时间频率测量.

合集下载

频率时间和相位的测量

频率时间和相位的测量

频率时间和相位的测量频率、时间和相位的测量是现代科技中非常重要的一项技术。

在通信、电力系统、航空航天等领域,准确测量频率、时间和相位可以确保系统的稳定性、可靠性和正常运行。

本文将从频率测量、时间测量和相位测量三个方面进行介绍。

第一部分:频率测量频率是指单位时间内发生的事件的次数。

在通信系统中,频率是指信号波形的周期性重复次数。

频率的测量常用的方法有:阻抗频率测量和计数频率测量。

阻抗频率测量是通过测量电路中的阻抗变化来计算频率。

具体方法是将信号加到一个频率依赖的电路上,测量电路的阻抗变化。

阻抗频率测量的精度高,适用于高精度要求的场合,如科学研究和实验室测量等。

计数频率测量是通过计数单位时间内信号波形的周期数来计算频率。

具体方法是将信号输入到计数器中,计数器会记录信号波形的上升沿或下降沿的个数,然后将个数除以测量时间得到频率。

计数频率测量的精度相对较低,适用于一般工业生产和实际应用中。

第二部分:时间测量时间是指事件的发生顺序和持续时间。

时间的测量常用的方法有:基于机械系统的时间测量和基于电磁波传播的时间测量。

基于机械系统的时间测量是通过机械装置的运动来测量时间。

最早的时间测量仪器是机械钟。

现代的机械钟使用特殊设计的机械组件,如摆轮、游丝等,来实现稳定的精确时间测量。

基于机械系统的时间测量具有较高的稳定性和精度,但受限于机械部件的制造工艺和环境因素,无法实现高精度要求。

基于电磁波传播的时间测量是现代科技中最主要的时间测量方法。

基于电磁波传播的时间测量使用电磁波在空间传播的规律来测量时间。

具体方法是使用特殊的发射器和接收器,通过测量电磁波传播的时间差来确定事件的发生时间。

这种时间测量方法精度高,适用于需要高精度时间的领域,如导航系统和科学研究等。

第三部分:相位测量相位是指两个波形之间的关系。

相位的测量常用的方法有:频率锁相测量和相位差测量。

频率锁相测量是通过比较两个波形的频率差异来测量相位。

具体方法是将两个波形输入到一个锁相环中,通过调整锁相环中的参数,使两个波形的频率一致,从而得到相位差。

时间与频率测量

时间与频率测量
2.2 石英晶体振荡器 1)组成 2)指标
4.2.1 时间与频率的原始标准
1)天文时标
◆原始标准应具有恒定不变性。 ◆频率和时间互为倒数,其标准具有一致性。 ◆宏观标准和微观标准 宏观标准:基于天文观测; 微观标准:基于量子电子学,更稳定更准确。 ◆世界时(UT,Universal Time):以地球自转周期(1天)确定的时 间,即1/(24×60×60)=1/86400为1秒。其误差约为10-7量级。
f x Nf s
◆拍频法:将标准频率与被测频率叠加,由指示器(耳
机或电压表)指示。适于音频测量。
◆外差法:将标准频率与被测频率混频,取出差频并测
量。可测量范围达几十MHz(外差式频率计)。
◆示波法:
李沙育图形法:将fx和fs分别接到示波器Y轴和X轴(X-Y 图示方式),当fx=fs时显示为斜线(椭圆或圆); 测周期法:直接根据显示波形由X通道扫描速率得到周 期,进而得到频率。
◆测量准确度高 时间频率基准具有最高准确度(可达1014),校准(比对)方便,因而数字化时频测 量可达到很高的准确度。因此,许多物理量的 测量都转换为时频测量。 ◆自动化程度高 ◆时频测量技术应用广泛 几乎所有的电子设备都离不开时钟 最有代表性的应用领域:导间与频率的原始标准 1)天文时标 2)原子时标
3)测量方法概述
频率的测量方法可以分为:
直读法 模拟法 电桥法 谐振法 拍频法 比较法 频率测量方法 示波法 电容充放电法 数字法 电子计数器法 测周期法 差频法 李沙育图形法
3. 时间和频率的测量原理
3.1 模拟测量原理 1)直接法 2)比较法
3.2 数字测量原理 1)门控计数法测量原理 2)通用计数器的基本组成
fx 1 2 RC

