复合材料损伤机理整理_final

合集下载

复合材料损伤演化机理

复合材料损伤演化机理

复合材料损伤演化机理复合材料损伤演化机理复合材料损伤演化机理是指复合材料在受到外界载荷作用下,其内部产生的损伤随时间的推移而逐渐演化的过程和规律。

复合材料作为一种结构材料,在航空航天、汽车、船舶等领域得到了广泛的应用。

了解复合材料的损伤演化机理,对于预测和评估其在使用过程中的寿命和性能至关重要。

复合材料是由多种不同性质的材料通过某种方式组合而成的。

这些材料之间存在着各种各样的界面和相互作用,从而形成了复杂的内部结构。

在外界载荷的作用下,复合材料内部的应力会集中在一些局部区域,从而导致损伤的产生。

复合材料的损伤可以表现为裂纹、断裂、层间剥离、纤维断裂等形式。

这些损伤的产生与复合材料内部的微观结构有关。

一般来说,复合材料的微观结构是由纤维束和基体组成的。

在外界载荷作用下,纤维束和基体之间的界面会受到剪切、撕裂等力学作用,从而导致损伤的发生。

损伤的发生和演化过程可以分为几个阶段。

首先是损伤的初始化阶段,即在外界载荷作用下,复合材料内部的一些微小缺陷会逐渐扩大形成裂纹。

接下来是损伤的扩展阶段,裂纹会由缺陷区域扩展到整个复合材料的结构中。

最后是损伤的破坏阶段,即裂纹扩展到一定程度导致复合材料的失效。

损伤的演化机理是一个复杂的过程,受到多种因素的影响。

首先是复合材料自身的性质和结构。

不同的复合材料具有不同的力学性能和破坏模式。

其次是外界载荷的大小和方向。

不同大小和方向的载荷作用下,复合材料的损伤演化过程也不尽相同。

此外,温度、湿度等环境因素也会对损伤演化过程产生一定的影响。

为了更好地了解复合材料的损伤演化机理,研究人员通过实验和数值模拟等方法进行深入研究。

他们通过观察和分析复合材料的微观结构和损伤形态,建立了相应的力学模型和数学模型,以预测和评估复合材料的寿命和性能。

总之,复合材料的损伤演化机理是一个复杂而重要的研究领域。

通过深入研究和了解复合材料内部的损伤演化过程,可以为复合材料的设计、制造和使用提供科学的依据,从而提高其性能和寿命。

复合材料渐进损伤退化模型

复合材料渐进损伤退化模型

复合材料渐进损伤退化模型1.引言1.1 概述概述部分要对整篇文章的主题进行简要介绍,以引起读者的兴趣。

在复合材料渐进损伤退化模型这个主题下,我们可以从以下几个方面进行概述。

首先,可以介绍复合材料的重要性和广泛应用的背景。

复合材料是一种由不同组分组合而成的材料,具有轻质、高强度、耐腐蚀等优点,广泛应用于航空航天、汽车、建筑等领域。

然而,随着使用时间的增加,在复材料中逐渐产生的损伤和退化现象成为制约其性能和寿命的重要因素。

其次,可以提及渐进损伤退化模型的重要性。

渐进损伤退化模型是研究复合材料性能退化的重要工具,它可以描述复合材料在长时间使用和复杂环境下的损伤演化过程。

通过建立合理的渐进损伤退化模型,可以预测复合材料的寿命和性能退化趋势,为材料的设计、使用和维护提供依据。

接下来,可以简要介绍本文的结构。

本文将从两个方面进行探讨。

首先,将介绍渐进损伤模型的定义和背景,包括渐进损伤模型的基本原理和发展历史。

其次,将探讨复合材料的退化机制,主要包括载荷作用下的损伤演化以及温度和湿度对复合材料性能的影响。

最后,将对全文进行总结,并展望未来研究的方向。

通过以上概述,读者将对本文的主题和内容有初步了解,为接下来的阅读和理解奠定基础。

1.2文章结构1.2 文章结构本文主要围绕复合材料渐进损伤退化模型展开研究,全文分为三个主要部分,如下所述:第一部分是引言部分,主要包括三个方面的内容。

首先是概述,介绍了复合材料在工程领域中的广泛应用和重要性。

同时,强调了复合材料在使用过程中可能会遭受到的各种损伤,并引出了本文的研究重点。

