烷裂解装置的氯化氢预热至170?左右,与H一起进入加氢反应器(1),在载于2 氧化铝上的钯催化剂存在下,进行加氢精制,使其中所含有害杂质乙炔选择加氢为乙烯。原料乙烯也顶热到一定温度,然后与氯化氢混合后一起进入反应器(3)。氧化剂空气则由空气压缩机(5)送入反应器,三者在分布器中混合后进入催化床层发生氧氯化反应。放出的热量借冷却管中热水的汽化而移走。反应温度则由调节汽水分离器的压力进行控制。在反应过程中需不断向反应器内补加催化剂,以抵偿催化剂的损失。

氯乙烷的分离和精制部分的工艺流程如图6—19所示。自氧氯化反应器顶部出来的反应气含有反应生成的二氯乙烷,副产物CO、CO和其它少量的氯代衍生物,以及末转化的乙烯、2

氧、氯化氢及惰性气体,还有主、副反应生成的水。此反应混合气进入骤冷塔(1)用水喷淋骤冷至90?并吸收气体中氯化氢,洗去夹带出来的催化剂粉末。产物二氯乙烷以及其它氯代衍生物仍留在气相,从骤冷塔顶逸出,在冷却冷凝器中冷凝后流入分层器(4),与水分层分离后即得粗二氯乙烷。分出的水循环回骤冷塔。

1-骤冷塔;2-废水汽提塔;3-受槽;4-分层器;5-低温冷凝器;6-汽液分离器;7-吸收塔;8-解吸塔;9-碱洗罐;10-水洗罐;11-粗二氯乙烷贮槽;12-脱轻组分塔;13-二氯乙烷塔;14-脱重组分塔

图6-19二氯乙烷分离和精制部分工艺流程图

从分层器出来的气体再经低温冷凝器(5)冷凝,回收二氯乙烷及其它氯代衍生物,不凝气体进入吸收塔(7),用溶剂吸收其中尚存的二氯乙烷等后,含乙烯1,左有的尾气排出系统。溶有二氯乙烷等组分的吸收液在解吸塔(8)中进行解吸。在低温冷凝器和解吸塔回收的二氯乙烷,一并送至分层器。

自分层器(4)出来的粗二氯乙烷经碱洗罐(9)碱洗、水洗罐(10)后进入贮槽(11),然后在3个精馏塔中实现分离精制。第一塔为脱轻组分塔(12),以分离出轻组分;第二塔为二氯乙烷塔(13),主要得成品二氯乙烷;第三塔是脱重组分塔,在减压下操作,对高沸物进行减压蒸馏,从中回收部分二氯乙烷。精制的二氯乙烷,送去作裂解制氯乙烯的原料。骤冷塔塔底排出的水吸收液中含有盐酸和少量二氯乙烷等氯代衍生物,经碱中和后进入汽提塔进行水蒸气汽提,回收其中的二氯乙烷等氯代衍生物,冷凝后进入分析器。空气氧化法排放的气体中尚含有1,左右的乙烯,不再循环使用,故乙烯消耗定额较高,且有大量排放废气污染空气,需经处理。

五、典型设备,流化床反应器

图6,20流化床乙烯氧氯化反应器结构图

1,CH的HCl出口;2,空气入口;3,板式分布器;4,管式分布器;5,催化24

剂入口;6,反应器外壳;7,冷却管组;8,加压热水入口;9,第三级旋风分离器;10,反应气出口;11、12,净化空气入口;13,第二级旋风分离器;14,第一级旋风分离器;15,人孔;16,高压水蒸汽出口

催化剂在流化床反应器内处于沸腾状态,床层内又装有换热器,可以有效地引出反应热,因此反应易于控制,床层温度分布均匀。这种反应器适用于大规模的生产,但缺点是催化剂损耗量大,单程转化率低。流化床反应器是钢制圆柱形容器,高度约为直径的十倍左右,其结构如图6—20所示。在反应器底部水平插入空气进料管,进料管上方设置具有多个喷嘴的板式分布器,用于均匀分布进入的空气。在反应段设置了—定数量的直立冷却管组,管内通入加压热水,使其汽化以移出反应热,并产生相当压力的水蒸气。在反应器上部设置三组三级旋风分离器,用以分离回收反应气体所夹带的催化剂。在生产中催化剂的磨损量每天约有0.1,,故需补加催化剂。催化剂自气体分布器上方用压缩空气送入反应器内。

由于氧氯化反应过程有水产生,若反应器的某些部位保温不好,温度会下降,当温度达到露点时,水就凝结,将使设备遇到严重的腐蚀。因此,反应器各部位的温度必须保持在露点以上。

电石法生产氯乙烯

合肥工业大学 课程设计 设计题目: 5万吨/年电石法制氯乙烯 学院:化学与化工学院专业:化学工程与工艺班级: 学生:方柳陈志指导教师:张旭系主任: (签名) 一、设计要求: 1、根据设计题目,进行生产实际调研或查阅有关技术资料,选定合理的流程方案和设备类型,并进行简要论述。(字数不小于8000字) 2、设计说明书内容:封面、目录、设计题目、概述与设计方案简介、工艺方案的选择与论证、工艺流程说明、专题论述、参考资料等。 3、图纸要求:工艺流程图1张(图幅2号);设备平面或立面布置图1张(图幅3号))。 二、进度安排: 三、指定参考文献与资料 《过程装备成套技术设计指南》(兼用本课程设计指导书)、《过程装备成套技术》、《化工单元过程及设备课程设计》

摘要 本次课程设计主要是设计氯乙烯的生产成套装置。氯乙烯是生产聚氯乙烯的主要原料,到目前为止,全球有93%以上的氯乙烯采用氧氯化法生产。在国内,考虑到石油资源不足,价格较高,而电石资源丰富,所以大部分工厂都采用电石法制取氯乙烯。本次主要介绍电石法制取氯乙烯。先后介绍了从原料气氯化氢、乙炔的制备到氯乙烯的合成、氯乙烯的精馏等一系列生产过程的工艺流程、工艺原理以及主要设备选型等问题。 关键词:氯乙烯;电石法;乙炔;氯化氢;工艺流程;精馏

一乙炔的制备 乙炔生产的工艺原理 (1)电石的破碎 通常厂家采购的电石都是大块的电石,而电石料块进入发生器的合理径为25~50mm,因此在进发生器前必须破碎,通常是将大块的电石放入颚式破碎机,粗破后料块直径为80~100mm,通过皮带机输入电石仓库,然后经过二次破碎,径粒达到25~50mm,破碎后料块通过皮带机径除铁器除铁后输入日料库,作为发生器的入料电石。进入破碎机的电石温度应≤130℃,否则会烫坏,烧坏皮带;进入发生器的电石温度应该≤80℃,否则对发生系统不安全。 (2)电石的除尘 化学工程里把气体与微粒子混合物中分离粒子的操作称作除尘。针对电石及其粉尘的特性,选用的除尘方法一般有以下几种。 ①旋风除尘。旋风除尘器对数微米以上的粗粉尘非常有效。采用简单的旋风除尘器和风机进行除尘,利用电石粉尘在风机的作用下,在除尘器内旋转所产生的离心力,将电石粉尘从气流中分离出来。这种方式结构简单,器身无运动部件,不需要特殊的附属设备,安装投资较少,操作、维护也方便,压力损失中等,动力消耗不大,运转维护费用低,也不受浓度、温度的影响。但由于电石粉尘比较细,用这种简单的除尘方式很难达到环保要求,除尘效率不高。 ②湿法除尘。湿法除尘具有投资少,结构简单,占地面积小,特别是对易燃易爆气体的除尘效果更好,在操作时不会产生捕集到的电石灰尘再飞扬。电石除尘通常采用旋风除尘和湿法的冲激式除尘器相结合。这种除尘方式虽然效率较高,但由于系统压力损失大,管道容易积灰。冬天用蒸汽时,积灰易受潮结块,造成管道堵塞,清理比较困难。除尘器内排出的电石渣水,多耗了水又易造成二次污染,除尘器排出的气体中水蒸气在寒冷的北方也容易结冰,因此这种除尘方式适合于气候湿润、冬天不冷的地方使用。 (3)袋式过滤除尘 布袋除尘室依靠编制的或毡织的滤布作为过滤材料来达到分离含尘气体中电石尘的目的,除尘效率一般可达99%。滤布在长期与粉尘的接触和反复清理的过程

