2020届湖南省长沙市雅礼中学2017级高三上学期第二次月考数学(文)试卷及解析
湖南省长沙市雅礼中学2017届高三上学期月考(三)数学理试题 含答案

数学(理科)命题人:杨日武 审题人:周才凯本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共10页,时量120分钟。
满分150分。
第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数21(1)1ii i-+-+(i 为虚数单位)的值为( )A .3iB .2iC .iD .42.“所有9的倍数的数都是3的倍数,5不是9的倍数,故5不是3的倍数.”上述推理( )A .是三段论推理,但大前提错B .是三段论推理,但小前提错C .不是三段论推理,但结论正确D .不是三段论推理,且结论不正确3。
在ABC △中,15a =,10b =,60A =︒,则cos B =( ) A 223 B .223 C 63D .634.设非零向量a ,b ,c 满足a b c ==,a b c +=,则向量a ,b 的夹角为( ) A .150° B .120° C.60° D .30° 5。
已知数组()()()11221010,,,,,x y x y x y 满足线性回归方程y bx a =+,则“()00,x y 满足线性回归方程y bx a =+”是“121012100,1010x x x y y y xy ++++++==”的( )A .充分不必要条件B .必要不充分条件C 。
充要条件D .既不充分也不必要条件6。
《九章算术》是我国古代的数学名著,其中卷六《均输》一节中有这样一个问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何."其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊、所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )A.54钱B.43钱 C.32钱D.53钱7。
如图给出的是计算111124620++++的值的一个程序框图,其中判断框内应填入的条件是()A.10?i>B.10?i< C.20?i>D.20?i<8。
2020届雅礼中学高三第2次月考试卷-理科数学含答案

理科数学试题!雅礼版"!第! 页!共"页"
&!若##'#$##'4$!("*$则与 的夹角为
*+#0
,+0
-+40
.+
6!从$&#中选一个数字!从!&0&%中选两个数字$组成无重复数字的三位数!
其中奇数的个数为
*+#4
,+!"
-+!#
.+&
"!设数列'&*($'&*#(!*+, "都 是 等 差 数 列$若&!'#$则&##(&00(&44 (&%%
理科数学试题!雅礼版"!第!# 页!共"页"
!4!甲&乙 两 名 同 学 参 加 一 项 射 击 比 赛 游 戏$其 中 任 何 一 人 每 射 击 一 次 击 中
目标得#分$未击中目标得$分!若甲&乙两人射击的命中率
分别为
0和 %
1$且甲&乙两人各射击一次得分之和为#的概率为#7$!假设甲&乙两人射
击互不影响$则1 值为!!!!!
! " !%!已知函数)!#"':29!##)")槡09/5!##)" $# 的图象向右平
* ) 移个单位 !#
后
关
于
+
轴
对
称$则
)!#"在
区
间
)#$$ 上 的 最 小 值 为
!!!!!
!&!如图$正方体"$23)"!$!2!3! 的棱长为#槡0$ 动点1 在对角线$3! 上$过点 1 作垂直于$3! 的平面$记这样得到的截面多边形!含三角形"的
【全国百强校】湖南省长沙市雅礼中学 2020届高三第2次月考试卷-理科数学答案

0##"1"
#1#% #1"
* + 所以C:*!#1#"=#
+#C:
!#1#"# ##1"!#1""
0#C:!#1#"!C:!#1""!!#1""C:#!!
下面证#C:!#1#"!C:!#1""!!#1""C:#1## !"#$. *分
77!&"0'!!;"1;#"1;";#!;"0'!#;"!!"!;"";#% 8交换后的派出顺序则变为'!#;"!!"!;"";'% 当;#4;' 时%交换后的派出顺序可增大均值.所以先派出甲%再派乙%最后派丙% 这样能使所需派出的人员数目的均值!数学期望"达到最小!
#"!&解析'!"",!&"的定义域为!!"%1B"%,.!&"0"C:!&1""!#&! 由,!&"是减函数得%对任意的&%!!"%1B"%都有,.!&"0"C:!&1""!#&&$恒成立!
每
一
项
都
除
以
!##!%"!##
!'"%可
得
"#1" ##!'