其次是文章结构,简要说明了本文的整体结构和各个部分的内容安排,让读者能够清晰地了解到本文的组织框架。

最后是目的,明确了本文的研究目标,即建立复合材料的渐进损伤退化模型,为工程实践提供理论指导和技术支持。

第二部分是正文部分,是本文的核心内容。

首先介绍了渐进损伤模型的定义和背景。

在该部分中,会解释何为渐进损伤模型以及其在复合材料领域中的应用意义和研究现状。

复合材料的冲击、损伤容限和吸能-12

复合材料的冲击、损伤容限和吸能-12

利用有限元软件,进行计算的过程
研究结果表面:在冲头上升前损伤面 积最大,并发现层合复合材料的损伤 面积与撞击能有很好的线性关系。
Hopkinson法冲击实验原理
如其核心部分是两段分离的弹性压杆: 输入和输出杆。
子弹以一定的速度撞击输入杆,在其中产生一入射脉冲 i ,
试样在该应力脉冲作用下被高速压缩变形,同时向输出杆传播
一透射波 t 和向输入杆返回一反射波 r 。
根据SHPB 实验 的一维假定和均 匀性假定,利用一 维应力波理论可 得试样的应变率εt (t) 、应变ε( t) 以 及应力σ( t) :
主要可分为如下几种: • 摆锤式冲击试验(包括简支梁型和悬臂梁型) • 落锤式冲击试验 • 弹射式实验装置 • Hopkinson压杆实验装置 • 简支梁型冲击试验是摆锤打击简支梁试样的中央; • 悬臂梁法则是用摆锤打击有缺口的悬臂梁试样的
自由端。
摆锤式实验的特点
摆锤式冲击试验试样破坏所需的能量实际 上无法测定。 试验所测得的除了产生裂缝所需的能量及 使裂缝扩展到整个试样所需的能量以外, 还要加上使材料发生永久变形的能量和把 断裂的试样碎片抛出去的能量。把断裂试 样碎片抛出的能量与材料的韧性完全无关, 但它却占据了所测总能量中的一部分。
需要确定如下物理量;
• 冲击载荷输入历程和大小; • 结构载荷响应历程、大小和分布; • 结构位移响应历程、大小和分布; • 测量的应变率响应特点
Hopkinson Pressure Bar
飞机上的缓冲吸能部件(结构)
各类吸能结构
各类吸能结构
各类吸能结构
各类吸能结构
各种缓冲结构的吸能比较
A 0 : 试样初始截面积 l 0 : 试样初始长度

飞机复合材料损伤及修理技术浅析策略

飞机复合材料损伤及修理技术浅析策略

飞机复合材料损伤及修理技术浅析策略摘要:飞机所用复合材料直接影响飞机自身实际飞行性能,其自身设计性能优良、化学性质稳定、耐腐蚀等优势,普遍用于航空航天领域中。

但复合材料受外界多个因素影响,促使其材料受损,一定程度干扰飞机正常运行,需充分结合复合材料结构自身损伤特征及其裂纹特性,遵循相应的维修基本原则,以此保证飞行安全运行。

本文就飞机复合材料损伤及修理技术展开分析。

关键词:飞机;复合材料;损伤;修理技术复合材料凭借自身多个优势,普遍用于航空航天领域中,成为飞机结构核心材料之一,复合材料损伤破坏机理与金属存在较大的差异性,飞机上应用大量复合材料之后,其自身维护成为现下关注的焦点之一。

复合材料出现脱胶、分层、表面氧化等质量缺陷,对飞机实际飞行产生严重的影响,需定期对复合材料进行综合性检查,严格依照相关规程做好维护,为后续飞机安全飞行提供强有力的保障。

一、复合材料结构损伤特征及其裂纹特性基体作为复合材料核心构成之一,其主要作用在于始终保持纤维处于初期设定部位,并持续性提高外部载荷入驻纤维路径。

基体自身材料自身强度多强于纤维,复合材料结构自身内部纤维定向需充分促使纤维承受较大的载荷,基体材料自身性能对复合材料自身功能存在一定干扰,尤其针对面内压缩、剪切等更为凸显。

金属材料受外部载荷作用下,更为是以塑性形变从而吸收相应的冲击,脆性作为复合材料自身典型特征之一,一般呈现为以下损伤:①表面损伤、裂口,此种类型损伤对结构实际承载力干扰较小,一般可忽略不计,不进行综合性分析。

