DIY脉冲式喷气发动机
航模涡轮喷气发动机

航模涡轮喷气发动机导言:航模涡轮喷气发动机是现代航模爱好者们追求高速、高能力飞行的技术支持。
它的精密设计和出色的性能让飞行模型更加逼真和激动人心。
本文将详细介绍航模涡轮喷气发动机的原理、构造和工作过程,以及一些注意事项和常见问题解答,以帮助对此感兴趣的读者更好地了解这一领域。
一、原理与构造航模涡轮喷气发动机的基本原理是通过燃烧燃料产生高温高压气体,然后驱动涡轮旋转,最终将机械能转化为推力。
这种推进方式与真实飞机的喷气发动机原理类似,但规模更小,适用于航模飞行器。
1. 燃烧室与涡轮航模涡轮喷气发动机内部由燃烧室和涡轮组成。
燃烧室是燃烧燃料的地方,燃料与空气混合后引燃,产生高温高压气体。
燃料的类型可以是航空煤油、液化石油气等。
涡轮则被高温高压气体推动,旋转起来,将机械能转化为推力。
2. 加速器和压气机航模涡轮喷气发动机中涡轮推动的气流需要经过加速器和压气机的作用以达到最佳推力。
加速器的主要功能是加速气流的速度,增加推力。
压气机则负责压缩气流,提高气体的密度和压力,以增加推力效果。
3. 燃烧室与喷嘴燃烧室中高温高压气体经过压缩后,通过喷嘴喷出,产生的高速气流产生推力。
喷嘴的设计和调整对发动机的性能至关重要。
合理的喷嘴设计可以提供更好的推进效果和稳定性。
二、工作过程航模涡轮喷气发动机的工作过程可以概括为连续的四个阶段:起动、加速、稳定和熄火。
1. 起动起动阶段是让发动机开始转动和燃烧的过程。
通常需要使用电动起动器或气体起动器来帮助发动机启动。
一旦发动机启动,燃烧室内开始产生高温高压气体。
2. 加速在加速阶段,涡轮从静止状态逐渐达到高速旋转。
这个过程通常需要一段时间才能使涡轮达到工作状态的转速。
3. 稳定当涡轮达到工作转速后,燃烧室内的燃烧气体以一定的节奏和能量产生。
这个阶段是发动机提供稳定的推力以进行飞行的关键阶段。
4. 熄火当航模不再需要推力时,发动机将停止燃烧和转动。
这个过程可以使用燃烧室内的余热自然冷却,也可以通过外部提供的气流来加速热量的散发。
第一章 涡轮发动机分类及其性能指标

二. 双轴涡轮喷气发动机(two-spool turbojet)
与单轴涡喷发动机相比,其进气道、燃烧室和尾喷管是一样的,产生反作用 力的原理也完全相同。所不同的是:压气机分成低压压气机和高压压气机,涡轮 也分为高压涡轮和低压涡轮。高压压气机和高压涡轮由一根轴联接形成高压转子, 低压压气机机和低压涡轮由一根轴联接形成低压转子。 人们习惯将燃气轮机的高压转子部分称为核心机,核心机可作为燃气发生器。 在双轴燃气轮机中的核心机(高压转子)并不是它的燃气发生器,双轴燃气轮机 的燃气发生器部分还应该包括低压压气机和低压涡轮。因此,核心机与燃气发生 器是二个不同的概念。
单轴涡轮喷气发动机
压气机、燃烧室和涡轮的组合称为燃气发生器, 其作用是产生高温高压的燃气。 发动机工作时,外界空气流入进气道,在较大的飞行速度下气流经过进气道时速 度减小而压力提高;气流流过压气机时进一步增压,特别是在低速飞行时,压气机是 增压气流的主要部件;燃烧室利用燃油燃烧时放出的热量对气流加热;从燃烧室流出 的高温高压气流推动涡轮旋转,涡轮与压气机之间有轴联接,涡轮发出的功率提供给 压气机;涡轮出口的气流仍具有较高的压力和温度,流经尾喷管时压力减低而速度增 高。
吸气式发动机用途