0 ##"!# %1"%即
湖南省长沙市雅礼中学2024-2025学年高三上学期月考(三)数学试题(含解析)

雅礼中学2025届高三月考试卷(三)数学得分:________本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“存在x ∈Z ,220x x m ++ ”的否定是A.存在x ∈Z ,220x x m ++>B.不存在x ∈Z ,220x x m ++>C.任意x ∈Z ,220x x m ++ D.任意x ∈Z ,220x x m ++>2.若集合{}2341,i ,i ,i A =(i 是虚数单位),{}1,1B =-,则A B ⋂等于A.{}1- B.{}1 C.{}1,1- D.∅3.已知奇函数()()22cos x x f x m x -=+⋅,则m =A.-1B.0C.1D.124.已知m ,l 是两条不同的直线,α,β是两个不同的平面,则下列可以推出αβ⊥的是A.m l ⊥,m β⊂,l α⊥ B.m l ⊥,l αβ⋂=,m α⊂C.m l ,m α⊥,l β⊥ D.l α⊥,m l ,m β5.已知函数()()4cos (0)f x x ωϕω=+>图象的一个最高点与相邻的对称中心之间的距离为5,则6f ϕπ⎛⎫-= ⎪⎝⎭A.0B.2ϕC.4D.2ϕ6.已知M 是圆22:1C x y +=上一个动点,且直线1:30l mx ny m n --+=与直线2:30l nx my m n +--=(m ,n ∈R ,220m n +≠)相交于点P ,则PM 的取值范围为A.1,1⎤-+⎦ B.1⎤-⎦C.1,1⎤-⎦D.1⎤⎦7.P 是椭圆2222:1(0)x y C a b a b+=>>上一点,1F ,2F 是C 的两个焦点,120PF PF ⋅= ,点Q 在12F PF ∠的角平分线上,O 为原点,1OQ PF ,且OQ b =.则C 的离心率为 A.12B.33C.63D.328.设集合(){}{}{}12345,,,,|1,0,1,1,2,3,4,5iAx x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ++++ ”的元素个数为A.60B.90C.120D.130二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图为某地2014年至2023年的粮食年产量折线图,则下列说法正确的是A.这10年粮食年产量的极差为16B.这10年粮食年产量的第70百分位数为35C.这10年粮食年产量的平均数为33.7D.前5年的粮食年产量的方差小于后5年粮食年产量的方差10.已知函数()f x 满足()()22f x f x ππ+=-,()()0f x f x ππ++-=,并且当()0,x π∈时,()cos f x x =,则下列关于函数()f x 说法正确的是A.302f π⎛⎫=⎪⎝⎭B.最小正周期2T π=C.()f x 的图象关于直线x π=对称D.()f x 的图象关于(),0π-对称11.若双曲线22:145x y C -=,1F ,2F 分别为左、右焦点,设点P 是在双曲线上且在第一象限的动点,点I 为12PF F △的内心,()0,4A ,则下列说法不正确的是A.双曲线C 的渐近线方程为045x y±=B.点I 的运动轨迹为双曲线的一部分C.若122PF PF =,12PI xPF yPF =+ ,则29y x -=D.不存在点P ,使得1PA PF +取得最小值答题卡题号1234567891011得分答案第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.523x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为________.13.ABC △各角的对应边分别为a ,b ,c ,满足1b ca c a b+++ ,则角A 的取值范围为________.14.对任意的*n ∈N ,不等式11e 1nan n n ⎛⎫⎛⎫+⋅ ⎪ ⎪+⎝⎭⎝⎭(其中e 是自然对数的底)恒成立,则a 的最大值为________.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设n S 为正项等比数列{}n a 的前n 项和,21332S a a =+,416a =.(1)求数列{}n a 的通项公式;(2)数列{}n b 满足11b =,1222log log n nn n b a b a ++=,求数列{}n b 的前n 项和n T .16.(本小题满分15分)如图,在四棱锥P ABCD -,BC AD ,1AB BC ==,3AD =,点E 在AD 上,且PE AD ⊥,2DE PE ==.(1)若F 为线段PE 的中点,求证:BF平面PCD ;(2)若AB ⊥平面PAD ,求平面PAB 与平面PCD 所成夹角的余弦值.17.(本小题满分15分)已知函数()21ln 2f x x x ax =+-有两个极值点为1x ,()212x x x <,a ∈R .(1)当52a =时,求()()21f x f x -的值;(2)若21e x x (e 为自然对数的底数),求()()21f x f x -的最大值.18.(本小题满分17分)已知抛物线2:2(0)E x py p =>的焦点为F ,H 为E 上任意一点,且HF 的最小值为1.(1)求抛物线E 的方程;(2)已知P 为平面上一动点,且过P 能向E 作两条切线,切点为M ,N ,记直线PM ,PN ,PF 的斜率分别为1k ,2k ,3k ,且满足123112k k k +=.①求点P 的轨迹方程;②试探究:是否存在一个圆心为()0,(0)Q λλ>,半径为1的圆,使得过P 可以作圆Q 的两条切线1l ,2l ,切线1l ,2l 分别交抛物线E 于不同的两点()11,A s t ,()22,B s t 和点()33,C s t ,()44,D s t ,且1234s s s s 为定值?