②因基体出现裂纹和纤维失效出现分层,此类损伤多见于材料内部,处于复合材料面板自身外表面为锯齿状损伤,其又可划分为多种损伤类型。

③贯穿损伤。

针对此种状况损伤区贯穿整个复合材料自身厚度,贯穿损伤一般带有穿孔、损坏等材料,穿孔实际边缘多产生分层、裂纹等[1]。

复合材料结构裂纹增长包含三种类型,即不增长、止裂增长、缓慢增长,不同增长其自身特征及发生基本原理不尽相同,不增长、止裂增长多与止裂损伤尺寸检查间隔密切相关;缓慢增长其一般与金属实际断裂力学具有一定的相似性。

航空复合材料的损伤与维修

航空复合材料的损伤与维修

航空复合材料的损伤与维修航空复合材料是由不同材料的复合而成,具有轻质、高强度、耐腐蚀和耐疲劳等特点,因此在航空工业中得到了广泛的应用。

航空复合材料在使用过程中可能会受到各种外部因素的影响,从而产生不同程度的损伤。

损伤的及时发现和修复对于保证飞机的飞行安全和延长使用寿命至关重要。

对航空复合材料的损伤与维修进行深入了解和研究是非常有必要的。

航空复合材料的损伤类型主要包括表层损伤、孔洞、压缩损伤、剪切损伤和褶皱等。

表层损伤是最常见的一种损伤类型,通常是由于外部冲击或者磨损造成的。

孔洞则是由于外力穿透复合材料而产生的,比如碰撞或者腐蚀等原因会导致复合材料表面产生孔洞。

压缩损伤和剪切损伤则是由于外部载荷作用在材料表面上引起的,而褶皱损伤则是由于扭曲或者撞击引起的。

这些损伤类型的产生会导致航空复合材料的性能下降,甚至对飞行安全构成威胁,因此需要及时进行修复。

航空复合材料的维修方式多样,常见的维修方法包括表层维修、穿孔维修、压缩维修、剪切维修和褶皱维修等。

表层维修主要是通过填充材料、修补材料或者热固型备用层来修复表面损伤。

穿孔维修则是通过填充材料、镶补材料或者添加支撑来修补孔洞。

压缩维修和剪切维修主要是通过添加支撑或者填充材料来修复压缩损伤和剪切损伤。

而褶皱维修则是通过热固型备用层、填充材料或者挤压来修复褶皱损伤。

这些维修方法需要根据具体损伤类型和损伤程度来选择,以确保修复效果和飞行安全。

航空复合材料的损伤与维修是一个复杂而严谨的过程,需要有专业的知识和技能来进行。

对于损伤的检测和评估,需要利用一系列的无损检测技术和工具来确定损伤的类型与程度。

对于维修材料和工艺的选择,需要根据实际情况来确定最合适的方法和材料,以确保维修效果和材料性能的匹配。

维修过程需要遵循严格的规范和流程,以确保维修效果符合要求,并且飞行安全得到保障。

在航空复合材料的损伤与维修过程中,有一些常见的问题需要引起重视。

是维修材料与基材之间的兼容性问题,选用的维修材料需要与基材具有良好的兼容性,以避免在使用过程中产生新的损伤。

航空复合材料的损伤与维修

航空复合材料的损伤与维修

航空复合材料的损伤与维修航空复合材料是航空领域中使用非常广泛的一种材料,它因具有高强度、轻质和耐腐蚀等优点而受到航空制造业的青睐。

航空复合材料在使用过程中很容易受到损害,而且一旦受损,其修复也颇具挑战性。

本文将着重讨论航空复合材料的损伤类型、对修复的影响以及常见的修复方法。

一、航空复合材料的损伤类型航空复合材料的损伤种类相对较多,主要包括以下几种:1. 冲击损伤:机身在高速飞行时容易受到外部物体的撞击,如鸟类、冰雹等,导致复合材料表面的凹陷、开裂或穿孔等损伤。