亚燃冲压发动机及其组合动力主要用于:超音速导弹、无人 机的动力装置。 超燃冲压发动机及其组合动力主要用于:高超音速巡航导 弹; 高超音速飞机; 跨大气层飞行的空天飞机的动力装置, 目前尚处于研究阶段。 脉冲式发动机及其组合动力:主要用于导弹、无人机的动力 装置,目前尚处于研究阶段。
涡轮喷气发动机与活塞式发动机的比较
相同之处 (1) 均以空气和燃气作为工作介质。 (2)它们都是先把空气吸进发动机,经过压缩 增加空气的压力,经过燃烧增加气体的温度, 然后使燃气膨胀作功。燃气在膨胀过程中所作 的功要比空气在压缩过程中所消耗的功大得多。 这是因为燃气是在高温下膨胀的,于是就有一 部分富余的膨胀功可以被利用。 不同之处 (1)进入活塞式发动机的空气不是连续的;而 进入燃气轮机的空气是连续的。 (2) 活塞式发动机中喷油燃烧是在一个密闭 的固定空间里,称为等容燃烧,而燃气轮机则 在前后畅通的流动过程中喷油燃烧,若不计流 动损失,则燃烧前后压力不变,故称为等压燃 烧。
航空燃气涡轮发动机概述

w0 = Cp(T3- T2)- Cp(T4- T1) 式中:T1、T2、T3、T4分别为工质状态 1、2、3、4时的温度。
布莱顿循环的理想循环效率为:
T
w0 q1
1 q2 q1
1 T4 T1 T3 T2
结构简单,重量轻, 推力大, 推进效率高 在很大的飞行速度范围内, 发动机的推力随飞行速度的
增加而增加
(2)涡轮风扇发动机(Spey,JT8D,CFM56)
涵道比: 外涵道空气流量/内涵道空气流量
高涵道比涡扇发动机
三叉戟飞机(装备三台Spey)
CFM56涡扇发动机
低涵道比涡扇发动机
涡轮风扇发动机
涡喷发动机推重比为3.5~4 涡轮风扇发动机推重比达8以上
4、单位迎面推力FA
定义:发动机推力/发动机最大迎风面积
最大迎风面积相同时,FA越大,推力F越大 推力F相同时,FA越大,发动机迎风面积越小
(二)经济性能指标
1、燃油消耗量Gf(单位kg/s,kg/h) 定义:单位时间内所消耗的燃油量
推力相同时,Gf越小越好 2、单位燃油消耗率sfc(单位kg/h N,kg/h daN ) 定义:产生一牛顿推力每小时所消耗的燃油量
改写为:
T
1 T4 T1 T3 T2
1 T1(T4 T1 1) T2 (T3 T2 1)
因为1-2和3-4为绝热过程,所以:
T1
(
p1
k 1
)k
T2 p2
T4
(
p4
)
k 1 k
T3 p3
脉冲增压的名词解释

脉冲增压的名词解释脉冲增压(Pulse Boosting)是一种机械或电子系统中常用的技术,它可以通过瞬时提高压力或动能来增强系统的性能和效能。
脉冲增压技术广泛应用于许多领域,比如航空航天、工程领域、兵器系统以及核聚变等等。
本文将对脉冲增压的原理、应用和相关技术进行解释和探讨。
一、原理与机制脉冲增压的原理基于能量守恒定律和流体力学原理。
在液体或气体系统中,脉冲增压可以通过以下两种方式实现:1. 机械脉冲增压:机械脉冲增压主要依靠外部的机械力或动能转化为系统内部流体的压力或动能,从而提高系统的性能。
例如,在内燃机中,活塞的上下运动将气体压缩,然后通过喷射点火点火爆发,使燃烧气体产生高压力的脉冲波,从而增加发动机的输出功率。
2. 电子脉冲增压:电子脉冲增压是通过电子元件和电磁场的相互作用来实现的。
电子元件的开关行为能够迅速产生周期性的电磁脉冲,在瞬间提高系统内部气体或液体的压力或动能。
这种技术被广泛应用于激光、核聚变装置等高能物理实验研究中。
