鸽巢问题(一)》教学案例
第五单元《鸽巢问题》例1例2 教学设计课题

第五单元数学广角第一课时《鸽巢问题》例1例2 教学设计教学容:人教版教材六年级数学上册第68--69 页。
教学目标:1.知识与技能:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。
2.过程与方法:通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.情感态度价值观:通过“鸽巢原理”的灵活应用感受数学的魅力。
教学重、难点:经历“鸽巢原理”的探究过程,理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。
课时安排:一课时教具学具:多媒体课件、每人一枚一元硬币教学过程一、问题引入。
师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了3把椅子,请4个同学上来,谁愿来?1.游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。
2.讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。
引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
二、探究新知(一)教学例11.出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。
板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),问题:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。
4支笔放进3个盒子里呢?引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。
问题:(1)“总有”是什么意思?(一定有)(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
这是我们通过实际操作现了这个结论。
六年级下册数学教案- 数学广角——鸽巢问题(一)-人教新课标

六年级下册数学教案:数学广角——鸽巢问题(一)-人教新课标教学目标:知识与技能:1. 理解鸽巢原理,并能运用其解决实际问题。
2. 培养学生的逻辑思维能力和数学推理能力。
过程与方法:1. 通过实际操作和观察,让学生体验和理解鸽巢原理。
2. 通过小组合作,培养学生的团队合作能力。
情感态度价值观:1. 培养学生对数学的兴趣和好奇心。
2. 培养学生的逻辑思维能力和数学推理能力。
教学重点:1. 理解鸽巢原理。
2. 能运用鸽巢原理解决实际问题。
教学难点:1. 理解鸽巢原理的应用范围。
2. 解决实际问题时,如何运用鸽巢原理。
教学准备:1. 教师准备:多媒体课件,教具。
2. 学生准备:学习用品。
教学过程:一、导入(5分钟)教师通过一个有趣的故事引入鸽巢原理,激发学生的兴趣。
二、新课导入(10分钟)1. 教师引导学生思考:如果有更多的鸽子,但巢的数量不变,会发生什么?2. 学生回答后,教师总结并引入鸽巢原理。
三、探索发现(10分钟)1. 教师引导学生进行实际操作,让学生亲身体验鸽巢原理。
2. 学生通过观察和思考,发现鸽巢原理。
四、巩固练习(10分钟)1. 教师出示一些实际问题,让学生运用鸽巢原理解决。
2. 学生通过练习,巩固对鸽巢原理的理解和应用。
五、拓展延伸(10分钟)1. 教师出示一些更复杂的问题,让学生尝试解决。
2. 学生通过思考和讨论,解决这些问题。
六、总结反思(5分钟)1. 教师引导学生总结本节课的学习内容。
2. 学生分享自己的学习心得。
教学评价:1. 学生对鸽巢原理的理解和应用。
2. 学生在解决问题时的逻辑思维能力和数学推理能力。
教学延伸:1. 让学生尝试用鸽巢原理解决生活中的实际问题。
2. 引导学生探索鸽巢原理在其他数学问题中的应用。
通过本节课的学习,学生能理解鸽巢原理,并能运用其解决实际问题。
同时,学生的逻辑思维能力和数学推理能力也得到了培养。
在以上的教案中,需要重点关注的是“探索发现”环节。
这个环节是学生对鸽巢原理进行深入理解和应用的关键步骤,通过实际操作和观察,学生可以亲身体验鸽巢原理,从而更好地理解其内涵和应用。
《鸽巢问题》教学设计(通用5篇)

《鸽巢问题》教学设计(通用5篇)作为一位无私奉献的人民教师,通常会被要求编写教学设计,借助教学设计可以让教学工作更加有效地进行。
我们该怎么去写教学设计呢?下面是小编收集整理的《鸽巢问题》教学设计(通用5篇),仅供参考,欢迎大家阅读。
《鸽巢问题》教学设计1一、教学内容:教科书第68页例1。