若存在,求圆Q 的方程,不存在,说明理由.19.(本小题满分17分)对于一组向量1a ,2a ,3a ,…,n a(N n ∈且3n ),令123n n S a a a a =++++ ,如果存在{}()1,2,3,,p a p n ∈ ,使得p n p a S a - ,那么称p a是该向量组的“长向量”.(1)设(),2n a n x n =+,n ∈N 且0n >,若3a 是向量组1a ,2a ,3a的“长向量”,求实数x 的取值范围;(2)若sin,cos 22n n n a ππ⎛⎫= ⎪⎝⎭,n ∈N 且0n >,向量组1a ,2a ,3a ,…,7a 是否存在“长向量”?给出你的结论并说明理由;(3)已知1a ,2a ,3a均是向量组1a,2a,3a的“长向量”,其中()1sin ,cos a x x =,()22cos ,2sin a x x =.设在平面直角坐标系中有一点列1P ,2P ,3P ,…,n P ,满足1P 为坐标原点,2P 为3a的位置向量的终点,且21k P +与2k P 关于点1P 对称,22k P +与21k P +(k ∈N 且0k >)关于点2P 对称,求10151016P P 的最小值.参考答案一、二、选择题题号1234567891011答案DCADCBCDACDADABD1.D2.C【解析】集合{}i,1,1,i A =--,{}1,1B =-,{}1,1A B ⋂=-.故选C.3.A 【解析】()f x 是奇函数,()()22cos xxf x m x -=+⋅,()()()2222xx x x f x f x m --⎡⎤∴+-=+++⎣⎦cos 0x =,()()122cos 0x x m x -∴++=,10m ∴+=,1m =-.故选A.4.D【解析】有可能出现α,β平行这种情况,故A 错误;会出现平面α,β相交但不垂直的情况,故B 错误;m l ,m α⊥,l βαβ⊥⇒ ,故C 错误;l α⊥,m l m α⇒⊥ ,又由m βαβ⇒⊥ ,故D 正确.故选D.5.C【解析】设()f x 的最小正周期为T ,函数图象的一个最高点与相邻的对称中心之间的距离为5,则有224254T ⎛⎫+= ⎪⎝⎭,得12T =,则有212πω=,解得6πω=,所以()4cos 6f x x πϕ⎛⎫=+ ⎪⎝⎭,所以664cos 4cos046f ϕϕπϕππ⎛⎫⎛⎫-=-⨯+== ⎪ ⎪⎝⎭⎝⎭.故选C.6.B 【解析】依题意,直线()()1:310l m x n y ---=恒过定点()3,1A ,直线()()2:130l n x m y -+-=恒过定点()1,3B ,显然直线12l l ⊥,因此,直线1l 与2l 交点P 的轨迹是以线段AB 为直径的圆,其方程为:22(2)(2)2x y -+-=,圆心()2,2N ,半径2r =,而圆C 的圆心()0,0C ,半径11r =,如图:12NC r r =>+,两圆外离,由圆的几何性质得:12min1PM NC r r =--=,12max1PMNC r r =++=,所以PM 的取值范围为1⎤-⎦.故选B.7.C【解析】如图,设1PF m =,2PF n =,延长OQ 交2PF 于点A,由题意知1OQ PF ,O 为12F F 的中点,故A 为2PF 中点,又120PF PF ⋅= ,即12PF PF ⊥,则2QAP π∠=,又由点Q 在12F PF ∠的角平分线上得4QPA π∠=,则AQP △是等腰直角三角形,故有2222,4,11,22m n a m n c b n m ⎧⎪+=⎪+=⎨⎪⎪+=⎩化简得2,2,m n b m n a -=⎧⎨+=⎩即,,m a b n a b =+⎧⎨=-⎩代入2224m n c +=得222()()4a b a b c ++-=,即2222a b c +=,又222b ac =-,所以2223a c =,所以223e =,63e =.故选C.8.D 【解析】因为0i x =或1i x =,所以若1234513x x x x x ++++ ,则在()1,2,3,4,5i x i =中至少有一个1i x =,且不多于3个.所以可根据i x 中含0的个数进行分类讨论.①五个数中有2个0,则另外3个从1,-1中取,共有方法数为2315C 2N =⋅,②五个数中有3个0,则另外2个从1,-1中取,共有方法数为3225C 2N =⋅,③五个数中有4个0,则另外1个从1,-1中取,共有方法数为435C 2N =⋅,所以共有23324555C 2C 2C 2130N =⋅+⋅+⋅=种.故选D.9.ACD 【解析】将样本数据从小到大排列为26,28,30,32,32,35,35,38,39,42,这10年的粮食年产量极差为422616-=,故A 正确;1070%7⨯=,结合A 选项可知第70百分位数为第7个数和第8个数的平均数,即353836.52+=,故B 不正确;这10年粮食年产量的平均数为。
2020届湖南省株洲市二中2017级高三上学期第二次月考数学(文)试卷及答案

0,h ( x) 单调递减,可知 h( x) max
=
h
2
=
2
,
∴ a +1 ,a −1 ,∵ a Z ,∴整数 a 的最小值为 1.故选 A. 22
二、填空题:本题共 4 小题,每题 5 分,共 20 分. 13.已知向量 a=(2,1) , b = (m, −1) ,且 a ⊥ (a − b) ,则实数 m=_________________.3
则|PM|-|PN|的最大值为
( D)
A. 6
B.7
C.8
D.9
11.函数 f (x) = ln | 1− x | 的大致图象为 1+ x
(B )
12. 已知 f ( x) = x3 + x 是定义在 R 上的函数,且对于任意 x (0, ) ,不等式
f ( x sin x −1) + f (cos x − a)≤0 恒成立,则整数 a 的最小值为
2020届湖南省株洲市二中2017级高三上学期第二次月考
数学(文)试题答案
一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项
是符合题目要求的.