年产5万吨PVC的氯乙烯合成工段的工艺设计

年产5万吨聚氯乙烯的氯乙烯合成工段工艺初步设计 姓名:指导教师: 摘要:本设计是年产5万吨聚氯乙烯的氯乙烯合成工段的初步工艺设计,本设计根据株洲化工集团现场实习有关资料及有关文献,完成物料衡算、热量衡算。此设计配有说明书一份、图纸三份。 说明书内容:1.PVC和VC的发展及发展趋势。2.合成工段的生产原理、流程。3.物料衡算、热量衡算。4.主要设备的设计和选型.5.管道的设计及选型。6.三废处理安全与防火技术。 三副图纸:1.带控制点的物料流程图。2.车间平面布置图。3.主要设备的装配图。 关键词:合成、PVC、VC、工艺、设计。 目录 前言 1 绪论 (3) 1.1 聚氯乙烯(PVC) (3) 1.1.1 聚氯乙烯工业的发展概况 (3) 1.1.2 聚氯乙烯工业在国民经济中的作用 (4) 1.1.3 聚氯乙烯系列聚合物的性质 (4) 1.1.4聚氯乙烯制品的开发与应用技术 (5) 1.1.5 聚氯乙烯合成方法 (6) 1.2 氯乙烯(VC) (10) 1.2.1 氯乙烯的合成 (10) 1.2.2 生产工艺流程简述 (13) 1.2.3 主要工艺参数 (14) 1.2.4 主要原料和产物的物化性质 (15) 2 工艺计算 (16) 2.1 物料衡算 (16) 2.1.1 计算依据 (16) 2.1.2 计算 (17) 2.2 热量衡算 (24) 2.2.1 衡算方法 (24) 2.2.2 标况下有关物化数据表 (25) 2.2.3 计算 (25) 3 主要设备的设计与选型 (32) 3.1 石墨冷却器的选型 (32) 3.1.1 已知条件 (32) 3.1.2 计算两流体的平均温度差 (32) 3.2 石墨预热器的选型 (33) 3.2.1 已知条件 (33)

氯乙烯的生产方法、生产原理

氯乙烯的生产方法、生产原理

氯乙烯的生产方法、生产原理 1生产方法 按其所用原料可大致分为下列几种: ⑴乙烯法 此法系以乙烯为原科,可通过三种不同途径进行,其中两种是先以乙烯氯化制成二氯乙烷:C2H4 + Cl2 → C2H4Cl2 然后从二氯乙烷出发,通过不同方法脱掉氯化氢来制取氯乙烯;另一种则直接从乙烯高温氯化来制取氯乙烯。现分述如下: ①二氯乙烷在碱的醇溶液中脱氯化氢(也称为皂化法) C2H4Cl2+ NaOH → C2H3Cl + NaCl + H2O 此法是生产氯乙烯最古老的方法。为了加快反应的进行,必须使反应在碱的醇溶液小进行。这个方法有严重的缺点:即生产过程间歇,并且要消耗大量的醇和碱,此外在生产二氯乙烷时所用的氯,最后成为氯化钠形式耗费了,所以只在小型的工业生产中采用。 ②二氯乙烷高温裂解 C2H4Cl2→ C2H3Cl + HCl 这个过程是将二氯乙烷蒸气加热到600℃以上时进行的,与此同时,还发生脱掉第二个氯化氢生成乙炔的反应,结果使氯乙烯产率降低。为了提高产率,必须使用催化剂。所用的催化剂为活性炭、硅胶、铝胶等,反应在480~520℃下进行,氯乙烯产率可达85%。 ③乙烯直接高温氯化 这一方法不走二氯乙烷的途径,直接按下式进行: C2H4 +Cl2→ C2H3Cl + HCl 由上式可以看出这一反应是取代反应,但实际上乙烯与氯在300℃以下主要是加成反应,生成二氯乙烷。要想使生成氯乙烯的取代反应成为唯一的反应,则必须使温度在450℃以上,而要避免在低温时的加成过程,可以采用将原科单独加温的方法来解决,但在高温下反应激烈,反应热难以移出,容易发生爆炸

年产30万吨氯乙烯工艺毕业设计

年产30万吨氯乙烯工艺毕业设计 一.选题意义及背景 氯乙烯单体(VCM)是生产聚氯乙烯树脂的主要原料,其产品的质量和成本直接影响到聚氯乙烯树脂的质量和成本。 氯乙烯生产工艺经历了较长时间的生产和工艺改造,产生了电石法、二氯乙烷法等工艺,发展到目前世界上最先进的的工艺属乙烯平衡氧氯化工艺。乙烯平衡氧氯化法由乙烯、氯气和氧气生产氯乙烯,整个工艺过程既不产生氯化氢,又不消耗氯化氢,大大降低了原料的成本,此法是目前世界上公认的技术经济较合理的方法,全世界93%以上的氯乙烯是采用乙烯平衡氧氯化法生产的。 二.毕业设计(论文)主要容: 1.工艺生产方法确定、生产流程设计与论证 2.工艺计算(包括物料衡算,热量衡算) 3.酯化合成工艺主要生产设备设计与选型 4.安全生产与环保治理措施 三.计划进度 1.第一周:在完全理解设计任务书的基础上查阅资料,做好准备 工作,包括:了解学位论文的格式、查阅相关文献(万方数据、 中国期刊网、维普资询、硕博论文等)、学习氯乙烯的工艺设 计方法。 2.第二周:选择出设计方案。 3.第三周:参照数据。 4.第四周:撰写毕业论文。 5.第五周:进行毕业答辩。 四.毕业设计(论文)结束应提交的材料: 1、论文电子稿 2、论文打印搞 3、过程资料记录本(实验记录本)

指导教师:教研室主任 年月日年月日 论文真实性承诺及指导教师声明 学生论文真实性承诺 本人重声明:所提交的作品是本人在指导教师的指导下,独立进行研究工作所取得的成果,容真实可靠,不存在抄袭、造假等学术不端行为。除文中已经注明引用的容外,本论文不含其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。如被发现论文中存在抄袭、造假等学术不端行为,本人愿承担本声明的法律责任和一切后果。 毕业生签名:日期:

氧氯制取氯乙烯

一、概述 1.氯乙烯的性质和用途 氯乙烯在常温常压下是一种无色的有乙醚香味的气体,沸点-13.9℃,临界温度142℃,临界压力为5.12MPa,尽管它的沸点低,但稍加压力,就可得到液体的氯乙烯。氯乙烯易燃,闪点小于-17.8℃,与空气容易形成爆炸混合物,其爆炸范围为4~21.7%(体积)。氯乙烯易溶于丙酮、乙醇、二氯乙烷等有机溶剂,微溶于水,在水中的溶解度是0.001g/L。 氯乙烯具有麻醉作用,在20~40%的浓度下,会使人立即致死,在10%的浓度下,—小时内呼吸管内急动而逐渐缓慢,最后微弱以致停止呼吸。慢性中毒会使人有晕眩感觉,同时对肺部有刺激,因此,氯乙烯在空气中的允许浓度为500ppm。 氯乙烯是分子内包含氯原子的不饱和化合物。由于双键的存在,氯乙烯能发生一系列化学反应,工业应用最重要的化学反应是其均聚与共聚反应。 氯乙烯是聚氯乙烯的单体,在引发剂的作用下,易聚合成聚氯乙烯。氯乙烯也可以和其它不饱和化合物共聚,生成高聚物,这些高聚物在工业上和日用品生产上具有广泛的用途。因此,氯乙烯的生产在有机化工生产中占有重要的地位。 2.氯乙烯的生产方法 氯乙烯首先在工业上实现生产是在20世纪30年代,当时是使用电石水解成,乙炔和氯化氢进行加成反应得到的。其化学反应方程式为: CaC2 + 2H2O → Ca(OH)2 + C2H2 C2H2 + HCl CH2CHCl 50年代前,电石是由焦炭与生石灰在电炉中加热生成: CaO+3C CaC2 + CO 随着氮乙烯需求量的增加,人们致力于寻找生产氯乙烯更廉价的原料来源。在50年代初期,乙烯成为生产氯乙烯更经济、更合理的原料。实现了由乙烯和氯气生产氯乙烯的工业生产路线。该工艺包括乙烯直接氯化生产二氯乙烷及二氯乙烷裂解生产氯乙烯。 随后,人们注意到二氯乙烷裂解过程,除生成氯乙烯外还生成氯化氢。由此,工业界想到由氢化氢可以连同乙炔生产工艺一起生产氯乙烯。 CH 2=CH2十C12→ CH2C1—CH 2C1 CH 2C1—CH 2C1→ CH2=CHC1十HC1 十HCl → CH2=CHC1 50年代后期,开发出乙烯氧氯化工艺以适应不断增长的对氯乙烯的需求。 在这个过程中,乙烯、氧气和氯化氢反应生成二氯乙烷,和直接氯化过程结合在一起,两者所生成的二氯乙烷一并进行裂解得到氯乙烯,这种生产方法称为平衡法。 至今世界上虽仍有少量的氯乙烯来自于电石乙炔及乙炔—乙烯混合法,而绝大部分氯乙烯是通过基于乙烯和氯气的平衡过程生产。平衡氧氯化生产工艺仍是已工业化的、生产氯乙烯单体最先进的技术,在世界范围内,93%的聚氯乙烯树脂都采用由平衡氧氯化法生产的氯乙烯单体聚合而成。该法具有反应器能力大、生产效率高、生产成本低、单体杂质含量少和可连续操作等特点。 二、反应原理 乙烯氧氯化法生产氯乙烯,包括三步反应:

年产12万吨氯乙烯合成工艺设计书

年产12万吨氯乙烯合成工艺设计书 第一章总论 1.1项目建设依据 ①HGT 20688-2000化工工厂初步设计文件内容深度规定; ②国家相关政策、技术及市场相关资料。 1.2项目建设范围 根据课程设计的要求,本项目的设计内容为:初步设计说明书,项目可行性研究,工艺流程设计,设备选型,总厂的平面布局,车间设备的布局,创业规划书,用户手册。 1.3主要设计原则 ①反应热及时移出: 反应是放热反应,局部过热会影响催化剂的寿命(HgCl 升华,使其活性下降)。因此, 2 在反应过程中,必须及时地移出反应热。 ②反应器型式: 工业上经常采用多管式的固定床氯化反应器,管内盛放催化剂。 经过干燥和已经净化的乙炔和氯化氢的混合气体,自上而下地通过催化剂床层,进行反应。 ③管外用加压的循环热水进行冷却。 ④发挥催化剂床层的效率,提高处理量: 反应是放热反应,乙炔的空速大,则有局部过热现象(热点温度),因此,乙炔的空速也受到限制。 如果整个床层温度都接近最佳的允许温度,就可以充分发挥催化剂床层的效率:采取分段进气、分段冷却和适当调整催化剂活性等方法,可以使床层温度分布得到改善,乙炔空速可以提高,因而催化剂的生产能力也可以显著提高。 1.4设计特点 本设计采用乙炔法。在氯化汞催化剂存在下,乙炔与氯化氢加成直接合成氯乙烯:CH≡CH+HCl→CH2=CHCl

1.5设计标准 本设计按照原化工部制定的《化工工厂初步设计文件内容深度规定》及有关国家的专业标准。 第二章项目可行性论证 2.1项目背景 1835年法国人V.勒尼奥用氢氧化钾在乙醇溶液中处理二氯乙烷首先得到氯乙烯。20世纪30年代,德国格里斯海姆电子公司基于氯化氢与乙炔加成,首先实现了氯乙烯的工业生产。初期,氯乙烯采用电石,乙炔与氯化氢催化加成的方法生产,简称乙炔法。以后,随着石油化工的发展,氯乙烯的合成迅速转向以乙烯为原料的工艺路线。1940年,美国联合碳化物公司开发了二氯乙烷法。为了平衡氯气的利用,日本吴羽化学工业公司又开发了将乙炔法和二氯乙烷法联合生产氯乙烯的联合法。1960年,美国陶氏化学公司开发了乙烯经氧氯化合成氯乙烯的方法,并和二氯乙烷法配合,开发成以乙烯为原料生产氯乙烯的完整方法,此法得到了迅速发展。乙炔法、混合烯炔法等其他方法由于能耗高而处于逐步被淘汰的地位。 随着国民经济的高速发展,社会需求的增长,刺激了PVC树脂生产的迅速发展,目前全国有生产企业80余家,但规模较小,年产十万吨以上的厂家仅有上海氯碱化工股份有限公司和齐鲁石化总公司。近年我国PVC树脂产量远远不能满足市场的需求,这与我国大部分生产厂家工艺技术落后,VC原料短缺有直接关系。我国相关技术也基本处于比较落后的水平,且相关资源也不够丰富,致使我国有相当一部分生产氯乙烯厂家还是使用的比较落后的乙炔法,但是此方法对于我国目前国情还是有相当大的适应性,虽然它是最古老但最简单的商业生产路线。乙炔法合成氯乙烯曾为我国聚氯乙烯工业的发展做出巨大贡献,至今仍约占我国氯乙烯总生产能力的2/3、产量的1/2以上。目前我国以电石乙炔为原料的聚氯乙烯生产厂共76家,总生产能力124万吨/年。在能源成本愈来愈高以及国内外竞争日益激烈的今天,建立在高能耗电石基础上的乙炔法聚氯乙烯工业正面临严峻考验。 2.2国内市场现状及预测 目前国内整体化工市场并未出现全面复苏的现象,仍然处于弱势格局,受房地产市场的影响PVC行业难改低迷态势,业内难言乐观,而作为电石的主要下游消耗行业,电石市场难免受此牵连,市场僵持局面难以突破,因此预计后市仍将以平稳运行为主,小幅调整