二、应用领域脉冲增压技术在众多领域中发挥重要作用,以下是几个典型的应用领域例子:1. 航空航天:脉冲增压技术在航空发动机中广泛应用,通过喷火增加燃烧气体的压力,提高喷气发动机的推力。
同时,脉冲增压也可以用于航空航天器的空气动力学控制系统中,提供特定时刻的推力增益,使航天器具备更高的机动性能。
2. 兵器系统:脉冲增压技术也在军事装备领域得到广泛应用。
例如,导弹发动机采用脉冲喷火技术,通过瞬间喷射高压气体来提高排出速度和射程。
此外,脉冲增压还可用于增强火炮射击的动能,并在爆炸装置中产生更大的冲击力。
3. 工程领域:在工程项目中,脉冲增压技术可以用于推进液体或气体的输送,提高输送效率和输送距离。
这在井下油气开采、水务工程和污水处理等领域尤为重要。
4. 核聚变:脉冲增压技术也在核聚变实验中发挥关键作用。
在核聚变装置中,通过脉冲加热等方式,提高物质的温度和密度,使核聚变反应更容易发生。
航空发动机总资料

第一章概论航空发动机可以分为活塞式发动机(小型发动机、直升飞机)和空气喷气发动机两大类型。
P3空气喷气发动机中又可分为带压气机的燃气涡轮发动机和不带压气机的冲压喷气发动机(构造简单,推力大,适合高速飞行。
不能在静止状态及低速性能不好,适用于靶弹和巡航导弹)。
涡轮发动机包括:涡轮喷气发动机WP,涡轮螺旋桨发动机WJ,涡轮风扇发动机WS,涡轮轴发动机WZ,涡轮桨扇发动机JS。
在航空器上应用还有火箭发动机(燃料消耗率大,早期超声速实验飞机上用过,也曾在某些飞机上用作短时间的加速器)、脉冲喷气发动机(用于低速靶机和航模飞机)和航空电动机(适用于高空长航时的轻型飞机)。
P4燃气涡轮发动机是由进气装置、压气机、燃烧室、涡轮和尾喷管等主要部件组成。
由压气机、燃烧室和驱动压气机的涡轮这三个部件组成的燃气发生器,它不断输出具有一定可用能量的燃气。
涡桨发动机的螺桨、涡扇发动机的风扇和涡轴发动机的旋翼,它们的驱动力都来自燃气发生器。
按燃气发生器出口燃气可用能量的利用方式不同,对燃气涡轮发动机进行分类:将燃气发生器获得的机械能全部自己用就是涡轮喷气发动机;将燃气发生器获得的机械能85%~90%用来带动螺旋桨,就是涡桨发动机;将获得的机械能的90%以上转换为轴功率输出,就是涡轮轴发动机;将小于50%的机械能输出带动风扇,就是小涵道比涡扇发动机(涵道比1:1);将大于80%的机械能输出带动风扇,就是大涵道比涡轮风扇发动机(涵道比大于4:1)。
P5航空燃气涡轮发动机的主要性能参数:1.推力,我国用国际单位制N或dan,1daN=10N,美国和欧洲采用英制磅(Pd),1Pd=0.4536Kg,俄罗斯/苏联采用工程制用Kg,1Kg=9.8N;2.推重比(功重比),推重比是推力重量比的简称,即发动机在海平面静止条件下最大推力与发动机重力之比,是无量纲单位。
对活塞式发动机、涡桨发动机和涡轴发动机则用功重比(功率重量比的简称)表示,即发动机在海平面静止状态下的功率与发动机重力之比,KW/daN;3.耗油率,对于产生推力、的喷气发动机,表示1daN推力每小时所消耗的燃油量单位Kg/(daN·h),对于活塞式发动机、涡桨发动机和涡轴发动机来说,它表示1KW功率每小时所消耗的燃油量单位Kg/(kw·h);4.增压比,压气机出口总压与进口总压之比,飞速较高增压比较低,低耗油率增压比较高;5.涡轮前燃气温度,是第一级涡轮导向器进口截面处燃气的总温,也有发动机用涡轮转子进口截面处总温表示,发动机技术水平高低的重要标志之一;6.涵道比,是涡扇发动机外涵道和内涵道的空气质量流量之比,又称流量比。
发动机科普知识