1.集合 A = 1, 2,3, 4 , B = x | x2 − 2x − 3 0 ,则 A B =
(A )
D.命题“ x [1, 2] , x2 − a 0 ”为真命题的一个充分不必要条件是 a 4
( A) (B ) (C ) (D )
7.设an 是公差不为 0 的等差数列, a1 = 2 且 a1, a3, a6 成等比数列,则an 的前 8 项和 S8 =( C )
A. 16
B. 24
C. 30
2017-2018学年湖南省雅礼中学高三(下)第二次月考数学试卷(理科) Word版含解析

2017-2018学年湖南省雅礼中学高三(下)第二次月考数学试卷(理科)一.选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.把答案填在答题卡中对应题号的框框内.)1.已知集合A={﹣2,﹣1,0,1,2,3},集合,则A∩B等于()A.{﹣2,﹣1,0,1} B.{﹣1,0,1} C.{﹣1,0,1,2} D.{﹣1,0,1,2,3}2.若A、B均是非空集合,则A∩B≠∅是A⊆B的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件3.(中诱导公式、基本公式)已知,且,则tan(2π﹣α)的值为()A.B.C.D.4.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的左视图面积为()A.2B.C.2D.45.已知向量满足:,与的夹角为,则=()A.2 B.4 C.2D.86.设x,y满足约束条件,则目标函数z=的最小值为()A.2 B.1 C.D.﹣27.设f(x)定义如下面数表,{x n}满足x0=5,且对任意自然数n均有x n+1=f(x n),则x2014的值为()x 1 234 5f(x)4 135 2A.4 B.1 C.3 D.28.如图,长沙河西先导区某广场要划定一矩形区域ABCD,并在该区域内开辟出三块形状大小相同的矩形绿化区,这三块绿化区四周和绿化区之间设有1米宽的走道.已知三块绿化区的总面积为800平方米,则该矩形区域ABCD占地面积的最小值为()平方米.A.900 B.920 C.948 D.9689.已知函数,若存在x1<x2,使得f(x1)=f(x2),则x1•f (x2)的取值范围为()A.B.C.D.10.设定义在R上的偶函数f(x)满足f(x+2)=f(x),f′(x)是f(x)的导函数,当x∈[0,1]时,0≤f(x)≤1;当x∈(0,2)且x≠1时,x(x﹣1)f′(x)<0.则方程f(x)=lg|x|根的个数为()A.12 B.1 6 C.18 D.20二.填空题:本大题共1小题,考生作答5小题,每小题5分,共25分,把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第11、12、13题中任选两题作答,如果全做,则按前两题给分)【几何证明选讲】11.如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E,已知⊙O的半径为3,PA=2,则OE=.【极坐标系与参数方程选讲】12.已知曲线C的参数方程为(θ为参数),直线l的极坐标方程为,它们的交点在平面直角坐标系中的坐标为.【不等式选讲】1011•天津)已知集合A={x∈R||x+3|+|x﹣4|≤9},B=,则集合A∩B=.(二)必做题(14~16题)14.设(其中e为自然对数的底数),则的值为.15.动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是.16.已知数列{a n}的前n项和S n=(﹣1)n•n,若对任意正整数n,(a n+1﹣p)(a n﹣p)<0恒成立,则实数P的取值范围是.三.解答题:本大题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤.17.设函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)当时,求函数f(x)的最大值和最小值.18.设数列{a n}的前n项和为S n,已知对任意正整数n,都有S n+2=2a n成立.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求证:T n<3.19.如图所示,在平面四边形ABCD中,,与的夹角为,与的夹角为.(1)求△CDE的面积S;(2)求.20.已知函数f(x)=lnx﹣ax+﹣1(a∈R)(1)当a=﹣1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)当a≤时,讨论f(x)的单调性.21.