氯乙烯的生产方法、生产原理

氯乙烯的生产方法、生产原理 1生产方法 按其所用原料可大致分为下列几种: ⑴乙烯法 此法系以乙烯为原科,可通过三种不同途径进行,其中两种是先以乙烯氯化制成二氯乙烷:C2H4 + Cl2 → C2H4Cl2 然后从二氯乙烷出发,通过不同方法脱掉氯化氢来制取氯乙烯;另一种则直接从乙烯高温氯化来制取氯乙烯。现分述如下: ①二氯乙烷在碱的醇溶液中脱氯化氢(也称为皂化法) C2H4Cl2+ NaOH → C2H3Cl + NaCl + H2O 此法是生产氯乙烯最古老的方法。为了加快反应的进行,必须使反应在碱的醇溶液小进行。这个方法有严重的缺点:即生产过程间歇,并且要消耗大量的醇和碱,此外在生产二氯乙烷时所用的氯,最后成为氯化钠形式耗费了,所以只在小型的工业生产中采用。 ②二氯乙烷高温裂解 C2H4Cl2→ C2H3Cl + HCl 这个过程是将二氯乙烷蒸气加热到600℃以上时进行的,与此同时,还发生脱掉第二个氯化氢生成乙炔的反应,结果使氯乙烯产率降低。为了提高产率,必须使用催化剂。所用的催化剂为活性炭、硅胶、铝胶等,反应在480~520℃下进行,氯乙烯产率可达85%。 ③乙烯直接高温氯化 这一方法不走二氯乙烷的途径,直接按下式进行: C2H4 +Cl2→ C2H3Cl + HCl 由上式可以看出这一反应是取代反应,但实际上乙烯与氯在300℃以下主要是加成反应,生成二氯乙烷。要想使生成氯乙烯的取代反应成为唯一的反应,则必须使温度在450℃以上,而要避免在低温时的加成过程,可以采用将原科单独加温的方法来解决,但在高温下反应激烈,反应热难以移出,容易发生爆炸的问题。目前一般用氯化钾和氯化锌的融熔盐类作裁热体,使反应热很快移出。 此法主要的缺点是副反应多,产品组成复杂,同时生成大量的炭黑,反应热

氯乙烯工艺设计

工艺设计 题目:氯乙烯生产工艺设计 学院名称:化学工程学院 专业:化学工程与工艺 班级:化工094 姓名:王强学号 09402010433 指导教师:张亚静职称副教授 定稿日期:2012 年10 月14 日

摘要 早期,氯乙烯采用电石,乙炔与氯化氢催化加成的方法生产,简称乙炔法。以后,随着石油化工的发展,氯乙烯的合成迅速转向以乙烯为原料的工艺路线。1940年,美国联合碳化物公司开发了二氯乙烷法。为了平衡氯气的利用,日本吴羽化学工业公司又开发了将乙炔法和二氯乙烷法联合生产氯乙烯的联合法。1960年,美国陶氏化学公司开发了乙烯经氧氯化合成氯乙烯的方法,并和二氯乙烷法配合,开发成以乙烯为原料生产氯乙烯的完整方法,此法得到了迅速发展。目前, 世界上氯乙烯的生产技术主要电石乙炔法、乙烯法、乙炔- 乙烯法和乙烷法[1]。本文通过对氯乙烯的各种生产工艺优缺点的分析,选出一种最适合现代社会合成氯乙烯的方法。 关键词:氯乙烯;生产工艺;

1前言 氯乙烯( vinyl chloride monomer) 简称VCM,可由乙炔氢氯化制得。在工业上, 氯乙烯主要用于合成聚氯乙烯树脂( PVC) 和偏二氯乙烯、冷冻剂等等。 外观与性状:无色、有醚样气味的气体 熔点(℃):-160.0 沸点(℃):-13.9 溶解性:微溶于水,溶于乙醇、乙醚、丙酮等多数有机溶剂 危险特性:易燃,与空气混合能形成爆炸性混合物。遇热源和明火有燃烧混合能形成爆炸性混合物。遇热源和明火有燃烧爆炸的危险。燃烧或无抑制剂时可发生剧烈聚合。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会燃烧。 2.1 乙烯氧氯化法 直接氯化过程与氧氯化过程均生成二氯乙烷,且都为放热反应,只是氧氯化反应有水生成,而直接氯化生成的二氯乙烷为无水EDC。平衡氧氯化法的直接氯化与氧氯化的生产能量大体相当, 因此,用乙烯和氯化氢为原料生产氯乙烯的装置,可省掉直接氯化单元而分别设置新鲜氯化氢氧氯化单元和循环氯化氢氧氯化单元, 而其它单元工艺可保持基本不变。 用乙烯和氯化氢为原料生产氯乙烯的装置, 可分别设置新鲜氯化氢氧氯化 单元和循环氯化氢氧氯化单元,各一条线生产;在原料供应稳定可靠,装置长周期连续生产的情况下,EDc 精制单元也可设置一条线;若原料供应不稳定,可考虑 设置两条线生产,届时可降负荷生产开一条线或开两条线;考虑到裂解炉的烧焦 和生产的灵活性, EDC 裂解单元建议设置两台裂解炉和急冷塔;VCM 精制单元按一条线设置。 现在工业生产氯乙烯的主要方法。分三步进行。 第一步乙烯氯化生成二氯乙烷,乙烯和氯加成反应在液相中进行: CH2=CH2 + Cl2→CH2ClCH2Cl 采用三氯化铁或氯化铜等作催化剂,产品二氯乙烷为反应中间物。反应热可通过冷却水或产品二氯乙烷汽化来移出。反应温度40~110℃,压力0.15~ 0.30MPa,乙烯的转化率和选择性均在99%以上。 第二步二氯乙烷热裂解为氯乙烯及氯化氢: ClCH2CH2Cl─→CH2=CHCl+HCl 反应是强烈的吸热反应,在管式裂解炉中进行,反应温度500~550℃,压力0.6~1.5MPa;控制二氯乙烷单程转化率为50%~70%,以抑制副反应的进行。主要副反应为:

氯乙烯合成工艺设计

前言 氯乙烯单体(VCM)几乎全部(98%以上)都用来生产聚氯乙烯(PVC)。余下的则用于生产聚氯乙烯氯化物和氯化溶剂。传统工艺的电石法精馏氯乙烯质量已不能满足PVC 树脂的生产要求,受其工艺流程及精馏塔塔型的限制,原氯乙烯精馏装置规模小,产品质量较差,尾气放空量大,造成氯乙烯、乙炔流失量大,导致生产成本较高,环境污染严重。 最初的氯乙烯生产全部以乙炔为原料。60年代后期,随着乙烯装置大型化及乙烯氧氯化技术的成熟,乙烯法在经济和环保等方面占有明显的优势,在世界范围内乙炔法迅速被乙烯法取代。迄今为止,全世界氯乙烯装置93%以上采用乙烯法,在工业发达国家如日本,以全部淘汰了乙炔法,仅在我国及其它发展中国家仍占有相当比重。目前国内比较先进而又经济可行的成熟工艺技术是电石乙炔法 本设计用美国ChemStations公司开发的流程模拟软件ChemCAD软件对电石乙炔法制备VCM进行了工艺模拟设计与计算,计算主要包括物料衡算和热量衡算,用计算所得到的相关数据对此工艺中所涉及到的设备进行选型,主要包括塔的选型、换热器的选型、泵的选型等,然后用PDSOFT三维软件对车间设备进行布置,为工业生产提供参考。 1