2. 磨损损伤:机身在飞行中所受到的空气动力学和大气环境的影响,可能导致表面磨损和龟裂。

3. 静载荷损伤:长时间使用或超负荷使用导致的损伤,如疲劳裂纹、层板剥离等。

4. 热损伤:高温环境下,复合材料会因受热膨胀、层板变形而产生损伤,如树脂老化、层板分层等。

5. 化学损伤:如受到化学品腐蚀或大气环境中含有腐蚀性物质而导致的化学损伤。

以上几种损伤类型都可能对飞机的安全性和性能造成影响,因此损伤后需要及时进行修复。

航空复合材料的故障修复工作是非常复杂和技术含量较高的工作。

不同类型的损伤会对修复工作产生不同的影响,主要包括以下几个方面:1. 结构强度影响:部分损伤可能导致结构强度的下降,如果严重损伤未得到修复,可能对飞行安全产生严重风险。

2. 性能和寿命影响:损伤修复质量的好坏会直接影响到复合材料的使用性能和寿命。

3. 修复成本和时间:不同类型的损伤修复所需的成本和时间也会有所不同,一些较为严重的损伤修复可能需要更多的成本和时间。

4. 修复复杂度:不同类型的损伤可能需要不同的修复技术和材料,因此修复的复杂度也会有所不同。

在进行复合材料损伤修复时,需要全面考虑到以上因素,选择合适的修复方法和材料。

对于航空复合材料的损伤修复,其修复方法和材料种类繁多,下面为大家介绍一些常见的修复方法:1. 粘接修复:粘接是一种常用的复合材料修复方法,通常使用环氧树脂等粘合剂将损伤部位补复。

航空复合材料的损伤与维修

航空复合材料的损伤与维修

航空复合材料的损伤与维修航空复合材料是由两种或两种以上的不同材料经过复合成型而形成的材料。

它具有轻重比低、强度高、抗腐蚀性强、疲劳寿命长等优点,因此在航空、航天、航海等领域得到了广泛的应用。

然而,航空复合材料在使用过程中也会出现损伤,例如划痕、冲击、疲劳等,这些损伤如果不及时修复将影响材料的使用性能和寿命。

航空复合材料的损伤种类有很多,主要包括以下几种:1. 划痕:航空复合材料表面会因为划痕而出现损伤。

这种损伤通常在航空器进入和退出机库时发生,或者在操作过程中与工具或设备等硬物接触时发生。

2. 冲击:在航空器着陆或起飞时,航空复合材料可能会因为冲击而发生损伤。

此外,在地面操作时,机械设备也可能会造成航空复合材料的冲击。

3. 疲劳:在航空复合材料承受多次载荷时,可能会产生疲劳现象,导致材料的强度和质量下降。

疲劳损伤通常是由周期性载荷引起的。

4. 裂纹:如果航空复合材料承受的载荷超过材料的极限,就可能会导致裂纹的形成。

这种损伤会在时间的推移中越来越严重,并最终导致材料的破坏。

为了保证航空复合材料的使用性能,在材料出现损伤时需要及时进行维修。

航空复合材料的维修方法包括以下几种:1. 填补法:如果发现航空复合材料表面有小的划痕或凹陷,可以使用填补法进行修复。

填补法是将填料和增强材料混合均匀,然后让混合物固化在受损处。

填补时需要保证填料和增强材料与原材料的性能相近。

2. 补丁法:对于较大的划痕或裂纹,可以使用补丁法进行修复。

补丁法是将增强材料与航空复合材料表面连接处一起修补,以增加航空复合材料的强度。

补丁法需要将受损处周围的区域削减,然后使用增强材料和航空复合材料进行补丁。

3. 粘接法:粘接法可以修复航空复合材料的板面和各种形状的组件,如管道、隔板等。

粘接需要将两个表面完全清洁干净,并使用特殊的胶粘剂使两个表面牢固地结合在一起。

4. 确定不可修复:如果受损面积过大或受损太严重无法使用维修方式进行修复,需要将整个部件进行更换。

复合材料结构的损伤与修理

复合材料结构的损伤与修理
( 分层 2)
修理程序通 常采用以下 1 : O步 ( ) 出损 伤部 位.通过 肉眼观察 , 打听声等方法 1找 敲 进行初步判 断 . 找出损伤大致部位 .
常见的分层是两层 或两层 以上 的材料层 片间 的分 离. 通 常是 由于复合 材料 构件受到 冲击 , 敷设 , 钻孔 , 紧固件在 织 物及无纬碳纤 维, 玻璃纤维或凯芙拉纤 维增强体 中安 装 或取 出所致 . 制造过程 中不小心带人 的异物也会 引起复合 材 料 的分层 . ( 脱胶 3) 工程 中常 见的是粘接线脱胶 . 通常 发生在 蜂窝芯与蒙 皮之 间 , 蒙皮与次极结构之 间的粘接地带 . 以及
维普资讯
2 o .. o 47
复合材料结构的损伤与修理
蔡 文海 , 金 延 中
( 空军航 空大学 基础部 , 吉林 长春 10 2 ) 30 2
摘 要: 结合航 空装备 结构的修理 , 简要地介绍 了复合材料结构 常见 的损伤类型 , 修理的基本程序 和主要 方法. 关键词 : 复合材料 ;结构 ;损伤 ;修 理