若数列{a n}(n∈N*)满足:①a n≥0;②a n﹣2a n+1+a n+2≥0;③a1+a2+…+a n≤1,则称数列{a n}为“和谐”数列.(1)已知数列{a n},(n∈N*),判断{a n}是否为“和谐”数列,说明理由;(2)若数列{a n}为“和谐”数列,证明:.(n∈N*)22.已知函数f(x)=(1)当x>0时,证明:f(x)>;(2)当x>﹣1且x≠0时,不等式f(x)<恒成立,求实数k的值.2017-2018学年湖南省雅礼中学高三(下)第二次月考数学试卷(理科)参考答案与试题解析一.选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.把答案填在答题卡中对应题号的框框内.)1.已知集合A={﹣2,﹣1,0,1,2,3},集合,则A∩B等于()A.{﹣2,﹣1,0,1} B.{﹣1,0,1} C.{﹣1,0,1,2} D.{﹣1,0,1,2,3}考点:交集及其运算.专题:集合.分析:根据集合的基本运算进行求解即可.解答:解:∵A={﹣2,﹣1,0,1,2,3},集合,∴A∩B={﹣1,0,1},故选:B点评:本题主要考查集合的基本运算,比较基础.2.若A、B均是非空集合,则A∩B≠∅是A⊆B的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:规律型.分析:判断出“A∩B≠∅”成立推不出“A⊆B”反之,若“A⊆B”成立,则能推出A∩B≠∅”一定成立,利用充要条件的有关定义得到结论.解答:解:若“A∩B≠∅”成立推不出“A⊆B”反之,若“A⊆B”成立,则有A∩B=A≠∅,所以A∩B≠∅”一定成立,所以A∩B≠∅是A⊆B的必要不充分条件,故选B.点评:本题考查判断一个条件是另一个的什么条件,应该先化简各个条件,若条件是数集的形式,常转化为判断集合间的包含关系.3.(中诱导公式、基本公式)已知,且,则tan (2π﹣α)的值为()A.B.C.D.考点:同角三角函数基本关系的运用.专题:计算题.分析:先根据诱导公式化简已知条件,得到sinα的值,然后由α的范围,利用同角三角函数间的基本关系求出cosα的值,把所求的式子利用诱导公式化简后,再根据同角三角函数间的基本关系把切化弦后,将sinα和cosα的值代入即可求出值.解答:解:由,又,得,则.故选B点评:此题考查学生灵活运用诱导公式及同角三角函数间的基本关系化简求值,是一道中档题.学生在求cosα的值时应注意α的范围.4.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的左视图面积为()A.2B.C.2D.4考点:简单空间图形的三视图.专题:计算题;空间位置关系与距离.分析:三棱柱的左视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中做出底边上的高的长度,得到结果.解答:解:由题意知三棱柱的左视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中,底边上的高是,∴侧视图的面积是2故选:A.点评:本题考查简单的空间图形三视图,考查三视图的面积的计算,考查通过原图观察三视图的大小,比较基础.5.已知向量满足:,与的夹角为,则=()A.2 B.4 C.2D.8考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据向量的数量积的应用进行转化即可.解答:解:,与的夹角为,∴•=||||cos=1×=1,则===2,故选:A点评:本题主要考查向量长度的计算,根据向量数量积的应用是解决本题的关键.6.设x,y满足约束条件,则目标函数z=的最小值为()A.2 B.1 C.D.﹣2考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用z的几何意义,结合数形结合即可得到结论.解答:解:作出不等式组对应的平面区域如图:z=的几何意义为平面区域内的点到定点D(﹣1,﹣1)的斜率,由图象知BD的斜率最小,其中B(1,0),则z==,故选:C点评:本题主要考查线性规划以及斜率的应用,利用z的几何意义,利用数形结合是解决本题的关键.7.设f(x)定义如下面数表,{x n}满足x0=5,且对任意自然数n均有x n+1=f(x n),则x2014的值为()x 1 234 5f(x)4 135 2A.4 B.1 C.3 D.2考点:函数的值.专题:函数的性质及应用.分析:数列{x n}满足x0=5,且对任意自然数n均有x n+1=f(x n),利用表格可得:可得x1=f (x0)=f(5)=2,x2=f(x1)=f(2)=1,x3=f(x2)=f(1)=4,x4=f(x3)=f(4)=5,x5=f (x4)=f(5)=2,…,于是得到x n+4=x n,进而得出答案.