发动机科普知识(1):动力是实现机械飞行的基本要素重于空气的东西能不能飞起来呢?回答是肯定的,但前提是必须有机翼和发动机。
机翼用于提供升力,其原理如下:一定速度的空气流到机翼前缘,分成上、下两股,分别沿机翼上、下表面流过,在机翼后缘重新会合向后流去。
从机翼剖面形状可以看出,机翼上表面作成向上突出的曲线,而下翼面作成直线。
显然,空气在上翼面流经的路程要比在下翼面流经的路程长,因此在上翼面的空气被迫以较快的速度流过。
亦即气流流过机翼时,沿上翼面的流速快,沿下翼面的流速慢。
根据物理学中的柏奴利定律,流速快的地方压强低,反之,流速慢的地方压强高。
这样,由于流过机翼上、下翼面的气流流速不一致,使作用在机翼上、下翼面上的压强不一致(下翼面压强大、上翼面压强小)而产生了向上的力—升力。
显然,只要机翼与空气之间有相对运动,空气就能对机翼提供升力。
而要保持机翼与空气的相对运动,就必须有持续的推动力来克服空气阻力,也就是必须要有提供动力的发动机。
早在19世纪初,英国科学家乔治·凯利爵士根据此现象指出:所谓机械飞行就是对一块平板提供动力,使它能在空中支持一定的重量。
1810年乔治·凯利爵士在英国的《自然哲学、化学和技艺》杂志上发表了著名论文“论空中航行”,他奠定了固定翼飞机和旋翼机的现代航空学理论基础,提出了重于空气飞行器的基本飞行原理和飞机的结构布局,被看成是现代航空学诞生的标志。
由于凯利在飞行原理方面的巨大贡献,被后人尊称为“空气动力学之父”。
(2):带动力的浮空器-飞艇飞艇是一种轻于空气的浮空器,与气球类似,都有充满轻于空气气体的气囊并因此产生上升浮力。
它们的不同点在于,气球没有动力装置实现飞行,也没有操纵舵面实施有控飞行,只能听任自然风摆布;飞艇虽然也是靠空气浮力升空,但它配置有发动机、空气螺旋桨(或其他类推进器)、操纵面,能实现有动力推进和可操纵、控制的飞行。
因此,飞艇的诞生是人类在气球基础上作浮空飞行的一个重大进步和突破。
四代机基本知识6 进气道故事之-超燃冲压发动机,乘波器及脉冲爆震发动机

图文并茂6)进气道故事之-超燃冲压发动机,乘波器及脉冲爆震发动机超燃冲压发动机,乘波器及脉冲爆震发动机超燃冲压发动机-scram jet 现在让我们抛开那些千奇百怪的核动力发动机回归到飞机的进气道上面来。
前面讲解的所有飞机,从F-15到黑鸟,女武神,再到冲压发动机导弹,他们都有一个共同点:就是依靠进气道的特殊设计把超音速气流减速到亚音速,送给发动机,然后燃烧膨胀做功从尾部再以超音速喷出。
这样就经历了一个超音速-亚音速-超音速的过程。
这么的一减一加无形中就增加了阻力。
随着飞机飞行速度越来越快,阻力也不断升高,早晚会有一天,飞机的阻力会超过它的推力,这时候无论飞机怎么使劲,怎么多加燃料,速度就是上不去。
另一方面,冲压发动机把空气减速到亚音速后,压缩后的空气温度太高,无论怎么降温,效率都大大的下降,这就又遇到了一道速度门槛。
一般而言这道门槛大概发生在5马赫左右,所以超过5马赫的速度就不再叫超音速了(supersonic),而是叫做高超音速(hypersonic)。
对于高超音速飞行器而言,除了进气道外,他的尾喷管也需要有特殊考虑。
一般的发动机尾喷管有个收缩-扩展段,这么一缩一扩就能把亚音速气流加速成非常高的超音速气流从而推动飞机超音速飞行。
这个收缩扩展喷口也叫拉瓦尔喷管。
它最先由瑞典的发明家古斯塔夫·德拉瓦尔(Gustaf De Laval)在1897年发现的,现在已经成为航空发动机和火箭发动机的重要组成部件了。