( O 修理 的监 控.主要是 指对修理过 的部 位进 行定 1)
索无松 动 , 套管表 面没有 发现 开裂和 纵 向裂 缝 , 断 检查 拉
部位 5 %在钢索本 体 ,另 一部分断在铜套管端头 口尾 端 0
处.
编结接头 , 可用于生产 中. 故 采用新工艺后 . 产品所用各种 直径 的钢索有 19根 . 9 0 有 3根摆脱 了手工 编结 . 占全机 的 8 %. 5 解脱 了笨重的手工劳动 , 提高 了产 品质 量 , 功效 比手
( 编辑 毕 胜)
34 螺 栓 连接 的 加 强 板 .
作者 简介 : 文 海 ( 96 ) 男, 授 , 蔡 14 一 , 教 主要 从 事航 空机械 和相 关力 学
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、立项依据与研究内容:1.立项依据:1.1 研究意义与目的近几十年以来,随着科学技术的迅速发展,对材料的性能提出了更高的要求。

当前高技术材料一般分为:高技术陶瓷、高技术聚合物和复合材料三种类型。

由于复合材料可以根据工程结构对性能的要求来进行设计,其发展速度和规模在近几年尤为迅猛。

一些先进的复合材料己经在航空、航天、机电、化工、能源、交通运输以及生物、医疗器械等领域中得到了广泛的应用。

可以说复合材料已经深入到了我们生活的方方面面。

在航空领域,由于飞机结构设计和材料性能要求的不断提高,复合材料在飞机上的比例不断增加。

目前,波音B 787代表了当前飞机技术发展的最高水平,其基本特点之一为采用复合材料主结构,其中复合材料的用量为50%(如图1所示)。

[陈绍杰, 复合材料技术与大型飞机. 航空学报, 2008. 29(3): p. 605-610]先进战斗机上复合材料用量基本上在飞机机体结构重量的30%左右,图2为国外新一代军用飞机上复合材料的用量。

在航天方面,复合材料也被广泛用于火箭发动机壳体、航天飞机的构件、卫星构件等。

固体火箭发动机喷管的工作温度高达3000~3500℃,为了提高效率还要在推进剂中掺入固体粒子,发动机喷管的工作环境是高温、复合材料能承受这种工作环境:化学腐蚀、固体粒子高速冲刷,因此固体火箭目前只要碳/碳人造卫星每减轻Ikg,运载火箭可以减轻1000kg,因此用复合材料制造的卫星有很大的优势。

此外,复合材料还被广泛用于化学工业、电气工业、建筑工业、机械工业、体育用品等多个方面。

我国从上世纪七十年代就开始了先进复合材料方面的研究工作,到八十年代时,我国已将复合材料应用技术列入重点发展领域,通过三十多年的发展,我国航空复合材料技术应用水平己有了大幅度的提高。

目前我国军用飞机上复合材料用量已达到6%以上,已基本实现从次承力构件(如垂直安定面、水平尾翼、方向舵、前机身等)到主承力构件(如机翼、直升机旋翼等)的转变[王慧杰等.我国航空复合材料技术发展展望.第九界全国复合材料学术会议论文集,1996:l-6]。

图1 复合材料在波音787上的应用图2 军机上使用复合材料的应用但是,复合材料也存在其本身的不足,一方面,复合材料的损伤机理与一般的金属材料相差甚远,另一方面,复合材料结构在制造和装配过程中不可避免的产生内部缺陷和损伤。

虽然这些局部损伤一般不会立即导致整个结构的破坏,但是它往往对结构的安全构成很大的潜在威胁,若不能即时发现,将导致结构的迅速破坏,从而降低使用寿命甚至结构失效,严重的还会导致突发性的灾难事故。