1 总论 1.1 概述 1.1.1 意义与作用 氯乙烯(简称VCM),是无色的、易液化的气体。易聚合,也能与丁二烯、乙烯、丙烯、丙烯睛、酷酸乙烯、丙烯酸醋和马来酸醋等共聚。主要用于制备PVC,也用于制备偏二氯乙烯、冷冻剂等。氯乙烯单体几乎全部(98%以上)都用来生产聚氯乙烯。余下的则用于生产聚氯乙烯氯化物和氯化溶剂。通过对二氯乙烷(EDC)裂解后脱除HCL,以及干燥精制可获得制造PVC级的VCM。由于资源结构的特点,世界上只有我国的氯碱行业有电石法生产PVC,其他国家都是通过乙烯法生产PVC,即乙烯直接氯化、氧氯化生产EDC,进而裂解生产VCM制造PVC。其中96%VCM均用于生产PVC。 聚氯乙烯(简称PVC)是五大热塑性合成树脂之一,以其价廉物美的特点,占合成树脂总消费量的29%左右,仅次于聚乙烯居第二位。由于PVC树脂具有优良的耐化学腐蚀性、电绝缘性、阻燃性、质轻、强度高且易加工、成本又低,因而PVC制品广泛用于工业、农业、建筑、电子电器及人们生活中的各个领域。PVC硬质制品可代替金属制成各种工业型材、门窗、管道、阀门、绝缘板及防腐材料等,还可作收音机、电话、蓄电池外壳及家俱、玩具等。PVC软质品可制成薄膜做雨披、台布、包装材料及农用薄膜,还可制成人造革、电线、电缆的绝缘层。另外,PVC树脂作为氯碱工业最大的有机耗氯产品,对氯碱工业的碱、氯平衡和发展起到重要的作用。PVC主要用于建筑业,制造管材、门窗和墙板等。作为第一大用户,建筑业约占聚氯乙烯消费总量的76%。其它方面的用量相对较少。包装薄膜和容器约占消费总量的6%,电气配件、电线电缆包皮约占消费总量的4%,涂料和粘合剂约占消费总量的4%,其他约占消费总量的10%。 1.1.2 氯乙烯生产的国内外现状及发展前景 (1)国外发展概况 氯乙烯(VCM)的合成始于1835年,由法国化学家Regnault用氢氧化钾的乙醇溶液将二氯乙烷脱氯化氢制得,并于1838年观察到了它的聚合体,这次的发现被认为是PVC 的开端。1902年,Biltz将1,2-二氯乙烷进行热分解也制得氯乙烯,但当时由于聚合物的科学和生产技术尚不成熟,他的发现没有导致工业生产的结束。Klatte于1912年通过乙炔与氯化氢的催化加成反应制得了氯乙烯,成为工业上氯乙烯合成的最初工艺,但在沿用将近30多年后,由于乙炔生产的高能耗而逐渐趋于淘汰。从1940年起,氯乙烯的生产原料,乙炔开始被乙烯部分取代,首先将乙烯直接氯化成1,2-二氯乙烷(EDC),再加以热裂解制得氯乙烯,裂解产生的氯化氢仍被用在乙炔-氯化氢法中。混合气体法制备氯乙烯采用石脑油作原料,将石脑油用燃烧气体裂解后,制成含乙炔和乙烯的混合气体,该混合气体先

氯乙烯合成工艺设计

氯乙烯合成工艺设计 一、氯乙烯的性质与用途 1. 常温常压下,氯乙烯(vinyl chloride,CH2=CHCl)是无色气体,具有微甜气味,微溶于水,溶于烃类,醇,醚,氯化溶剂和丙酮等有机溶剂中,氯乙烯沸点-13.9℃,易聚合,并能与乙烯、丙烯、醋酸乙烯酯,偏二氯乙烯、丙烯腊、丙烯酸酯等单体共聚,而制得各种性能的树脂,加工成管材、面膜、塑料地板、各种压塑制品、建筑材料、涂料和合成纤维等[1]。 氯乙烯的物理性质见下表[2]: 2. 氯乙烯是易燃易爆物质,与空气混合能形成爆炸性混合物,高温或遇明火能引起燃烧或无抑制剂时可发生剧烈聚合。在氯乙烯与空气的混合物中加入氮气或二氧化碳可使爆炸范围变窄,减少爆炸危险。危险性类别:第2.1类易燃气体,禁忌物是强氧化剂,灭火方式是切断电源,灭火剂用雾状水、二氧化碳、泡沫,泄漏应急处理:迅速撤离泄露污染区人员至上风处并进行隔离,严格限制出入,切断火源,应急处理人员戴好正压式呼吸器,尽可能切断泄漏源[3]。 [2]

3. 由于光和热可引发氯乙烯单体聚合,故存储时应避免日晒,常温下存储应加入阻聚剂(如对苯二酚)防止其自聚,一般以液体状态存储和运输[1]。 4. 氯乙烯在工业上的主要应用时生产聚氯乙烯树脂,故常称其为氯乙烯单体(VCM)所谓聚氯乙烯树脂是一类由氯乙烯单体衍生的均聚物和共聚物,其中氯乙烯占树脂组分质量的50%,因此VCM的生产质量和成本直接影响到聚氯乙烯树脂的质量和成本。目前用于制造聚氯乙烯树脂的氯乙烯约占其产量的96%,VCM的需求量和产量在很大程度上取决于聚氯乙烯树脂的需求量。聚氯乙烯为五大和成树脂之一,由于其价廉易得、应用广泛,因此需求量和产量逐年上升。氯乙烯是离分子材料工业的重要单体,产量很大,还可用于合成1,1,2-三氯乙烷和1,1-二氯乙烯等。故氯乙烯的生产在基本有机化学工业中占有重要的地位[7]。 二、氯乙烯生产工艺简介 氯乙烯是1835年由法国人V.Regnault首先在实验室中制得,他用氢氧化钾的乙醇溶液处理二氯乙烷得到了氯乙烯。1902年,Biltz 将二氯乙烷进行热分解也可制得氯乙烷。1911年,kiatte和Rollett 利用乙炔和氯化氢催化加成反应合成了氯乙烯。1913年,Griesheim -Elektron用氯化汞作催化剂,使氯乙烯合成技术进一步发展。1931年,德国首先实现了氯乙烯的工业化生产,原料是乙炔和氯化氢,催化剂是氯化汞。 20世纪50年代以前,氯乙烯主要采用电石乙炔和氯化氢制得,即电石乙炔法。其生产流程简单,副反应少,产品纯度高。它具有设备、工艺简单,投资低,可以小规模经营的特点。但由于汞催化剂有毒,不利环境保护,且生产电石要消耗大量电能,以后由于电力和焦炭提价,电石价格大幅度提高,严重影响到氯乙烯的生产。之后出现了原料的部分转换,产生了联合法和烯炔法。 石油化工的迅速发展给氯乙烯工业带来了重大影响。1955-1958年,道化学公司首先将以电石乙炔为原料的路线转变为以乙烯为原料的工艺路线,建成一套氧氯化法生产氯乙烯的工业装置。氧氯化法的成功,不仅使制造氯乙烯的原料从乙炔完全转变为乙烯,而且为平衡氧氯化法制造氯乙烯打下了基础[8]。 2.1用乙烯和氯气为他原料合成氯乙烯,要经过两步反应,第一步是乙烯与氯气加成生成1,2-二氯乙烷(EDC),第二步是EDC裂解脱氯化氢生成氯乙烯。这种方法仅有一半的氯气用于生产氯乙烯,另一半变成氯化氢,排放浪费大量的氯资源污染环境。因此如何利用副产物氯化氢时氯化工业必须解决的技术经济问题[1]。 2.2联合法是将氯化氢用于与乙炔反应 + = ≡ CH= + → CHCl CH CH Cl CH CH 2 2 2 2 此法的优点是利用已有的电石资源和乙炔生产装置,迅速提高氯乙烯的生产能力,因此,在电石原料向石油系原料变换的初期,曾有不少工厂采用,但是,这种方法不能完全摆脱电石原料,只是一种暂时的方法[1]。