发动机喷出的高温高压气流在喷管的收缩段,遵循流体在管中运动时,截面小处流速大,截面大处流速小的原则,就好比你打开水龙头,用手堵住喷口一半,水流就会喷的更快一样,把气流不断加速,到收缩短最窄的地方加速成超音速。
而超音速的流体在收缩段却不再遵循前面的原则,恰恰相反,截面小时流速小,截面大时流速反而大。
要想把超音速气流进一步加速,反而需要有一个扩展段来加速,有时候能加速到音速的好几倍,这样飞机就能进行超音速飞行了。
纳粹的复仇——V1导弹

纳粹的复仇宣传海报史 海 钩 沉白云峰纳粹的复仇—V1导弹德国人在20世纪30年代就开始使用无人驾驶的飞机开展导弹方面的研究、实验工作。
1942年6月,英国皇家空军的炸弹突然在德国城市上空投下,而德国空军轰炸机在对英格兰的报复性轰炸中却损失了更多的飞机和飞行员。
德国空军开始考虑用其他的方法对英格兰进行空中打击。
但是此时正在研发的V-2远程导弹的发展却遭遇困难,裹足不前,并且V-2毕竟是属于陆军的发展项目。
德国空军在经过论证以后,批准了发展一种小型又廉宜的导弹发展计划。
这种导弹计划射程在250千米,可携带一个800千克的弹头,能够打击到特定的某个城市的某个区域。
导弹依靠很高的速度和超低空飞行来避开拦截的飞机和炮火。
为了保密的需要,这个计划被掩饰的称为新型的高射炮或者在文件中称呼其为“防空用靶机设备”。
导弹准备使用脉冲式喷气发动机提供动力。
这种装置由保罗施密特在20世纪20年代研制成功。
脉冲式喷气发动机就像是一个小而旺的“火炉”,德国空军决定使用这种发动机用于导弹的发展研究主要的因素是看上了其简单实用且成本低廉。
其实施密特所发明的脉冲式喷气发动机是一种比较简陋的发动机,在武器局时就险些被扼杀。
当时有3家德国公司参与了导弹的制造工作。
菲仕乐公司负责制造导弹的机身。
阿格斯公司负责制造脉冲式喷气发动机。
Askani 公司负责制造导弹的导航系统。
有人驾驶的导弹1943年5月26日,纳粹党的高层人员在波罗的海城市佩内明德视察了导弹的测试情况,以评估这种导弹的发展状况。
高层的结论是他们全力支持开发完成这种武器,并且希望要加快研究进展。
同时批准建立一个导弹的发射基地,并制造相应的发射架。
随后在法国西北部的加来海峡建立了100部发射装置,拥有每天发射数千枚导弹的能力。
同时加来海峡距伦敦的直线距离只有200千米的导弹研究进入了精密原型制造阶段。
结合了以前各驾试验机优点的原型机被命名为“Kirshkern (硬壳蛤)”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.喷管太短,太短的喷管使发动极不稳定。因为频率太高,吸入的油气来不及完全混合,会导致发动机熄火。
4.油雾化不好,过重的油不易气化,因此不建议用比汽油重的油如柴油做燃料,最好是甲醇,因为易气化,爆炸浓度范围宽。
5.进油液位低,由于油箱液位底,油无法被吸入,这时要抬高油箱位置。
另外也可先用罐装火机用气体,从入口吹入,点火,步骤同上述一样,只是要调节好气体量。
一.为何发动机不工作
由于设计,加工中选材的问题,许多发动机不能正常工作,其实可以从燃烧条件来看主要原因是如下几点:
1.空气不足与过量
由于阀片制作中材料不一样,阀片太硬了,会使外面空气无法吸入,因此要事先将阀片的间隙调好,要选适合的材料来做。另外实际由于阀片的阻力,使空气实际进入量减小约20%以上。