解答:解:∵数列{x n}满足x0=5,且对任意自然数n均有x n+1=f(x n),利用表格可得:∴x1=f(x0)=f(5)=2,x2=f(x1)=f(2)=1,x3=f(x2)=f(1)=4,x4=f(x3)=f(4)=5,x5=f(x4)=f(5)=2,…,∴x n+4=x n,∴x2014=x503×4+2=x2=1.故选:B点评:本题考查了数列的周期性,根据已知分析出函数的周期为4,是解答的关键,属于中档题.8.如图,长沙河西先导区某广场要划定一矩形区域ABCD,并在该区域内开辟出三块形状大小相同的矩形绿化区,这三块绿化区四周和绿化区之间设有1米宽的走道.已知三块绿化区的总面积为800平方米,则该矩形区域ABCD占地面积的最小值为()平方米.A.900 B.920 C.948 D.968考点:基本不等式在最值问题中的应用.专题:应用题;函数的性质及应用;不等式的解法及应用.分析:设绿化区域小矩形的一边长为x,另一边长为y,推出3xy=800,从而得到矩形ABCD 的面积S=(3x+4)(y+2),然后利用基本不等式,由此能够求出结果.解答:解:设绿化区域小矩形的一边长为x,另一边长为y,则3xy=800,∴y=.即矩形区域ABCD的面积S=(3x+4)(y+2)=(3x+4)(+2)=800+6x++8≥808+2=968.当且仅当6x=,即x=时取“=”,∴矩形区域ABCD的面积的最小值为968平方米.故选D.点评:本题考查函数问题在生产生活中的实际应用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地运用基本不等式求最值.9.已知函数,若存在x1<x2,使得f(x1)=f(x2),则x1•f (x2)的取值范围为()A.B.C.D.考点:函数的零点;函数的值域;不等关系与不等式.专题:函数的性质及应用.分析:根据函数的解析式画出函数的图象,根据题意数形结合求得x1•f(x2)的取值范围.解答:解:①当0≤x<时,≤f(x)=x+<1.故当x=时,f(x)=.②当≤x≤1时,≤f(x)=3x2≤3,故当x=时,f(x)=1.若存在x1<x2,使得f(x1)=f(x2)=k,则≤x1 <≤x2 <1,如图所示:显然当k=f(x1)=f(x2)=时,x1•f(x2)取得最小值,此时,x1=,x2=,x1•f(x2)的最小值为=.显然,当k=f(x1)=f(x2)趋于1时,x1•f(x2)趋于最大,此时,x1趋于,x2趋于,x1•f(x2)趋于=.故x1•f(x2)的取值范围为,故选C.点评:本题考查函数的单调性,考查学生分析解决问题的能力,体现了数形结合的数学思想,属于中档题.10.设定义在R上的偶函数f(x)满足f(x+2)=f(x),f′(x)是f(x)的导函数,当x∈[0,1]时,0≤f(x)≤1;当x∈(0,2)且x≠1时,x(x﹣1)f′(x)<0.则方程f(x)=lg|x|根的个数为()A.12 B.1 6 C.18 D.20考点:导数的运算;抽象函数及其应用;根的存在性及根的个数判断.专题:函数的性质及应用.分析:依据函数的周期性,画出函数y=f(x)的图象,再在同一坐标系下画出y=lg|x|的图象(注意此函数为偶函数),数形结合即可数出两图象交点的个数解答:解:∵f(x+2)=f(x),∴函数y=f(x)的周期是2,又∵当x∈(0,2)且x≠1时,x(x﹣1)f′(x)<0,∴当0<x<1时,x(x﹣1)<0,则f′(x)>0,函数在[0,1]上是增函数又由当x∈[0,1]时,0≤f(x)≤1,则f(0)=0,f(1)=1.而y=lg|x|是偶函数,当x>0时,其图象为y=lgx的图象,即函数为增函数,由于x=10时,y=lg10=1,∴其图象与f(x)的图象在[0,2]上有一个交点,在每个周期上各有两个交点,∴在y轴右侧共有9个交点.∵y=lg|x|是偶函数,其图象关于y轴对称,∴在y轴左侧也有9个交点∴两函数图象共有18个交点.故选:C.点评:本体考查了函数的周期性,奇偶性及函数图象的画法,重点考查数形结合的思想方法,属基础题.二.填空题:本大题共1小题,考生作答5小题,每小题5分,共25分,把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第11、12、13题中任选两题作答,如果全做,则按前两题给分)【几何证明选讲】11.如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E,已知⊙O的半径为3,PA=2,则OE=.考点:与圆有关的比例线段.专题:选作题;立体几何.分析:利用切割线定理,求出PC,再利用等面积可得结论.解答:解:∵PC切圆O于点C,圆O的半径为3,PA=2,∴PC2=PA•PB=16,∴PC=4,又OC=3,∴OP=5,∴由等面积可得=,∴OE==.故答案为:.点评:本题考查切割线定理,考查学生的计算能力,正确运用切割线定理是关键.