二、教学目标:(一)知识与技能:通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。
(二)过程与方法:结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。
(三)情感态度和价值观:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。
三、教学重难点教学重点:经历鸽巢问题的探究过程,初步了解鸽巢原理,会用鸽巢原理解决简单的实际问题。
教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。
四、教学准备:多媒体课件。
五、教学过程(一)候课阅读分享:同学们,大家好,课前老师让大家收集了有关“鸽巢问题”的阅读资料,现在就某某同学的阅读在这候课的几分钟内与大家分享一下。
(二)激情导课好,咱们班人数已到齐,从今天开始,我们学习第五单元鸽巢问题,这节课通过数学活动我们来了解鸽巢原理,学会简单的鸽巢原理分析方法。
你准备好了吗?好,我们现在开始上课。
(三)民主导学1、请同学们先来看例1。
把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2只铅笔。
请你再把题读一次,这是为什么呢?要想解决这个问题,我们首先要理解,总有一个笔筒里至少有2支铅笔这句话。
我们再思考这一句话中,总有和至少是什么意思?对总有就是一定的意思。
至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。
或者是说,铅笔的支数要大于或等于两支。
那你能现在说说,总有一个笔筒里至少有两支铅笔这句话的意思了吗?对,这句话就是说,一定有一个笔筒里最少有两支铅笔,或者是说一定有一个笔筒里的铅笔数是大于或等于两支的。
2023年人教版数学六年级下册鸽巢问题优秀教案(优选3篇)

人教版数学六年级下册鸽巢问题优秀教案(优选3篇)〖人教版数学六年级下册鸽巢问题优秀教案第【1】篇〗一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。
教学“鸽巢问题”,教材安排了两个例题。
这节课教学内容是例1。
例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。
初步接触“鸽巢问题”对于学生来说,有一定的难度。
教学时,应放手让学生自主探索。
教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。
二、教学内容教材第68页例1及“做一做”第1、2题。
三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。
2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。
3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。
四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。
教学难点:初步理解“鸽巢原理”,能口头表达推理过程。
五、教学准备一副扑克牌、课件等。
六、教学过程(一)引入新知1.抢凳子游戏。
2.抽扑克牌游戏。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。
【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探究新知1.教学例1。
(1)把3枝铅笔放进2个笔筒中。
想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。
六年级数学鸽巢问题教案

六年级数学鸽巢问题教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如报告总结、合同协议、申报材料、规章制度、计划方案、条据书信、应急预案、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts for everyone, such as report summaries, contract agreements, application materials, rules and regulations, planning schemes, doctrine letters, emergency plans, experiences, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!六年级数学鸽巢问题教案六年级数学鸽巢问题教案(通用10篇)作为一无名无私奉献的教育工作者,通常会被要求编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