时间与频率的测量基本概述

时间与频率的测量基本概述

时间与频率的测量基本概述时间与频率的测量是物理学中重要的实验技术之一,涉及到物体的周期性运动、波的传播等多个领域。

本文将对时间与频率的测量进行基本概述。

时间的测量是指对物体运动过程中所经历的时间进行测量,其基本单位为秒。

时间的测量可以通过不同的实验手段和设备实现,其中最为常见的方式是使用钟表,根据物体的运动速度将一段时间分成若干等份,从而确定特定时间间隔的长度。

随着科技的发展,人们发明了各种高精度的钟表,例如基于原子振荡频率的原子钟,能够测量到非常小的时间单位,如纳秒乃至飞秒级别。

频率的测量是指对波动或周期性运动的次数进行测量,其基本单位为赫兹。

频率的测量可以通过两种方式进行,一种是计数法,即将一定时间内波动或周期性运动的次数加总;另一种是相位比法,即通过对象的相位差来确定波动或周期性运动的频率。

根据不同的应用领域和精度要求,频率的测量可以使用不同的设备,例如频率计、示波器、频谱仪等。

在实际应用中,时间与频率的测量技术常常需要考虑到一定的误差和精度要求。

误差可以来自于多个因素,例如仪器本身的不确定度、外界干扰、环境条件等等。

为了提高测量的精度,科学家们研发了各种校正和校准方法,例如使用标准频率源进行校准,以及使用稳定的参考信号进行时间同步等等。

时间与频率的测量技术在现代科学研究、工程技术和日常生活中都有广泛的应用。

在科学研究中,时间与频率的测量可以用于测定天体运动、检测物质结构、研究量子行为等等。

在工程技术中,时间与频率的测量可以用于电信系统中的信号处理、雷达测距与测速、医学成像等领域。

在日常生活中,时间与频率的测量可以用于计时器、手表、闹钟等等。

总之,时间与频率的测量是物理学中重要的实验技术之一,涉及到物体的周期性运动、波的传播等多个领域。

时间与频率的测量可以通过不同的实验手段和设备实现,其中最为常见的方式是使用钟表和频率计。

时间与频率的测量技术需要考虑到一定的误差和精度要求,并可以利用校正和校准方法提高测量的精度。

第五章频率及时间测量

第五章频率及时间测量

的相对误差。
25
第五章 时间、频率和相位的测量
将式
N 1 1 、 T fc 代入式
N
N
f xT T
fc
f x N T
fx
N
T

f x 1 fc
fx
f xT fc
(5.2-11)
若考虑极限情况,测量频率的最大相对误差应写为
f x fx
1 f xT
fc fc
(5.2-12)
由上式可看出:提高频率测量的准确度措施是:
2
第五章 时间、频率和相位的测量
时间的定义: 2)、原子时(AT): 秒定义为:“秒是铯133原子(Cs133)基态的两个超
精细能级之间跃迁所对应的辐射的9 192 631 770个周 期所持续的时间。” 误差:10-14 3)、协调世界时 (UTC):
采用原子时的速率(对秒的定义)通过闰秒方法使原 子时和世界时接近的时间尺度。是一种折衷的产物。
28
第五章 时间、频率和相位的测量
本例如选T=10 s,则仪器显示为0 000.000 0 kHz, 把最高位丢了。造成虚假现象。原因是由于实际的仪 器显示的数字都是有限的,而产生了溢出造成的。
所以,选择闸门时间的原则是: 在不使计数器产生溢出现象的前提下,应取闸门 时间尽量大一些,减少量化误差的影响,使测量的准 确度最高。
T Tx
△t1
△t2
图5.2-2 脉冲计数误差示意图
19
第五章 时间、频率和相位的测量
下图T为计数器的主门开启时间,Tx为被测信号周期, Δt1为主门开启时刻至第一个计数脉冲前沿的时间(假设 计数脉冲前沿使计数器翻转计数),Δt2为闸门关闭时刻 至下一个计数脉冲前沿的时间。设计数值为N(处在T区