【极坐标系与参数方程选讲】12.已知曲线C的参数方程为(θ为参数),直线l的极坐标方程为,它们的交点在平面直角坐标系中的坐标为.考点:参数方程化成普通方程.专题:坐标系和参数方程.分析:曲线C的参数方程为(θ为参数),利用cos2θ+sin2θ=1即可化为直角坐标方程.利用x=ρcosθ即可把直线l的极坐标方程,化为直角坐标方程,联立解出即可.解答:解:曲线C的参数方程为(θ为参数),化为=1.直线l的极坐标方程为,化为x=,把x=代入椭圆方程解得y=0.∴它们的交点在平面直角坐标系中的坐标为.故答案为:.点评:本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与椭圆的交点,考查了计算能力,属于基础题.【不等式选讲】1011•天津)已知集合A={x∈R||x+3|+|x﹣4|≤9},B=,则集合A∩B={x|﹣2≤x≤5}.考点:交集及其运算.专题:集合.分析:求出集合A,求出集合B,然后利用集合的运算法则求出A∩B.解答:解:集合A={x∈R||x+3|+|x﹣4|≤9},所以A={x|﹣4≤x≤5};集合,,当且仅当t=时取等号,所以B={x|x≥﹣2},所以A∩B={x|﹣4≤x≤5}∩{x|x≥﹣2}={x|﹣2≤x≤5},故答案为:{x|﹣2≤x≤5}.点评:本题是基础题,考查集合的基本运算,注意求出绝对值不等式的解集,基本不等式求出函数的值域,是本题解题是关键,考查计算能力.(二)必做题(14~16题)14.设(其中e为自然对数的底数),则的值为.考点:定积分.专题:计算题.分析:根据定积分的运算法则进行计算,将区间(0,e2)拆为(0,1)、(1,e2)两个区间,然后进行计算;解答:解:∵,∴则=+=+=+=+2=,故答案为.点评:此题主要考查定积分的计算,这是高考新增的内容,同学们要多加练习.15.动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是[0,1]和[7,12].考点:函数的单调性及单调区间.专题:创新题型.分析:点A的初始角为60°,当点A转过的角度在[0°,30°]或[210°,360°]时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增,再把角度区间转化为对应的时间区间.解答:解:t=0时,点A的坐标是,∴点A的初始角为60°,当点A转过的角度在[0°,30°]或[210°,360°]时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增,∵12秒旋转一周,∴每秒转过的角度是360°÷12=30°,210°÷30=7,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是[0,1]和[7,12],故答案为:[0,1]和[7,12].点评:本题考查函数的单调性及单调区间,体现了转化的数学思想.16.已知数列{a n}的前n项和S n=(﹣1)n•n,若对任意正整数n,(a n+1﹣p)(a n﹣p)<0恒成立,则实数P的取值范围是(﹣1,3).考点:数列的函数特性.专题:点列、递归数列与数学归纳法.分析:当n=1时,a1=S1=﹣1;当n≥2时,a n=S n﹣S n﹣1.即可得出a n.由于对任意正整数n,(a n+1﹣p)(a n﹣p)<0恒成立,分类讨论:n是奇数时,求得p的取值范围;当n是正偶数时,求得p的取值范围,再求其交集即可.解答:解:当n=1时,a1=S1=﹣1;当n≥2时,a n=S n﹣S n﹣1=(﹣1)n n﹣(﹣1)n﹣1(n﹣1)=(﹣1)n(2n﹣1).∵对任意正整数n,(a n+1﹣p)(a n﹣p)<0恒成立,∴[(﹣1)n+1(2n+1)﹣p][(﹣1)n(2n﹣1)﹣p]<0,①当n是奇数时,化为[p﹣(2n+1)][p+(2n﹣1)]<0,解得1﹣2n<p<2n+1,∵对任意正奇数n都成立,取n=1时,可得﹣1<p<3.②当n是正偶数时,化为[p﹣(2n﹣1)][p+(1+2n)]<0,解得﹣1﹣2n<p<2n﹣1,∵对任意正偶数n都成立,取n=2时,可得﹣5<p<3.联立,解得﹣1<p<3.∴实数P的取值范围是(﹣1,3).故答案为:(﹣1,3).点评:本题考查了“当n=1时,a1=S1;当n≥2时,a n=S n﹣S n﹣1”求数列的通项公式a n的方法、交集的运算法则、分类讨论思想方法,属于难题.三.解答题:本大题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤.17.设函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)当时,求函数f(x)的最大值和最小值.