六年级数学下册教案《5 数学广角——鸽巢问题》(人教版) (1)

六年级数学下册教案《5 数学广角——鸽巢问题》(人教版)
一、教学目标
1.理解鸽巢问题的基本概念。
2.掌握解决鸽巢问题的基本方法。
3.培养学生的逻辑思维能力和解决问题的能力。
二、教学重点和难点
重点:
1.理解鸽巢问题的定义。
2.学会应用鸽巢问题解决实际问题。
难点:
1.运用鸽巢问题解决复杂问题。
2.将鸽巢问题与实际情境结合。
三、教学内容
本节课将重点介绍鸽巢问题的基本概念和解决方法。
四、教学过程
1. 导入(5分钟)
讲师通过一个生动的小故事或例子引入鸽巢问题,激发学生的学习兴趣。
2. 学习(20分钟)
1.讲解鸽巢问题的定义和基本概念。
2.示范解决一些简单的鸽巢问题,引导学生思考求解方法。
3. 练习(15分钟)
组织学生进行一些练习题,巩固所学知识。
4. 拓展(10分钟)
引导学生思考如何将鸽巢问题应用到实际生活中,讨论一些相关的案例。
5. 总结(5分钟)
对本节课学习的内容进行总结,并强调重点和难点。
五、教学反馈
布置一些作业题目,检查学生对鸽巢问题的理解和应用能力。
六、教学资源
1.课本《数学广角》第5课内容。
2.黑板、粉笔、教具等。
七、教学评价
根据学生在课堂上的表现和作业情况进行评价,及时调整教学方法,提高教学效果。
以上就是本节课的教学计划,希望能够帮助学生更好地理解和掌握鸽巢问题,提升数学能力。
2024版《鸽巢问题》教学设计范文(精选)

情况。
制定评价标准
03
根据教学目标和课程内容,制定合理的评价标准,以便对学生
学习情况进行准确评估。
收集学生反馈意见,改进教学方法
定期进行学生调查
通过问卷调查、个别访谈等方式,了解学生对《鸽巢问题》教学 的看法和建议。
分析学生反馈
对学生提出的意见和建议进行认真分析,找出教学中存在的问题 和不足。
调整教学方法
THANKS
感谢观看
06
教师自我反思与提高
分析本次教学优缺点及原因
01
优点
02
教学目标明确,重点突出。
采用了多种教学方法,如讲解、讨论、案例分析等,使学生更
03
好地理解和掌握鸽巢问题的原理和应用。
分析本次教学优缺点及原因
• 注重学生的参与和互动,课堂氛围活跃。
分析本次教学优缺点及原因
缺点
部分学生对鸽巢问题的理解不够深入,需要进一 步加强指导和练习。
提出假设
学生根据观察结果提出假 设,即鸽巢原理的初步表 述。
验证环节:通过实验验证假设,得出结论
设计实验
教师提供实验材料,如 纸牌、小球等,指导学
生设计实验方案。
实验操作
学生按照实验方案进行 操作,记录实验数据和
结果。
分析数据
引导学生分析实验数据, 验证假设的正确性,并 得出鸽巢原理的完整表
述。
归纳总结
分享成功经验和创新做法,促进交流
在本次教学中,采用了多种教学 方法和互动环节,有效地提高了 学生的参与度和积极性,取得了
较好的教学效果。
在教学中,注重培养学生的思维 能力和创新能力,鼓励学生提出 自己的想法和见解,促进了学生
的全面发展。
第五单元数学广角《鸽巢问题(1)》示范公开课教学课件【人教版数学六年级下册】

假设法
把 m 支笔任意放进 n 个笔筒中(m > n ,m 和 n 是非0自然数),若m ÷ n = 1…… a,那么一定有一个笔筒中至少放进了 2 支笔。
根据假设这样列式: ÷ 5 = 1(支)…… 1(支) 1 + 1 = 2(支)
鸽巢问题(1)
第五单元 数学广角
“至少” 是什么意思?
输入标题
变魔术
一副牌,取出大、小王。
这5张牌至少有2张牌是同一花色的。
请一位同学随意抽5张。
游戏导入,激发兴趣
“至少” 表示一定有2张是同色的。
可能有2张是同色的,也可能有3张是同色的,也可能有4张是同色的,也可能5张都是同色的。
“至少” 是什么意思?
练习
输入标题
1. 5 只鸽子飞进了 3 个鸽笼,总有一个鸽笼至少飞进了 2 只鸽子。为什么?
练习
答:假设每个笼子都先飞进1只鸽子,最多飞进3只,剩下的2只可以一起飞进1个笼子,也可以分开飞进2个笼子。那么总有一个鸽笼至少飞进了 2 只鸽子。
输入标题
把 m 只鸽子任意放进 n 个鸽巢中,(m > n ,m 和 n 是非0自然数),若m ÷ n = 1…… a,那么一定有一个鸽巢中至少放进了 2 只鸽子。
鸽巢问题(1)
练习
输入标题
2.随意找 13 位老师,他们中至少有 2 个人的属相相同。为什么?
答:假设 12 位老师分别属于 12 生肖属相,那么第 13 位老师无论属于哪一属相,其中至少有 2 位老师属相相同。
练习
一级标题
输入标题
你有什么收获?