氯乙烯生产工艺

氯乙烯生产工艺 氯乙烯的生产方法有电石乙:炔法、乙烯氧氧化法、乙烯直接 氯化法等。电石法在国内氯乙烯生产工艺中占主导地位。 氯乙烯装置吸收近年来乙炔法氯乙烯的技术改进成果,选择改 良传统合成转化技术,利用经分别干燥处理的乙炔和氯化氢原料气,按设定比例混合后,通过一段、二段反应器反应生成氯乙烯,反应 过程中放出的热量,通过冷剂庚烷气化移热。采用专有技术反应器,提高了生产能力,单台反应器生产强度高,节省了设备投资,节约 了占地面积。由于庚烷冷剂的气化潜热较大,容易控制反应温度, 催化剂不易升华,所以消耗低。同时避免了国内传统工艺用水移热 导致设备腐蚀的潜在危险,有效地防止催化剂结块,保证生产顺利 稳定地运行。来自反应器的合成气经净化、压缩、冷凝、精馏,得 到氯乙烯成品。精馏尾气采用变压吸附技术回收尾气中的VCM、乙炔和氢气等,降低了原料和动力消耗,有利于环境保护,尾气达标 排放。 一、氯乙烯工艺流程与特点 (一)装置组成

氯乙烯装置由原料处理单元,VCM合成单元,VCM净化、压缩单元,VCM冷凝、精馏单元,尾气及废水处理单元和罐区单元组成。 (二)工艺流程与特点 1、工艺流程 (1)原料处理单元 氯化氢进入氯化氢深冷器,由35℃的冷冻盐水冷至13℃,进入盐酸分离器和氯化氢除雾器,除去冷凝盐酸后进入干燥预热器,用热水加热到20℃,依次进入一段干燥塔、二段干燥塔、三段干燥塔与98%硫酸逆流接触,经硫酸除雾器除去夹带硫酸,将氯化氢干燥至含水量lOOppm以下,送至混合器。盐酸分离器和氯化氢除雾器分离下来的盐酸进入废酸槽,由废酸泵送人副产盐酸槽。 98%的硫酸先进入98%硫酸罐,再由98%硫酸泵送至硫酸除雾器下部,通过溢流先后进入三段干燥塔、二段干燥塔、一段干燥塔,最后溢流到废硫酸罐,由废硫酸泵送出。三台干燥塔中的硫酸通过各自的循环泵进行循环。废硫酸可以送至罐区外销。

年产10万吨聚氯乙烯生产工艺设计

v1.0 可编辑可修改 材料科学与工程学院 毕业设计 学生姓名 班级 / 学号 专业材料科学与工程 设计题目年产10万吨聚氯乙烯生产工艺设计方案指导教师 职称 2002年 2 月28日

设计总说明 聚氯乙烯(PVC)是一种热塑性合成树脂,有优良的电绝缘性,难以自燃,主要用于生产透明薄膜、塑料管件、各类板材等。其再加工产品在全球不同领域都有着非常广泛的应用。 根据设计任务书,本设计进行了年产10万吨聚氯乙烯(PVC)工艺的设计。在查阅、参考大量文献以及对以往部分车间设计的研究学习下,进行了科学的设计以及对相关物料的衡算。 本设计计划采用悬浮聚合法生产聚氯乙烯,原料为氯乙烯单体以及混合用有机过氧化物和偶氮类引发剂、明胶分散剂和去离子水。结合所选择的生产工艺方案和产品生产实际情况,进行了有关物料和热量平衡的计算。安排每日三班次,每班8小时的生产强度,设计可达到日产303吨年产达10万吨的聚氯乙烯生产车间。 本设计也充分考虑到工作人员的工作环境以及工作安全性,尽可能将车间规划为安全的,绿色的,在工作人员遵守车间操作规程的情况下,工作更加安全高效。 本设计由许春华副教授指导,在反应确定、生产流程安排等整个设计过程中提出了许多宝贵意见,使得设计能更高效地完成,在此学生表示衷心感谢。 鉴于知识和实际经验所限,设计难免存在欠缺,恳请批阅老师批评指正。

目录 1总论 (1) 概述 (1) 1.1.1 聚氯乙烯(PVC)概述与应用范围 (1) 1.1.2 聚氯乙烯(PVC)改性品种 (2) 1.1.3 聚氯乙烯(PVC)生产行业现状及发展前景 (4) 聚氯乙烯(PVC)产品的分类和命名 (5) 1.2.1 聚氯乙稀(PVC)产品分类 (5) 聚氯乙稀(PVC)产品命名 (5) 聚氯乙烯(PVC)生产方法[5] (6) 悬浮聚合法[6] (6) 乳液聚合法 (7) 本体聚合法 (8) 溶液聚合法 (8) 设计规模原料选择与产品规格 (8) 设计规模 (8) 主要原料规格及技术指标 (8) 产品规格 (9) 2工艺设计与计算 (11) 工艺原理 (11) 工艺条件影响因素 (12) 聚氯乙烯(PVC)聚合主要影响因素 (12) 工艺路线选择 (15) 工艺路线选择原则 (15) 悬浮法聚氯乙烯(PVC)工艺流程具体工艺路线 (15) 工艺流程示意图 (16) 工艺配方与工艺参数 (17) 工艺配方(质量份): (17) 工艺参数: (17) 物料衡算 (18) 物料衡算的方法与步骤 (19) 物料衡算 (20) 热量衡算 (22) 热量衡算的意义和作用 (22)

