初中数学几何解题技巧9个模板
初中数学几何题解题技巧

初中数学⼏何题解题技巧⽴体⼏何是初中数学中的重要内容,也是学习的难点,⽽且在中考中⽴体⼏何属于必考点,通常在⼀个题⽬中会包含多个⽴体⼏何的考查点,掌握⽴体⼏何解题技巧⾄关重要。
那么接下来给⼤家分享⼀些关于初中数学⼏何题解题技巧,希望对⼤家有所帮助。
⼀.添辅助线有⼆种情况1按定义添辅助线:如证明⼆直线垂直可延长使它们,相交后证交⾓为90°;证线段倍半关系可倍线段取中点或半线段加倍;证⾓的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个⼏何定理都有与它相对应的⼏何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质⽽基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防⽌乱添线,添辅助线也有规律可循。
举例如下:(1)平⾏线是个基本图形:当⼏何中出现平⾏线时添辅助线的关键是添与⼆条平⾏线都相交的等第三条直线(2)等腰三⾓形是个简单的基本图形:当⼏何问题中出现⼀点发出的⼆条相等线段时往往要补完整等腰三⾓形。
出现⾓平分线与平⾏线组合时可延长平⾏线与⾓的⼆边相交得等腰三⾓形。
(3)等腰三⾓形中的重要线段是个重要的基本图形:出现等腰三⾓形底边上的中点添底边上的中线;出现⾓平分线与垂线组合时可延长垂线与⾓的⼆边相交得等腰三⾓形中的重要线段的基本图形。
(4)直⾓三⾓形斜边上中线基本图形出现直⾓三⾓形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直⾓三⾓形的斜边则要添直⾓三⾓形斜边上的中线得直⾓三⾓形斜边上中线基本图形。
(5)三⾓形中位线基本图形⼏何问题中出现多个中点时往往添加三⾓形中位线基本图形进⾏证明当有中点没有中位线时则添中位线,当有中位线三⾓形不完整时则需补完整三⾓形;当出现线段倍半关系且与倍线段有公共端点的线段带⼀个中点则可过这中点添倍线段的平⾏线得三⾓形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平⾏线得三⾓形中位线基本图形。
初三数学解决几何问题的基本方法与技巧

初三数学解决几何问题的基本方法与技巧在初中数学学习中,几何问题一直是学生们较为头疼的一个部分。
而对于初三学生而言,解决几何问题是他们需要掌握的基本技巧之一。
本文将介绍初三数学解决几何问题的基本方法与技巧,帮助学生们更好地应对几何问题。
一、画图是解决几何问题的关键在解决几何问题时,画图是非常重要的一步。
通过将问题抽象为图形,我们可以更直观地理解并分析问题,为接下来的解答提供便利。
在画图时,我们需要注意以下几点技巧:1. 选择合适的坐标系:根据题目的要求与条件,选择合适的坐标系能够更好地理解问题的几何性质。
2. 使用适当的标记:通过标记线段、角度等几何元素,能够更清晰地表达问题中的条件与要求。
3. 勾勒主要形状:将问题所给的图形重点勾勒出来,有助于我们更好地理解问题并进行分析。
二、掌握常见几何定理解决几何问题需要熟练掌握一些常见的几何定理,下面是一些常见的几何定理与技巧:1. 直角三角形与勾股定理:通过勾股定理,可以计算直角三角形中缺失的边长,帮助我们求解问题。
2. 平行线定理与转角定理:在解决平行线问题时,我们需要掌握平行线定理与转角定理,辅助我们分析线段之间的关系。
3. 相似三角形:通过相似三角形的性质,我们可以利用已知条件求解未知的边长比例或角度大小。
4. 圆的性质:掌握圆的切线、弦、弧等性质,可以帮助我们理解并解决与圆相关的几何问题。
三、运用代数方法解决几何问题在解决几何问题时,我们有时可以运用代数方法辅助求解。
例如,通过引入未知量并建立方程,我们可以将几何问题转化为代数问题,并通过代数运算解决。
在运用代数方法时,需要注意以下几点:1. 合理引入未知量:在建立方程时,引入合适的未知量能够使问题得到更好的解决。
2. 建立等式方程:根据问题所给的条件,建立等式方程,然后解方程,找到未知量的值。
3. 检验结果:在得到代数解后,回到几何问题中检验结果的合理性,确保解答正确。
四、多做练习提高解决几何问题的能力最后,多做练习是提高解决几何问题的能力的重要途径。
初中数学九大几何模型解题思路之欧阳学文创作