鸽巢问题(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸽巢问题(一)》教学案例一、教学内容:教材68页和69页例1和例2.二、教学目标(一)知识与技能通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。
(二)过程与方法结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。
(三)情感态度和价值观在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。
三、教学重难点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
四、教学准备多媒体课件、扑克牌、小棒、纸杯、书、练习纸五、教学过程(一)游戏引入出示一副扑克牌。
教师:今天老师要给大家表演一个“魔术”。
取出大王和小王,还剩下52张牌,下面请5位同学上来,每人随意抽一张,不管怎么抽,至少有2张牌是同花色的。
同学们相信吗?5位同学上台,抽牌,亮牌,统计。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来研究几个数量较小的同类问题。
(二)操作探究,发现规律1.师:今天这节课我们就用小棒和杯子来研究。
板书:小棒杯子师:如果把3根小棒放在2个杯子里,该怎样放?有几种放法?学生分组操作,并把操作的结果记录下来。
教师:谁来说一说结果?预设:一个放3支,另一个不放;一个放2支,另一个放1支。
(教师根据学生回答在黑板上画图表示两种结果)教师:“不管怎么放,总有一个铅笔盒里至少有2支铅笔”,这句话说得对吗?教师:这句话里“总有”是什么意思?生1:总会有。
生2:肯定会有。
生3:一定会有。
教师:这句话里“至少有2支”是什么意思?生1:就是最少的意思。
生2:不低于的意思。
生3:就是最底限。
预设:最少有2支,不少于2支,包括2支及2支以上。
师:是的,至少有2根,就是不少于2根,可以等于2根,也可以多于2根,是吧。
(2)教师:把4支铅笔放到3个铅笔盒里,有哪些放法?请4人为一组动手试一试。
教师:谁来说一说结果?学生:可以放(4,0,0);(3,1,0);(2,2,0);(2,1,1)。
(教师根据学生回答在黑板上画图表示四种结果)引导学生仿照上例得出“不管怎么放,总有一个铅笔盒里至少有2支铅笔”。
假设法(反证法):教师:前面我们是通过动手操作得出这一结论的,想一想,能不能找到一种更为直接的方法得到这个结论呢?小组讨论一下。
学生进行组内交流,再汇报,教师进行总结:如果每个盒子里放1支铅笔,最多放3支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。
首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。
这就是平均分的方法。
【设计意图】从另一方面入手,逐步引入假设法来说理,从实际操作上升为理论水平,进一步加深理解。
教师:把5支铅笔放到4个铅笔盒里呢?引导学生分析“如果每个盒子里放1支铅笔,最多放4支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。
首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。
教师:把6支铅笔放到5个铅笔盒里呢?把7支铅笔放到6个铅笔盒里呢?……你发现了什么?引导学生得出“只要铅笔数比铅笔盒数多1,总有一个盒子里至少有2支铅笔”。
教师:上面各个问题,我们都采用了什么方法?引导学生通过观察比较得出“平均分”的方法。
【设计意图】让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。
(3)教师:现在我们回过头来揭示本节课开头的魔术的结果,你能来说一说这个魔术的道理吗?引导学生分析“如果4人选中了4种不同的花色,剩下的1人不管选那种花色,总会和其他4人里的一人相同。
总有一种花色,至少有2人选”。
(4)练习教材第68页“做一做”第1题(进一步练习“平均分”的方法)。
5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。
为什么?2.小组研究合作(二)研究小棒数比杯子数多2、多3的情况。
师:如果把5根小棒放在3个杯子里,会有什么结果?生1:我认为至少有3根小棒,因为把5根小棒平均分给3个杯子,就还剩2根小棒,所以至少有3根小棒。
生2:我认为总有一个杯子里至少有2根小棒。
我是先把3个杯子里各放1根,这样就还剩下2根小棒,我再把这2根小棒分在两个不同的杯子里,至少就是2根小棒了。