聚氯乙烯 的生产工艺和基础知识

PVC的生产工艺 聚氯乙烯是由氯乙烯通过自由基聚合而成的。 有悬浮聚合法、乳液聚合法和本体聚合法,以悬浮聚合法为主,约占PVC总产量的80%左右。 单体的来源:乙烯法、石油法和电石法。 我国的方法:主要还是电石法。 树脂的质量以粒度和粒度分布、分子量和分子量分布、表观密度、孔隙度、鱼眼、热稳定性、色泽、杂质含量及粉末自由流动性等性能来表征。 (1)悬浮聚合法使单体呈微滴状悬浮分散于水相中,选用的油溶性引发剂则溶于单体中,聚合反应就在这些微滴中进行,聚合反应热及时被水吸收,为了保证这些微滴在水中呈珠状分散,需要加入悬浮稳定剂,如明胶、聚乙烯醇、甲基纤维素、羟乙基纤维素等。引发剂多采用有机过氧化物和偶氮化合物,如过氧化二碳酸二异丙酯过氧化二碳酸二环己酯、过氧化二碳酸二乙基己酯和偶氮二异庚腈、偶氮二异丁腈等。聚合是在带有搅拌器的聚合釜中进行的。聚合后,物料流入单体回收罐或汽提塔内回收单体。然后流入混合釜,水洗再离心脱水、干燥即得树脂成品。 (2)乳液聚合法最早的工业生产 PVC的一种方法。在乳液聚合中,除水和氯乙烯单体外,还要加入烷基磺酸钠等表面活性剂作乳化剂,使单体分散于水相中而成乳液状,以水溶性过硫酸钾或过硫酸铵为引发剂,还可以采用“氧化-还原”引发体系,聚合历程和悬浮法不同。也有加入聚乙烯醇作乳化稳定剂,十二烷基硫醇作调节剂,碳酸氢钠作缓冲剂的。聚合方法有间歇法、半连续法和连续法三种。聚合产物为乳胶状,乳液粒径~2μm,可以直接应用或经喷雾干燥成粉状树脂。乳液聚合法的聚合周期短,较易控制,得到的树脂分子量高,聚合度较均匀,适用于作聚氯乙烯糊,制人造革或浸渍制品。 (3)本体聚合法聚合装置比较特殊,主要由立式预聚合釜和带框式搅拌器的卧式聚合釜构成。聚合分两段进行。单体和引发剂先在预聚合釜中预聚1h,生成种子粒子,这时转化率达8%~10%,然后流入第二段聚合釜中,补加与预聚物等量的单体,继续聚合。待转化率达85%~90%,排出残余单体,再经粉碎、过筛即得成品。树脂的粒径与粒形由搅拌速度控制,反应热由单体回流冷凝带出。此法生产过程简单,产品质量好,生产成本也较低。 PVC发明小故事 一些德国企业认为乙炔气是一个很大的市场,就投资制造了大量的乙炔气。可就在大量的乙炔被生产出来时,新型发电机被发明了。随之而来的是电价的大幅度下降,从此再没有人用乙炔气灯了。这样一来,大量的乙炔气就没用了。 PVC的发明过程很有意思。这要

年产30万吨氯乙烯(VCM)工艺设计

毕业设计(论文) 年产30万吨氯乙烯(VCM)工艺 设计 With An Annual Output of 300000 Tons of Vinyl chloride (VCM)Process Design 班级应用化工技术111 学生姓名学号1162101103 指导教师职称助教 导师单位徐州工业职业技术学院 论文提交日期

徐州工业职业技术学院 毕业设计(论文)任务书 课题名称年产30万吨氯乙烯(VCM)的工艺设计 课题性质科学实验设计 班级应用化工技术111班 学生姓名程贤翔 学号1162101103 指导教师刘鹏升 导师职称助教

一.选题意义及背景 氯乙烯单体(VCM)是生产聚氯乙烯树脂的主要原料,其产品的质量和成本直接影响到聚氯乙烯树脂的质量和成本。 氯乙烯生产工艺经历了较长时间的生产和工艺改造,产生了电石法、二氯乙烷法等工艺,发展到目前世界上最先进的的工艺属乙烯平衡氧氯化工艺。乙烯平衡氧氯化法由乙烯、氯气和氧气生产氯乙烯,整个工艺过程既不产生氯化氢,又不消耗氯化氢,大大降低了原料的成本,此法是目前世界上公认的技术经济较合理的方法,全世界93%以上的氯乙烯是采用乙烯平衡氧氯化法生产的。 二.毕业设计(论文)主要内容: 1.工艺生产方法确定、生产流程设计与论证 2.工艺计算(包括物料衡算,热量衡算) 3.酯化合成工艺主要生产设备设计与选型 4.安全生产与环保治理措施 三.计划进度 1.第一周:在完全理解设计任务书的基础上查阅资料,做好准备 工作,包括:了解学位论文的格式、查阅相关文献(万方数据、 中国期刊网、维普资询、硕博论文等)、学习氯乙烯的工艺设 计方法。 2.第二周:选择出设计方案。 3.第三周:参照数据。 4.第四周:撰写毕业论文。 5.第五周:进行毕业答辩。 四.毕业设计(论文)结束应提交的材料: 1、论文电子稿 2、论文打印搞 3、过程资料记录本(实验记录本) 指导教师:教研室主任 年月日年月日

氯乙烯的聚合

氯乙烯的聚合 一、氯乙烯物理性质: 氯乙烯:常温下是一种无色易燃的气体,沸点℃; ,凝固点一℃;,闪点一78℃,自燃点472℃,爆炸极限4%一22%。氯乙烯是致癌物,具中等毒性。二、安全喷淋水系统 聚氯乙烯树脂是由氯乙烯单体聚合而成。国内外聚氯乙烯生产厂曾多次发生聚乙烯单体空间爆炸事故,损失惨重。氯乙烯单体的泄漏,直接威胁着生产的安全。使用安全喷淋水系统,对泄漏的氯乙烯起到一定的稀释作用,并且隔绝空气,降低了环境温度,防止了空间爆炸,从而达到了安全生产的目的。 三、生产工艺流程: 聚氯乙烯生产具有易燃、易爆、腐蚀性强、有毒有害物质多、生产过程连续性强、生产工艺复杂等特点,生产情况复杂、条件多变,稍有疏忽就会发生事故。 悬浮氯乙烯聚合过程的工艺流程如图所示: 先将去离子水加入聚合釜内,并将聚合配方的助剂如分散剂、缓冲剂等加入釜内搅拌,然后加入引发剂,密封聚合釜,抽除釜内空气,必要时用氮气替换,使釜内残留氧含量降至最低,最后加入氯乙烯单体VCM,然后通过反应釜夹套中的过热水加热,将釜温升至预定温度并进行聚合。为了缩短聚合周期,也可以在反应釜脱氧后开始加热釜内物料,达到预定温度时再加入单体并开始聚合。聚合反应大量放热"VCM生成PVC时放热量1532kJ/kg"。这些聚合反应热通过3种方式散热,但是根据反应釜大小,3种途径可以只利用其中一种或两种方式散热:1)釜夹套冷却水;2)釜内冷水管;3)釜顶冷凝器等。要严格操作技术,始终保持预定反应温度,以保证氯乙烯产品质量。如果釜内聚合反应放热不足或失控造成温度过高不下时,釜内饱和蒸汽压也将大大超过反应釜的操作压力甚至设计压力,从而造成聚合釜的物理破坏。对此在制造聚合釜时对温度及压力的设计留有充分的余量,防止物理爆破酿成的灾难性后果。聚合反应的温度、压力的失控事故常常发生在反应的前中期,即VCM聚合为PVC的转化率小于70%时"单体富相存在,才会发生上述温度!压力超高"VCM转化率大于70%时,单体富相消失时,压力稳步降低。