九大几何模型欧阳学文一、手拉手模型----旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC≌△OBD;②∠AEB=60°;③OE 平分∠AED(2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形; 【结论】:①△OAC≌△OBD;②∠AEB=90°;③OE 平分∠AED(3)顶角相等的两任意等腰三角形【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOBOAB CDE 图 1OAB C D E图 2OABCDE图 1OBCDE图 2OABC DEOCD E图 1图 2【结论】:①△OAC≌△OBD; ②∠AEB=∠AOB; ③OE 平分∠AED二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD∥AB,将△OCD 旋转至右图的位置 【结论】:①右图中△OCD∽△OAB→→→△OAC∽△OBD;②延长AC 交BD 于点E ,必有∠BEC=∠BOA(2)特殊情况【条件】:CD∥AB,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD∽△OAB→→→△OAC∽△OBD;OA BCOB CDEOBCDEOCD②延长AC 交BD 于点E ,必有∠BEC=∠BOA; ③===OAOBOC OD ACBDtan∠OCD;④BD⊥AC; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯= 三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCEOC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM≌△CEN②过点C 作CF⊥OC,如图3,证明△ODC≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4):以上三个结论:①CD=CE;②OE -OD=2OC ;③2△OCD △OCEOC 21S S =-A OBCDE 图 1A OBCDE M N 图 2A OBCDEF图 3A O BCDEMN 图 4(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB 【结论】:①CD=CE;②OD+OE=OC ;③2△OCE △OCD △DCEOC 43S S S =+=证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。
数学几何题解题技巧简述

数学几何题解题技巧简述数学几何题解题技巧简述初中数学的学习是非常重要的,数学成绩也决定了我们中考成绩的好坏,在数学大大小小的考试中,几何证明题是必考知识点,但是很多同学对于这种题型不知道如何下手,下面就让小编给大家带来数学几何题解题技巧,希望大家喜欢!数学几何题解题技巧1、两全等三角形中对应边相等。
2、同一三角形中等角对等边。
3、等腰三角形顶角的平分线或底边的高平分底边。
4、平行四边形的对边或对角线被交点分成的两段相等。
5、直角三角形斜边的中点到三顶点距离相等。
6、线段垂直平分线上任意一点到线段两段距离相等。
7、角平分线上任一点到角的两边距离相等。
8、过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9、同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10、圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11、两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12、两圆的内(外)公切线的长相等。
13、等于同一线段的两条线段相等。
证明两个角相等1、两全等三角形的对应角相等。
2、同一三角形中等边对等角。
3、等腰三角形中,底边上的中线(或高)平分顶角。
4、两条平行线的同位角、内错角或平行四边形的对角相等。
5、同角(或等角)的余角(或补角)相等。
6、同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7、圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8、相似三角形的对应角相等。
9、圆的内接四边形的外角等于内对角。
10、等于同一角的两个角相等证明两直线平行1、垂直于同一直线的各直线平行。
2、同位角相等,内错角相等或同旁内角互补的两直线平行。
3、平行四边形的对边平行。
4、三角形的中位线平行于第三边。
5、梯形的中位线平行于两底。
6、平行于同一直线的两直线平行。
7、一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
(word完整版)八年级数学几何证明题技巧(含答案),推荐文档

D 几何证明题的技巧1.几何证明是平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2.掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3.掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