《频率时间的测量》

《频率时间的测量》
到t2时刻之间的时间间隔,表示矩形脉 冲持续的时间长度。
0
t1 Δt
t2
t
由此可见,“时刻”和“间隔”二
者的含义和测量方法都是不同的。
Page 4
6.1.1 时间和频率的基本概念
频率的定义和标准
基本定义
事物在1秒钟内完成的周期性变化
的次数叫做频率,常用 f 表示。
Page
5
6.1.1 时间和频率的基本概念
fc(周期为Tc)有关。理论上可以证明,闸门时间的相对误差ΔT/T在数值上 等于晶振频率的相对误差Δfc /fc,即: T f c
T fc
Page
28
6.2.2 电子计数法测频的误差分析
电子计数法测频的相对误差公式
f c f x 1 (| || |) fx f xT fc
从上式可知,为了减小电子计数法的测量误差,应该采取以下
(μs) 、纳秒(ns) 和皮秒(ps) 。
它们的换算关系是:1s = 103ms = 106μs = 109ns = 1012ps
Page
3
6.1.1 时间和频率的基本概念
从科学意义上讲,时间的实际上有 两个含义: 1.时刻; 2.时间的间隔。
u
如图所示,t1是矩形脉冲开始的时刻,
t2是消失的时刻。而Δt= t1-t2是指t1时刻
第六章 频率测量
6.1 概述
6.1.1 时间和频率的基本概念
时间的定义和标准
基本定义
时间是国际单位制中的七个基 本物理量之一,它的基本单位是秒, 用s表示。
Page
2
6.1.1 时间和频率的基本概念
早期一般把地球自转一周所需的时间定为一天,而它的1/86400 则定义为1秒,这种方法由于自转速度受到季节等因素的影响,需要 经常进行修正。 后来则出现了以原子秒( Atomic seconds )为基础的时间标准, 定义1秒为铯原子基态的两个超精细能级之间跃迁的辐射9292631770 个周期的时间,其准确度可达到2×10-11。 在电子电器测量中,往往使用较小的单位,如毫秒(ms)、微秒