也可以已手册加工图自己验算一下,一般误差5%之间,留余量,可取50英寸如果喷管尾部采用扩张部分,长度为0.2*41=8,总长50的情况下,那么实际尾喷管长50-8=42英寸.最小空气入口面积为阀孔面积,即3.9平方英寸国外P-90发动机实验数据(供参考)
各参数如下
V = 2.9litre
fc= 6.7 gram/sec
3.如何制作进气单向阀
发动的关键在于单向阀的加工,阀的加工需要有车床作整体加工才行,如果没车床也可以采用另一种设计,如从蓝图可以看到,在一块厚3-10mm圆铁板上自己钻出需要的孔了可用来代替,然后装上阀片。
梅花型的阀片是发动机的关键,必须用弹性强,耐高温的,厚0.1-0.3mm左右薄钢片来作,否则将使发动机无法工作下去。阀片的加工可以剪出需要的形状,也可用电解法,像做印刷电路板那样,先在板上涂油漆,干后画出所要的样式,用钢针沿线条刻掉油漆,放入食盐水中,用6-12v的直流电电解。
二.为何发动机阀片工作寿命较短
由于阀片工作在高温下,加上在工作中振动频率大,因此阀片工作寿命成了发动机的弱点,如果制作材料易鎔的话,高温下用不了几分钟就会完完。因此如何设计单向阀,使阀片工作寿命加大,就成了发动机制作者们的研究的课题。
一是选择耐高温的村料,二是采用无阀设计,现有的无阀脉冲发动机设计来看,机身制作较复杂,且推力较小。
4.发动机的装配
喷气发动机的安装较简单,按图加工好部件,装上就可。在装单向阀片时,要注意将梅花阀片内弯10度到30度。使阀通气孔打开。另外注意发动机接点要不透气。
第三章如何启动发动机
概述
脉冲式发动机启动起比较困难吗?其实不然。从发动机原理可知要发动机燃烧发动需要满足以下条件:
1.燃油
2.空气
3.点火源
脉动喷气发动机是喷气发动机的一种,可用于靶机,导弹或航空模型上。德国纳粹在第二次世界大战的后期,曾用它来推动V-1导弹,轰炸过伦敦。这种发动机的结构如图所示,它的前部装有单向活门,之后是含有燃油喷嘴和火花塞的燃烧室,最后是特殊设计的长长的尾喷管。
2.喷气频率,喷气发动机喷气频率与机身长度有关,同一直径下,机身越长频率越低。2.机身直径与长度比L/D计算公式是:
Y = 0.152 * X + 470 (mm),公制单位或Y = 3.88* X + 18,66 (inc)-英制单位
参考数据:发动机名Y=总长X=尾喷管截面积
Brauner490 907
空气
在喷气发动机没发动起来前,空气无法自动吸入燃烧室,这时,需要用一个小风箱或打气筒在发动机入口处输入空气来帮助发动机输入油气混合物,注意,空气需要有一定的压力与流速,才能使燃料充分雾化成油气。
点火方法
最好的办法是在机身燃烧室上装一个火花塞,如果没有也没关系,可以铁丝头缠棉球浸汽油点着后伸尾喷管同样也可点火。多种点火方式如图所示
7.单向阀通风孔面积单向阀通风孔面积是发动设计最关键部,因为它关系到进入发动机的油与空气比.计算公式Y = 0.4922*X–37 (平方mm)
在这里(X=尾喷管截面积,Y=单向阀通风孔面积,如果是大的发动机可不减37) .另在设计中要考虑到阀片安装后会使通风孔面积减小10-20%,因此要留一定的余量。
Alpha 485 531
B-12 600 531
Aerojet610 1075
PAM 810 907
Sovfaa670 1195
6.喷气速度
由于高温高压下喷气发动机喷气速度计算是一个复杂的过程,对于爱好者来说可用一个简化公式计算va=2*L*f
p90的计算为例:
喷气速度为:150*2*0.86= 258 m/s.