例1. 已知:如图1 所示,∆ABC 中,∠C = 90︒,AC =BC,AD =DB,AE =CF 。
求证:DE=DF AEC F B图1分析:由∆ABC 是等腰直角三角形可知,∠A =∠B = 45︒,由D 是AB 中点,可考虑连结CD,易得CD =AD ,∠DCF = 45︒。
从而不难发现∆DCF ≅∆DAE证明:连结CDAC =BC∴∠A =∠B∠ACB = 90︒,AD =DB∴CD =BD =AD,∠DCB =∠B =∠AAE =CF,∠A =∠DCB,AD =CD∴∆ADE ≅∆CDF∴DE =DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中EF2 3 1线或高是常用的辅助线。
数学几何问题解题技巧

数学几何问题解题技巧数学几何问题是许多学生在学习数学过程中遇到的难题之一。
解决几何问题需要一定的技巧和方法,下面将介绍一些常用的数学几何问题解题技巧。
一、画图法解决几何问题的第一步是画出几何图形。
通过准确地绘制所给的图形,可以帮助我们更好地理解问题,并找到解决方案。
在画图时要注意几何图形的形状、比例和准确度。
二、利用已知信息解决几何问题时,首先要充分利用已知信息。
读题时要将已知条件逐一列出,并理解它们之间的关系。
根据已知信息,可以通过几何定理或公式来推导所需的结果。
三、几何定理的灵活运用几何定理是解决几何问题的重要工具。
我们需要熟练掌握各种几何定理,并能够灵活地运用它们。
在解决几何问题时,常常需要将不同的几何定理相结合使用,找到解题的关键点。
四、角度与边的关系解决几何问题时,角度与边的关系是非常重要的一点。
我们需要通过观察几何图形中的角度和边的长度,寻找它们之间的关联。
利用角度与边的关系,可以推导出所求的结果。
五、相似和全等三角形相似和全等三角形是几何问题中常见的概念。
当我们遇到几何问题时,可以尝试通过相似或全等三角形来求解。
相似三角形的对应边比值相等,而全等三角形的对应边长度相等。
通过应用相似或全等三角形的性质,可以简化解题过程。
六、运用代数解题在某些情况下,几何问题可以通过代数的方法来解决。
我们可以用变量表示未知量,列方程,然后通过求解方程来得到答案。
这种方法通常适用于几何问题与代数问题相结合的情况。
七、结合图形推导有些几何问题无法直接得出结论,需要通过推导来解决。
我们可以在几何图形中引入辅助线或辅助点,通过推导和类似三角形等方法来解题。
这种方法通常需要一定的想象力和思考能力。
综上所述,解决数学几何问题需要一定的技巧和方法。
通过合理运用画图法、利用已知信息、几何定理、角度与边的关系、相似和全等三角形、代数解题以及结合图形推导等技巧,我们可以提高解题的效率和准确性。
希望以上的数学几何问题解题技巧对你有所帮助!。
初中数学中常见的解析几何题解题技巧
初中数学中常见的解析几何题解题技巧解析几何是初中数学中的重要内容之一,它将代数和几何相结合,通过运用代数的方法解决几何问题。
在解析几何的学习中,我们可以运用一些解题技巧来帮助我们更好地理解和解决问题。
本文将介绍初中数学中常见的解析几何题解题技巧。
一、直线的方程在解析几何中,直线是一个重要的概念,我们常常需要求解直线的方程,从而能够更好地研究直线的性质。
求解直线方程的关键是确定直线上的一点和直线的斜率。
1. 斜率的求解直线的斜率是指直线上两个不同点之间纵坐标的差值与横坐标的差值的比值。
可以通过已知的两个点坐标来求解斜率。
设已知直线上两个点A(x1, y1)和B(x2, y2),则直线的斜率可以表示为k=(y2-y1)/(x2-x1)。
2. 直线方程的写法直线的方程一般写作y=kx+b的形式,其中k为直线的斜率,b为直线与y轴的截距。
已知斜率和一点坐标可以轻松求得直线方程。
当已知直线上的两个点时,可以先求解斜率,再利用任意一点代入直线方程求解截距。
二、直线的性质了解直线的性质可以帮助我们更好地理解和运用解析几何中的概念。
直线的性质有以下几个方面:1. 平行和垂直关系平行的直线具有相同的斜率,垂直的直线的斜率互为相反数,可以通过斜率的关系判断直线的平行和垂直关系。
2. 线段的长度要计算直线上两点之间的距离,可以利用勾股定理。
设已知两点A(x1, y1)和B(x2, y2),则直线AB的长度可以计算为d=sqrt((x2-x1)^2+(y2-y1)^2)。
三、圆的方程圆是解析几何中的另一个主要内容,我们经常需要求解圆的方程和圆与直线的交点。
1. 圆的标准方程设圆的圆心坐标为(x0, y0),半径为r,则圆的标准方程可以表示为(x-x0)^2+(y-y0)^2=r^2。
2. 圆与直线的交点求解圆与直线的交点可以通过联立直线方程和圆的方程求解。
将直线方程代入圆的方程,可以得到一个二次方程,解这个方程可以得到圆与直线的交点坐标。
初中数学:几何10大解法!太全了,快为孩子收藏吧!