2001年11月12日,一家美国航空公司的587号航班起飞几分钟后坠毁,机上全部乘客及机组人员全部遇难。

由于这架300-600型空中客车的碳复合材料尾翼和方向舵老化从机身上脱落。

2005年3月6日,961号班机飞行后开始剧烈的晃动,后来迅速下坠。

后查明是由于碳复合材料制成方向舵突然断裂。

由于复合材料具有显著的各向异性的特性,在损伤、失效等方面表现为机理复杂、现象多样、判别困难,特别是低速冲击下,复合材料的损伤微小,潜在危险很大。

复合材料的损伤监测和识别方法是复合材料结构安全运行的基础和前提,也是其性能评估的依据。

目前用于复合材料的传统无损检测方法非常耗时,同时还不具备实时在线大面积监测的功能,且大多数设备复杂,成本高,监测类型单一,对微小损伤还不能很好地检测到。

总体来说,依靠单一的检测手段难以对大型的复合材料结构全面分析以及缺陷的准确定位,这些都迫切需要发展一种精确损伤识别方法和在线整体监测手段,结合工程实践、生产需要、光纤传感、可变形嵌入式电子器件等现有先进的监测方法以及复合材料特性、结构与载荷特性,开展新型复合材料损伤监测和识别方法的研究,这对改进对大型复合材料结构生产的质量控制与管理,提高生产效率和保障人身安全具有重要的理论价值和现实意义。

1.2 国内外研究现状复合材料的损伤机理、疲劳破坏特征更加复杂,近年来针对复合材料层间剥离、裂纹和纤维断裂等问题,许多学者都进行了研究,包括对损伤的动力学建模、以及对复合材料的静、动力学特性分析损伤机理及物理模型的研究现状研究损伤的方法可以分为细观方法和宏观方法(即唯象学方法)。

细观方法是根据材料的微细观成分(如基体、颗粒、空洞等)单独的力学行为以及它们的相互作用来建立宏观的考虑损伤的本构关系,进而给出完整的损伤力学问题提法。

细观模型为损伤变量和损伤演化赋予了真实的几何形象和物理过程,深化了对损伤过程本质的认识。

但这种通常称为“自适应”方法的主要困难是需要经过许多简化假设才能从非均质的微细观材料过渡到宏观的均质材料。

由于损伤机制非常复杂(例如多重尺度,多种机制并存及交互作用等),人们对于微细观组成成分及其作用的了解还不够充分,细观方法的完备性和实用性还有待于进一步的研究和发展。

宏观的即唯象的方法是以连续介质损伤力学的观点来研究材料的损伤破坏。

它通过引入表征材料内部微细缺陷的损伤内变量,建立合适的损伤模型,在不可逆热力学相连续介质力学的均衡定律基础上导出损伤本构关系,用损伤广义力表征微细观缺陷损伤的作用和影响,建立唯象的损伤演变方程,对材料的损伤进行描述和分析。

这一方法虽然需要细观模型的启发,但并不需要直接从微细观机制导出宏观量之间的理论关系式,而只要求所建守的模型以及由模型导出的推论与实际相符。

由于这种方法是以材料的宏观力学性能测试为基础的,因此更便于工程实际的应用。

[杨光松. 损伤力学与复合材料损伤[M]. 国防工业出版社,北京,1995]复合材料由于材料结构的非均匀性和各向异性以及几何非连续性,它的损伤一破坏机制非常复杂,一般不存在象单一均匀材料那样的单条裂纹的自相似扩展。

复合材料的破坏是损伤的产生、发展过程与结果。

而且,损伤的产生与发展具有局部性、各向异性,并随时间与空间变化。

损伤区包含大量基体微裂纹和宏观裂纹,纤维的弯折和断裂,纤维一基体界面脱胶以及层一层之间的分离等,很难用一种简单的破坏模式表征。

A.S.D、Wang和G.K.Haritor 在《复合材料的损伤力学》(美国ASME1987年专题讨论会)文集序言中指出:“近年来,复合材料损伤用两种力学方法进行研究。