f = 150 Hz
va= 258 m/s
F = 85 Newton
第二章喷气发动机制作
材料选择由于发动机在高温下工作,所以不能用铝,等低熔点金属。一般对于爱好者来说,可使用碳钢,铝合金。不锈钢管是最佳的材料,你可以在五金店找到,各种规格都有,还可以用的材料是摩托车或汽车的排气管,是由碳钢组成,外表镀铝,不易生锈,但由于管比较厚显得稍重一些。价钱也不贵,40元一个左右,在摩托修理部能找到,用过的旧的更便宜10元一个都有得卖。你也可以按图加工锥形部分。铝合金只可以用来做发动机最前部的进气节流罩,。
计算结果大约是尾喷管截面积的50-60%,一般设计可取55%(提示,稍大的通风面积可以让发动机更易点火)。
外国发动机设计参考:
发动机名阀通风面积Y尾喷截面积X
Brauner452 907
Alpha 381 531
B-12 221 531
Aerojet603 1075
PAM 506 907
Sovfaa661 1195ห้องสมุดไป่ตู้
脉冲式喷气发动机结构简单,加工方便,并比普通内燃机发动机高的燃烧效,因此适用于各种航空,海模,车辆模中。你也可以自己设计做成喷气助动车辆。本手册将从原理开始,教你如何打造出自己的喷气发动机。原理结构介绍脉动喷气发动机工作时,首先把压缩空气打入单向阀门,或使发动机在空中运动,这时便有气流进入燃烧室,然后油咀喷油,火花塞点火燃烧。这时长尾喷管在燃气喷出后,由于燃气流的惯性作用,虽然燃烧室内的压强同外面大气的压强相等,仍会继续向外喷,所以在燃烧室内造成空气稀薄的现象,使压强显著降低到小于大气压,于是空气再次打开单向活门流入燃烧室,喷油点火燃烧,开始第二个循环。这样周而复始,发动机便可不断地工作了。这种发动机由进气到燃烧、排气的循环过程进行得很快,一秒钟大约可达40~50次。
燃料
脉冲式发动机可以使用多种日常燃料,家用的液化气,汽油,柴油,煤油,甲醇(工业酒精)等,一般选择为汽油做为燃料,对普通的爱好者来说可用任何牌号车用汽油即可。如果气温较低而可能会使燃料难以挥发,也可以向油中加入不超过25%的乙醚组分,使点火更容易。最好的燃料是甲醇,因为燃烧生成的是水,且易挥发,爆炸点范围宽。
脉动式发动机在原地可以起动,构造简单,重量轻,造价便宜。这些都是它的优点。但它只适于低速飞行(速度极限约为每小时640~800公里),飞行高度也有限,单向阀门的工作寿命短,加上振动剧烈,燃油消耗率大等缺点,使得它的应用受到限制。第一章如何设计自己的发动机
设计参数:
1.油气比
喷气发动机依靠油气燃烧产生反作用力,根据油品的爆炸极限燃油与空气重量比,一般在15-20%。即一升空气约需一克的油。
点火步骤:
1.接好油管,注意油箱液面与发动机喷油出口之间的高度不能大于20mm.
2.打开电火花塞或点燃料小火把从尾喷管口伸入。
3.手压风箱,或打气筒朝发动机入口吹风,注意观察看,要使单向阀片被吹开,油被吸入并雾化才行。
调节油阀针控制好油门大小,寻找最佳吹风角度使油能完全雾化。如果发动机还是不能点火,可以拆开机身,调节阀片的角度,与固定螺丝的松紧度。然后再试,直到找到最佳工作点,喷气发动机就会发动起来,撤走风箱及点火源也能持续运行了。