初中数学:几何10大解法!太全了,快为孩子收藏吧!
为你私人定制的资讯客户端
初中数学:庆幸我一直“坚持”这一点,从初一到初三数学一直满分!
高考必胜昨天
初中数学:一目了然,这样做辅助线,几何就是送分题!
阳光一缕教育昨天
应对期末,看见数学就头痛?20道经典题型,教你几何所有解题方法和思路!
初中数学老师昨天
初中数学:几何10大解法!太全了,快为孩子收藏吧!
辰希教育
昨天
1条评论
关注
很多学生面对数学几何问题都是非常头疼的。
其实,掌握正确的学习方法和解题技巧,做几何题可以说是手到擒来!
下面,我将这十种方法分享给各位家长,希望可以帮助您的孩子提高数学成绩。
1、概念法
2、看外高
3、代数法
4、扩倍、缩倍法
5、等腰直角三角形
6、等量代换
7、割补平移
8、倍比法
9、添加辅助线
10、分割法。
初中数学几何压轴题模型与构造方法附解题技巧
初中数学几何压轴题模型与构造方法附解题技巧全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
模型变换说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。
当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
几何最终模型对称最值(两点间线段最短)对称最值(点到直线垂线段最短)说明:通过对称进行等量代换,转换成两点间距离及点到直线距离。
数学几何题目解题技巧整理
数学几何题目解题技巧整理解题技巧一:理清题目要求在解决数学几何题目之前,首先要仔细阅读题目,理解题目要求。
要注意判断题目所给条件以及需要推导的结论,确保清楚问题所涉及的几何概念和定理。
解题技巧二:绘制清晰准确的图形绘制图形有助于我们更好地理解题目,并直观地观察几何形状之间的关系。
在绘制图形时,要保证图形清晰、准确,注重比例和尺寸的准确性。
同时,要标注出已知条件和需要求解的未知量,以便后续分析和推导。
解题技巧三:利用几何性质和定理在解决几何问题时,我们需要充分利用已知的几何性质和定理来推导未知量。
熟练掌握一些基本的几何定理,如勾股定理、相似三角形的性质、圆的性质等,可以为我们解题提供很大的帮助。
同时,要注意将题目中的几何条件与相应的定理进行联系,灵活应用。
解题技巧四:使用代数方法解题有些几何问题可以通过代数方法求解,特别是涉及到线性方程组、二次方程等等。
当几何问题难以直接求解或分析时,可以通过引入代数符号,构建代数方程来辅助解题。
这样可以将几何问题转化为代数问题,应用代数知识进行求解。
解题技巧五:巧妙利用相似性和比例关系相似性和比例关系在几何问题中经常出现,并且常常与几何图形之间的性质相关。
我们可以利用相似性和比例关系来推导出未知量的值,或者利用已知条件与要求解的未知量之间的比例关系来求解。
解题技巧六:思维灵活,多角度分析在解决几何问题时,我们要善于思维灵活,从不同角度分析问题。
有时候,同一个问题可以通过不同的方法来解答,甚至可以从多个角度来理解和解读。
学会多角度思考可以帮助我们更好地理解问题,并找到更有效的解题方法。
解题技巧七:切忌心急冒进在解决几何问题时,切勿心急冒进,要耐心分析和推导,逐步解决问题。
一步一步地进行推导,确保每个步骤都是正确的,避免出现错误。
如果遇到难题,可以先暂时搁置,放松一下思维,或者尝试其他解题思路,寻找突破口。
总结:数学几何题目的解题技巧包括理清题目要求、绘制清晰准确的图形、利用几何性质和定理、使用代数方法解题、巧妙利用相似性和比例关系、思维灵活多角度分析以及切忌心急冒进。