一是连续损伤力学概念,把损伤处理为材料本构关系中的内变量。

……在描述多相材料和一些纤维复合材料的分布微观损伤方面得到应用,另一是应用断裂力学于复合材料损伤,试图模拟真实断裂机制和微裂纹扩展”。

产生复合材料损伤一破坏的因素很多,最重要的至少有三方面:I. 存在于纤维、基体和界面上的微缺陷,通常可分为层内缺陷、层间缺陷和纤维中的缺陷。

II. 复合材料层合板的各单层要根据承载需要设计为不同取向和次序,会直接影响到层间刚度匹配和应力分布,导致不同损伤破坏机制。

III. 载荷状况与分布有很大影响。

即使在简单载荷下,层合板的各单层都在复杂应力作用下,其中面内应力分量可能引发基体裂纹和纤维断裂;面外应力分量可能引发分层断裂。

然而,这两组应力分量并非独立的应力群,它们在损伤发展过程中互相祸合。

不同机制损伤的同时或先后发生以及相互作用,使复合材料层合板损伤一破坏过程显现出非常复杂的现象。

然而,在宏观上,这些损伤可分为三种断裂模式,即层内断裂、层间断裂和横层断裂。

层内断裂与层间断裂,从微观上看,都属于基体破坏或纤维一基体界面分离,是沿纤维方向的断裂。

然而,从宏观上看,前者是单层内的横向裂纹,而后者是层一层界面分层‘横层断裂主要是纤维断裂,它往往控制复合材料层合板的最终破坏[沈为. 复合材料损伤—破坏机制与模型[J].. 力学与实践, 1991,(03)]。

Talreja R.提出了复合材料张量内变量损伤模型[],该模型建立用于表示损伤的单一实体(单一裂纹)力学影响矢量,该矢量由裂纹面积和特征尺寸决定,并定义损伤变量为损伤实体力学影响矢量与裂纹面上单元外法线的并积在微元体内的平均值。

Helmholtz自由能表示为弹性应变和损伤变量的不变量函数。

Shen W应用连续损伤力学方法[],针对分布的微观损伤,提出了广义弹脆性损伤模型.模型把复合材料作为各向异性固体弹性材料,取包含各向异性损伤的微小体元.此体元在宏观上是物质点,比宏观结构要小得多,但并非单个微结构.由于应力、应变、温度以及损伤(微缺陷)等,从本质上说,都是非均匀的,因而所取体元要包含足够多的微结构,以考察体元里上述参量的平均行为和响应. 这个模型目前已用于以下方面:1.确定材料损伤与损伤累积;通过受损材料的应变测量确定损伤,而不计及微缺陷的具体几何;2.确定受损材料的弹性与弹性变化;3. 确定材料受损后的真实应力;4. 确损伤能量耗散;5. 确定材料损伤性能;6.模拟计算损伤破坏过程;7. 损伤场及其变化的实验测量。

杨光松[]Wnuk M P提出复合材料裂纹扩展损伤模型,该模型认为对于存在宏观裂纹的复合材料层合板,由于裂纹前沿的应力集中影响,导致该区域内基体开裂、界面脱粘、甚至纤维断裂,如果这些缺陷损伤的累积过程发生在裂纹前沿区,即裂纹前沿存在一损伤区,则当损伤达到其临界值时裂纹扩展。

Curtis P T认为循环载荷将寻致复合材料损伤,如基体开裂、分层、甚至纤维断裂等,而且这些损伤随时间积裂。

因此,可以假设疲劳损伤积累达到某一临界值时复合材科发生破坏[Stinchcomb W W, Bakis C E. Fatigue Behaviour of Composite Laminates. Fatigue of Composite Materials. 1991, Ed. By Reifsnider K L: 105~178],即复合材料疲劳损伤模型[Curtis P T. The Fatigue Behaviour of Fibrous Composite Materials. J. of Strain Analysis for Engineering Design, 1989, Vol. 21, No.24: 235~244]。

Wnuk M P提出复合材料裂纹扩展损伤模型,该模型认为对于存在宏观裂纹的复合材料层合板,由于复合材料的冲击损伤包括在高速冲击条件下,冲击物嵌入或穿透复合材料导致纤维断裂为主要的损伤形式;在低冲速冲击条件下,,复合材料的表面几乎看不出损伤缺陷,但在材料内部已产生有分层开裂损伤,所产生的主要损伤形式为基体开裂和分层[Abrate S. Impact of Laminated Composites. AMR, 1990,V ol. 44, No. 4: 155~190.]。

复合材料统计损伤模型:杨光松[杨光松. 玻璃纤维束拉伸的声发射特征及统计损伤分析. 强度与环境,1989(2): 45~49.]根据纤维束断裂规律建立统计损伤模型,导出的纤维束外载与位移的本构关系计算值与实验值相当吻合。

相关文档
最新文档