师:他们谁说的对呢?我们一起来摆一摆:先平均分掉3根,没问题吧。
那这剩下的2根小棒该怎么分,才能保证至少有几根小棒?生:剩下的2根小棒分开放,才能保证至少。
师:同意吗?师:那你们再分分看。
(1)课件出示例2。
把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。
为什么?先小组讨论,再汇报。
引导学生得出仿照例1“平均分”的方法得出“如果每个抽屉放2本,剩下1本不管放在哪个抽屉里,都会变成3本,所以总有一个抽屉里至少放进3本书。
”(2)教师:如果把8本书放进3个抽屉,会出现怎样的结论呢?10本呢?11本呢?16本呢?教师根据学生的回答板书:7÷3=2……1 不管怎么放,总有一个抽屉里至少放进3本;8÷3=2……2 不管怎么放,总有一个抽屉里至少放进3本;10÷3=3……1 不管怎么放,总有一个抽屉里至少放进4本;11÷3=3……2 不管怎么放,总有一个抽屉里至少放进4本;16÷3=5……1 不管怎么放,总有一个抽屉里至少放进6本。
教师:观察上述算式和结论,你发现了什么?引导学生得出“物体数÷抽屉数=商数……余数”“至少数=商数+1”。
(三)巩固练习1.11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。
为什么?2.5个人坐4把椅子,总有一把椅子上至少坐2人。
为什么?(四)课堂小结教师:通过这节课的学习,你有哪些新的收获呢?我们学会了简单的鸽巢问题。
可以用画图的方法来帮助我们分析,也可以用除法的意义来解答。
教学反思1、确立教学目标和重难点经过教材分析我确立了教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
并注重在观察、实验、猜想、验证等活动中,发展学生合情推理能力,培养学生能进行有条理的思考,能比较清楚地表达自己的思考过程与结果,经历与他人合作交流解决问题的过程。
2、从学生喜欢的“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
3、在直观操作中理解“抽屉原理”的有关概念,初步了解“抽屉原理”的结构特征。
在教学例1时,我通过直观地摆铅笔的经历,学生发现“把4支铅笔放进3个笔筒中”一共只有四种情况。
同时我鼓励没有学具的学生通过画图直观的表达自己摆的结果,培养学生用简洁的图示表达思路的能力,并找一名学生板书,结合摆、图、数字化的表达共同展示结果。
在对“至少”的理解中,我做了以下尝试:在“最多中找最少”。
在呈现四种结果的基础上,我提问:看来,不管怎么放,总有一个铅笔盒放的枝数是最多的,同学们能找出来吗?(第一种摆法中,总有一个笔筒要放进4枝铅笔。
第二种摆法中,总有一个笔筒要放进3枝铅笔。
……)师:4枝铅笔放进3个铅笔盒中,不管怎么摆总有一个铅笔盒放的枝数是最多的,可能是2枝、3枝、4枝。
这句话还可以怎么说?(还可以说:总有一个铅笔盒中至少放进2枝铅笔。
)师:总有是什么意思?至少是什么意思?4、引导学生在经历猜测、尝试、验证的过程中逐步从直观走向抽象。
本单元的学习,教学的目的不是让学生计算抽屉原理,去应用,而更多的是给出一个结论,让学生去证明这种结论的正确性。
这实质上是一种数学证明的思想的渗透教学。
因此,教学时应让学生经历猜测、尝试、验证的探究过程,并在此过程中引导学生逐步从直观走向抽象。
在例1中针对实验的所有结果,在学生总结表征的基础上,进而提出“你还可以怎样想?”的问题,组织学生展开讨论交流。
我引导学生借助平均分即每个笔筒里先只放1支,这时学生看到还剩下1支铅笔,这1支铅笔不管放入其中的哪一个笔筒,这个笔筒都会有2支铅笔。
进一步引导学生加深对“至少有一个笔筒中有2支铅笔”的理解。
最后,组织学生进一步借助直观操作,讨论诸如“5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒中至少有2支铅笔,为什么?”的问题,并不断改变数据(铅笔数比笔筒数多1),让学生继续思考,引导学生归纳得出一般性的结论:(+1)支铅笔放进个笔筒里,总有一个笔筒里至少放进2支铅笔。
5、不足:(1)本节课虽然重视了学生的直观操作,但是结合操作让学生表达自己的证明过程还不足,应该有意识的让学生多表达结论推理的过程,培养学生证明思想及清晰的表达自己思路的能力。
这一点本节课做的不够充分。
(2)课后反思自己的教学过程,觉得可以在例1教学时,可以补充:“把5支铅笔放到3个铅笔盒里呢?8枝呢?”这样引导学生从平均分角度思考:“余下的2枝怎样放”,体会到余下的2枝也再平均分到2个盒子里,才能得到“总有一个盒子里至少放几枝”的结论,避免学生出现用“商+余数”的错误理解。
这样一节课就一气呵成了,对于教材中的例2也理解了。