时间频率和相位的测量概述

时间频率和相位的测量概述

时间频率和相位的测量概述时间频率和相位的测量是对信号的特性进行量化和分析的重要手段。

在电子通信、无线电、声学和光学等领域中,时间频率和相位的准确测量对于确保系统性能和信号传输的可靠性非常关键。

时间频率的测量是衡量信号周期性的能力,频率是指单位时间内该信号重复的次数。

常见的测量方法有计数法和相位比较法。

计数法是通过计算信号周期内的脉冲数量来测量频率,比较简单直接,但对于信号较高频率和瞬态信号的测量精度有限。

相位比较法是通过将待测信号与参考信号进行比较,通过比较两者的相位差来计算频率,通常使用鉴相器或锁相环等器件进行测量。

相位比较法具有高精度和宽测量范围的特点,适用于高精度和宽频率范围的测量需求。

相位的测量是衡量信号波形变化和时序关系的能力。

相位是指信号在一个周期内的位置或偏移量。

常用的相位测量方法有直接测量法和差分测量法。

直接测量法是通过将待测信号与参考信号进行比较,通过比较两者的起始时间或位置来测量相位,适用于稳态信号和周期性信号的测量。

差分测量法是通过测量信号的前后时间差来计算相位,通常使用时钟同步和时间差测量技术,适用于非周期性和非稳态信号的测量。

在实际应用中,时间频率和相位的测量需要考虑到测量仪器的精度、稳定性和响应速度等因素。

常见的测量仪器包括示波器、频谱分析仪、计时器和定时器等。

此外,引入校准和校正等方法可以提高测量结果的准确性和可靠性。

总之,时间频率和相位的测量是对信号特性进行量化和分析的重要手段,广泛应用于各个领域。

随着科技的发展,测量技术也在不断进步,为更精确、稳定和高速的测量提供了更多选择。

时间频率和相位的测量在科学、工程和技术领域中起到了至关重要的作用。

从物理学到电子通信,从声学到天文学,准确测量时间频率和相位是理解和分析信号的基础,也是确保系统性能和信号传输的可靠性的关键。

时间频率是指信号在单位时间内重复的次数,通常以赫兹(Hz)为单位。

测量时间频率的目的是了解信号的周期性。

《时间频率测量》课件

《时间频率测量》课件
石英晶体具有高度的稳定性和可靠性,因此被广泛应用于各种电子设备和仪器中。
石英晶体振荡器的频率精度和稳定性对于时间频率测量具有重要意义,能够提供高 精度的时频基准。
原子钟
原子钟是一种基于原子能级跃 迁的计时装置,能够提供极高 的频率稳定度和精确度。
原子钟利用原子能级之间的跃 迁频率作为计时基准,其频率 稳定度和精确度比石英晶体振 荡器更高。
频谱分析法
通过频谱分析仪测量信号 的频谱,可以获得信号子能级跃迁产生的 频率作为时间频率标准, 具有极高的稳定性和精度 ,是国际时间频率标准。
02
时间频率测量技术
石英晶体振荡器
石英晶体振荡器是一种基于石英晶体的电子振荡器,用于产生高精度、高稳定的频 率信号。
在生物学中,时间频率测量可 用于研究生物分子的动态行为 和相互作用,例如蛋白质折叠 和分子动力学模拟。
05
时间频率测量的发展趋势
高精度测量技术的研究
原子钟技术
利用原子能级跃迁频率稳 定的特性,实现超高的时 间频率测量精度。
光频梳技术
利用光频梳的频率稳定性 ,结合光学干涉和光谱分 析技术,实现高精度的时 间频率测量。
导航系统中的时间频率测量主要用于确定位置和时间 信息。
其他导航系统如伽利略、格洛纳斯和北斗等也依赖于 时间频率测量技术来提供准确的定位和导航服务。
电力系统
01
电力系统中的时间频率测量主要用于保障电力系统的稳定运行 。
02
时间频率测量可以帮助监测电网的频率和相位,确保电力系统
的稳定性和可靠性。
在智能电网中,时间频率测量还可以用于优化能源调度和需求
时间频率的表示方法
时间频率可以用波形图或频谱图来表 示,波形图展示时间间隔和周期性变 化,而频谱图则展示不同频率分量的 幅度和相位。