年生产10万吨氯乙烯工艺设计项目设计方案

年产10万吨氯乙烯工艺设计项目设计 方案 第一章绪论 1.1 聚氯乙烯 1.1.1 聚氯乙烯性质和用途[1] 常温常压下,氯乙烯(vinyl chloride,CH2=CHCl)是无色气体,具有微甜气味,微溶于水,溶于烃类,醇,醚,氯化溶剂和丙酮等有机溶剂中,氯乙烯沸点-13.9℃,易聚合,并能与乙烯、丙烯、醋酸乙烯酯,偏二氯乙烯、丙烯腊、丙烯酸酯等单体共聚,而制得各种性能的树脂,加工成管材、面膜、塑料地板、各种压塑制品、建筑材料、涂料和合成纤维等。近年来世界和中国聚氯乙烯树脂消耗比例分别见表1.1和表1.2。 表1.1近年来世界聚氯乙烯树脂消耗比例 品种比例/% 品种比例/% PVC 硬制品 管材33 PVC 软 制 品 薄膜片材13 护墙板8 地板地砖 3 薄膜和片材8 合成皮革 3 吹塑制品 5 电线电缆8 其他 6 其他13 合计60 合计40 表1.2近年来中国聚氯乙烯树脂消耗比例 品种比例/% 品种比例/% PVC 硬制品管材14 PVC 软 制 品 薄膜片材11 护墙板18 地板地砖8 薄膜和片材15 合成皮革7 吹塑制品 5 电线电缆 4 其他 5 其他13 合计57 合计43

1.2 氯乙烯VC 1.2.1氯乙烯在国民经济中的地位和作用 自1835年法国化学家V.Regnault首先发现了氯乙烯,于1838年他又观察到聚合体,这就是最早的聚氯乙烯。聚氯乙烯自工业化问世至今,六十多年来仍处不衰之势。占目前塑料消费总量的29%以上。到上世纪末,聚氯乙烯树脂大约以3%的速度增长。这首先是由于新技术不断采用,产品性能亦不断地得到改进,品种及牌号的增加,促进用途及市场的拓宽。其次是制造原料来源广、制造工艺简单。产品质量好。在耐燃性、透明性及耐化学药品性能方面均较其它塑料优异。又它是氯碱行业耗“氯”的大户,对氯碱平衡起着举足轻重的作用。从目前世界主要聚氯乙烯生产国来说:一般耗用量占其总量的20~30%。特别是60年代以来,由于石油化工的发展,为聚氯乙烯工业提供廉价的乙烯资源,引起了人们极大的注意,因而促使氯乙烯合成原料路线的转换和新制法以及聚合技术不断地更新,使聚氯乙烯工业获得迅猛的发展。 1.2.2我国VC的产需状况及预测 1998年我国PVC产量和表观需求量分别为160万吨和317万吨。在世界上产量仅次于美国(639万吨)、日本(263万吨)居第三位。2000年前后,计划新建和扩建PVC能力至少为88万吨/年,估计此期间大量没有竞争能力的电石法小厂将闲置,所以总产能有可能达220万吨/年水平,其中乙烯法将达134.6万吨/年,从目前占31%上升到61%。1.3氯乙烯制取方法 1835年法国人V.勒尼奥用氢氧化钾在乙醇溶液中处理二氯乙烷首先得到氯乙烯。20世纪30年代,德国格里斯海姆电子公司基于氯化氢与乙炔加成,首先实现了氯乙烯的工业生产。初期,氯乙烯采用电石,乙炔与氯化氢催化加成的方法生产,简称乙炔法。以后,随着石油化工的发展,氯乙烯的合成迅速转向以乙烯为原料的工艺路线。1940年,美国联合碳化物公司开发了二氯乙烷法。为了平衡氯气的利用,日本吴羽化学工业公司又开发了将乙炔法和二氯乙烷法联合生产氯乙烯的联合法。1960年,美国氏化学公司开发了乙烯经氧氯化合成氯乙烯的方法,并和二氯乙烷法配合,开发成以乙烯为原料生产氯乙烯的完整方法,此法得到了迅速发展。乙炔法、混合烯炔法等其他方法由于能耗高而处于逐步被淘汰的地位。 1.4 氯乙烯的合成[2] 氯乙烯是由乙炔与氯化氢在升汞催化剂存在下的气相加成的。

年产10万吨醋酸乙烯生产车间工艺设计

1 绪论 1.1 概述 1.1.1醋酸乙烯的理化性质 醋酸乙烯(Vinyl acetate,简称VAc),全称为醋酸乙烯酯,分子式C4H6O2,结构式是CH3COOH=CH2,分子量86.09。在常温下醋酸乙烯是一种无色透明液体,易挥发、稍有毒性、带有特殊的气味,对人的眼睛和皮肤有刺激作用。它的蒸汽为湿麻醉剂,能刺激皮肤及呼吸器官。醋酸乙烯能与水部分互溶,与甲醇、乙醇等形成共沸物,能与苯、水形成三元恒沸物[1]。醋酸乙烯的熔点-92.3℃,沸点72.2℃,相对密度0.9317,折射率1.3953,闪点-1℃,爆炸极限2.6~13.4 (V%),能溶于乙醇、乙醚、丙酮、氯仿、四氯化碳等有机溶剂,不溶于水[2]。 醋酸乙烯是不饱和的羧酸酯,由于分子存在不饱和双键及羧基,化学性质活泼,能够发生聚合反应、加成反应、水解反应、乙烯基转移反应、氧化反应等化学反应[2]。 1.1.2醋酸乙烯的主要用途 醋酸乙烯是一种重要的有机化工原料,在实际应用中,它通过自身聚合或与其它单体共聚,可以生成聚乙烯醇(PVA)、醋酸乙烯-乙烯共聚乳液(VAE)或共聚树酯(EVA)、聚醋酸乙烯(PVAc)、醋酸乙烯-氯乙烯共聚物(EVC)、聚乙烯醇缩甲醛、乙烯-乙烯醇(EVOH)、氯醋共聚物(VC/VAc)和聚丙烯腈变性体等衍生物[3]。 1.2醋酸乙烯的生产现状

1.2.1醋酸乙烯的国外生产现状 加拿大人F.Klatte在1912年首次发现VAc,后来这一发现发展成乙炔液相法技术。1921年德国Consortium fur Electrochemische Industrie公司开始工业化生产VAc,即用乙炔气相法技术[4],这拉开了VAc工业生产的序幕。VAc工业历经近百年发展,技术已经非常成熟,尤其是第二次世界大战后各国对VAc的需求大幅度上升促进了VAc的生产得到快速的发展。世界VAc的产地主要集中在北美、西欧和亚洲,这三个地区的产能和产量均占世界的80%以上。据ICIS统计,2008年全球VAc生产能力达681万吨/年,主要集中在亚洲、北美和西欧。按地区产能统计,亚太为336.4万吨/年,占49.4%;北美为206.3万吨/年,占30.3%;西欧为117.1万吨/年,占17.2%;其他地区仅占3.1%[5]。 2008年全球主要醋酸乙烯生产企业及产能见表1-1[6]。 表1-1 2008年国外主要醋酸乙烯生产企业及产能 生产企业生产地区生产能力(10kt/a)生产方法 塞拉尼斯法国和德国等地172.0 乙烯气相法 莱昂德尔化学公司美国38.0 乙烯气相法 氏化学公司美国36.5 乙烯气相法 杜邦公司美国33.5 乙烯气相法 沙特国家石油公司沙特27.5 乙烯气相法 英力士公司英国25.0 乙烯气相法 瓦克公司德国20.0 乙烯气相法 日本合成化学工业公司日本18.0 乙烯气相法 日本昭和电工日本17.5 乙烯气相法 亚洲乙胜公司国17.0 乙烯气相法 日本可乐丽公司日本15.0 乙烯气相法 日本VAM&POVAL公司日本12.0 乙烯气相

相关文档
最新文档