第4章 时间与频率的测量

第4章 时间与频率的测量

4.4 通用计数器 4.4.1 通用电子计数器的基本组成 4.4.2 电子计数器的使用 4.4.3 通用电子计数器的测量功能 4.5 其他测量频率的方法 4.5.1 电桥法测频 4.5.2 谐振法测频 4.5.3 频率-电压转换法测量频率 4.5.4 拍频法测频 4.5.5 差频法测频 4.5.6 用示波器测量频率
=
±⎜⎜⎝⎛
1 10n Tx
fc
+
1
2 ×10n π
× Vn Vm
+
Δf c fc
⎟⎟⎠⎞
(4-16)
(2)采用多周期测量可提高测量准确度;
(3)提高标准频率,可以提高测周分辨力;
(4)触发转换误差与被测信号的信噪比有关,信噪比越 高,触发转换误差越小。测量过程中尽可能提高信噪 比 Vm /Vn 。
整形
送主门的一
0
t
个输入端。
微分
0
t
图4-6 输入电路工作波形图
3)计数显示电路
这部分电路的作用,简单地说,就是 计数被测周期信号重复的次数,显示 被测信号的频率。它一般由计数电路、 逻辑控制电路、译码器和显示器组成。
4)控制电路
控制电路的作用是产生各种控制信号, 去控制各电路单元的工作,使整机按 一定的工作程序完成自动测量的任务。 在控制电路的统一指挥下,电子计数 器的工作按照“复零一测量—显示”的 程序自动地进行,其工作流程如图4.6 所示。
在测频时,主门的开启时刻与计数脉冲之间的时间关系是不相 关的,即是说它们在时间轴上的相对位置是随机的。这样,既 便在相同的主门开启时间T,计数器所计得的数却不一定相同。 可能多1个或少1个的±1误差,这是频率量化时带来的误差故 称量化误差,又称脉冲计数误差或±1误差。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

◆世界时(UT,Universal Time):以地球自转周期(1天)确
定的时间,即1/(24×60×60)=1/86400为1秒。其误差约 为10-7量级。
第12页
电子测量
1)天文时标
◆为世界时确定时间观测的参考点,得到
平太阳时:由于地球自转周期存在不均匀性,以假想 的平太阳作为基本参考点。 零类世界时(UT0 ):以平太阳的子夜0时为参考。 第一类世界时(UT1):对地球自转的极移效应(自转 轴微小位移)作修正得到。 第二类世界时(UT2):对地球自转的季节性变化(影 响自转速率)作修正得到。准确度为3×10-8 。
(5)闸门时间(测频):有1ms、10ms、100ms、1s、
10s。
(6)时标(测周):有10ns、100ns、1ms、10ms。 (7)显示:包括显示位数及显示方式等。
第9页
电子测量
3)电子计数器的发展
◆测量方法的不断发展:模拟数字技术智能化。 ◆测量准确度和频率上限是电子计数器的两个重要 指标,电子计数器的发展体现了这两个指标的不 断提高及功能的扩展和完善。 ◆ 例子:
电子测量
(直读法)
模拟法
李沙育图形法
测周期法
电子计数器法
第5页
电子测量
各种测量方法有着不同的实现原理,其复杂程度 不同。 各种测量方法有着不同的测量准确度和适用的频 率范围。 数字化电子计数器法是时间、频率测量的主要方 法,是本章的重点。
第6页
电子测量
4.1.2 电子计数器概述
1)电子计数器的分类 ◆按功能可以分为如下四类:
(周期数)。如果在一定时间间隔T内周期信号重复变化 了N次,则频率可表达为:
f=N/T
◆时间与频率的关系:可以互相转换。
第3页
电子测量
2) 时频测量的特点
◆最常见和最重要的测量
时间是7个基本国际单位之一,时间、频率是极为重要 的物理量,在通信、航空航天、武器装备、科学试验、 医疗、工业自动化等民用和军事方面都存在时频测量。
部基准,一般要求高于所要求的测量准确度的一个数量 级(10倍)。输出频率为1MHz、2.5MHz、5MHz、 10MHz等,普通晶振稳定度为10-5,恒温晶振达10-7~10-9。
(4)输入特性:包括耦合方式(DC、AC)、触发电平
(可调)、灵敏度(10~100mV)、输入阻抗(50 Ω低 阻和1M Ω//25pF高阻)等。
4.1.2 电子计数器概述
1)电子计数器的分类 2)主要技术指标 3)电子计数器的发展
第2页
电子测量
4.1.1 时间、频率的基本概念
1)时间和频率的定义
◆时间有两个含义:
“时刻”:即某个事件何时发生; “时间间隔”:即某个时间相对于某一时刻持续了多久。
◆频率的定义:周期信号在单位时间(1s)内的变化次数
●通道:两个225MHz通道,也可 选择第三个12.4GHz通道。 ●每秒12位的频率分辨率、150ps的时间间隔分辨率。 ●测量功能:包括频率、频率比、时间间隔、上升时间、 下降时间、相位、占空比、正脉冲宽度、负脉冲宽度、 总和、峰电压、时间间隔平均和时间间隔延迟。 ●处理功能:平均值、最小值、最大值和标准偏差。
第10页
时间与频率的原始标准
1)天文时标
2)原子时标
4.2.2 石英晶体振荡器
1)组成
2)指标
第11页
电子测量
4.2.1 时间与频率的原始标准
1)天文时标
◆原始标准应具有恒定不变性。 ◆频率和时间互为倒数,其标准具有一致性。 ◆宏观标准和微观标准
宏观标准:基于天文观测; 微观标准:基于量子电子学,更稳定更准确。
设备庞大、操作麻烦; 观测时间长; 准确度有限。
◆原子时标(AT)的量子电子学基础
原子(分子)在能级跃迁中将吸收(低能级到高能级)或 辐射(高能级到低能级)电磁波,其频率是恒定的。
hfn-m=En-Em
式中,h=6.6252×10-27为普朗克常数,En、Em为受激态的 两个能级,fn-m为吸收或辐射的电磁波频率。
第7页
电子测量
1)电子计数器的分类
按用途可分为:
测量用计数器和控制用计数器。
按测量范围可分为:
(1)低速计数器(低于10MHz)
(2)中速计数器(10~100MHz)
(3)高速计数器(高于100MHz) (4)微波计数器(1~80GHz)
第8页
电子测量
2)主要技术指标
(1)测量范围:毫赫~几十GHz。 (2)准确度:可达10-9以上。 (3)晶振频率及稳定度:晶体振荡器是电子计数器的内
历书时(ET):以地球绕太阳公转为标准,即公转周 期(1年)的31 556 925.9747分之一为1秒。参考点为 1900年1月1日0时(国际天文学会定义)。准确度达 1×10-9 。于1960年第11届国际计量大会接受为“秒”的标准。
第13页
电子测量
2)原子时标
◆ 基于天文观测的宏观标准用于测试计量中的不足
(1)通用计数器:可测量频率、频率比、周期、时间间
隔、累加计数等。其测量功能可扩展。
(2)频率计数器:其功能限于测频和计数。但测频范围
往往很宽。
(3)时间计数器:以时间测量为基础,可测量周期、脉
冲参数等,其测时分辨力和准确度很高。
(4)特种计数器:具有特殊功能的计数器。包括可逆计
数器、序列计数器、预置计数器等。用于工业测控。
第14页
电子测量
2)原子时标
原子时标的定义
1967年10月,第13届国际计量大会正式通过了 秒的新定义:“秒是Cs133原子基态的两个超精细 结构能级之间跃迁频率相应的射线束持续 9,192,631,770个周期的时间”。
电子测量
第四章 时间与频率的测量
4.1 4.2 4.3 4.4 概述 时间与频率的原始基准 频率和时间的测量原理 电子计数器的组成原理和测量功能
4.5
4.6
电子计数器的测量误差
频率稳定度测量和频率比对
第1页
电子测量
4.1 概述
4.1.1 时间、频率的基本概念
1)时间和频率的定义
2)时频测量的特点
3)测量方法概述
◆测量准确度高
时间频率基准具有最高准确度(可达10-14),校准 (比对)方便,因而数字化时频测量可达到很高的准确 度。因此,许多物理量的测量都转换为时频测量。
◆自动化程度高 ◆测量速度快
第4页
3)测量方法概述
* 频率测量的方法 无源测频法 谐振法 电桥法 频率—电压变换法 拍频法 比较法 差频法 示波法 电容充放电法 数字法
相关文档
最新文档