考点:三角函数的周期性及其求法;三角函数的最值.专题:计算题.分析:(Ⅰ)利用诱导公式化简,再用二倍角公式化简,得到,化为求出周期.(Ⅱ)当时,求出的范围,然后求函数f(x)的最大值和最小值.解答:解:===.(6分)(Ⅰ),故f(x)的最小正周期为π.(7分)(Ⅱ)因为0≤x≤,所以.(9分)所以当,即时,f(x)有最大值0,(11分)当,即x=0时,f(x)有最小值.(13分)点评:本题考查三角函数的周期性及其求法,三角函数的最值,考查计算能力,是基础题.18.设数列{a n}的前n项和为S n,已知对任意正整数n,都有S n+2=2a n成立.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求证:T n<3.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(1)通过S1+2=2a1可知a1=2.通过S n+2=2a n与S n+1+2=2a n+1作差、整理可知数列{a n}是公比为2的等比数列,进而计算可得结论;(2)通过写出T n、T n的表达式,利用错位相减法计算即得结论.解答:(1)解:当n=1时,S1+2=2a1,所以a1=2.因为S n+2=2a n,则S n+1+2=2a n+1.两式相减,得S n+1﹣S n=2(a n+1﹣a n),即a n+1=2(a n+1﹣a n),即a n+1=2a n.所以数列{a n}是首项为2、公比为2的等比数列,故.(2)证明:∵,∴.①.②①﹣②,得=.∴.∵,∴T n<3.点评:本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.19.如图所示,在平面四边形ABCD中,,与的夹角为,与的夹角为.(1)求△CDE的面积S;(2)求.考点:余弦定理;平面向量数量积的运算;正弦定理.专题:解三角形;平面向量及应用.分析:(1)由题意可得DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.设∠CED=α.运用余弦定理和正弦定理,再由面积公式,即可得到所求S;(2)求得cosα,以及cos∠AEB=cos(﹣α),再由解直角三角形,即可得到所求.解答:解:由题意可知:DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.设∠CED=α.(1)在△CDE中,由余弦定理,得EC2=CD2+DE2﹣2CD•DE•cos∠EDC,于是由题设知,7=CD2+1+CD,即CD2+CD﹣6=0,解得CD=2(CD=﹣3舍去).在△CDE中,由正弦定理,得,于是,sinα===,即sin∠CED=.于是,;(2)由题设知,0<α<,于是由(1)知,cosα===.而∠AEB=﹣α,所以cos∠AEB=cos(﹣α)=cos cosα+sin sinα=﹣cosα+sinα=﹣×+×=.在Rt△EAB中,cos∠AEB==,故=BE===4.点评:本题主要考查余弦定理和正弦定理、面积公式的运用,同时考查向量垂直的条件,同角公式和两角差的余弦公式,属于中档题.20.已知函数f(x)=lnx﹣ax+﹣1(a∈R)(1)当a=﹣1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)当a≤时,讨论f(x)的单调性.考点:利用导数研究曲线上某点切线方程.专题:计算题;导数的概念及应用;导数的综合应用.分析:(1)求出当a=﹣1时的函数的导数,切线的斜率,切点坐标,再由点斜式方程,即可得到切线方程;(2)求出f(x)的导数,令g(x)=ax2﹣x+1﹣a,x>0,对a讨论,当a=0时,当a≠0时,①a=,②若0<a<,③当a<0时,函数的单调性,写出单调区间即可.解答:解:(1)当a=﹣1时,f(x)=lnx+x+﹣1(x>0),f′(x)=+1﹣,f(2)=ln2+2,f′(2)=1,则切线方程为:y=x+ln2;(2)因为f(x)=lnx﹣ax+﹣1,所以f′(x)=﹣a=﹣(x>0),令g(x)=ax2﹣x+1﹣a,x>0,(i)当a=0时,g(x)=﹣x+1(x>0),所以当0<x<1时g(x)>0,f′(x)<0,此时函数f(x)单调递减,x∈(1,∞)时,g(x)<0,f′(x)>0此时函数f,(x)单调递增.(ii)当a≠0时,由f(x)=0,解得:x1=1,x2=1﹣,①a=,函数f(x)在x>0上单调递减,②若0<a<,在(0,1),(﹣1,+∞)单调递减,在(1,﹣1)上单调递增.③当a<0时,由于﹣1<0,x∈(0,1)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减;x∈(1,∞)时,g(x)<0,f′(x)>0,此时函数f(x)单调递增.综上所述:当a≤0 时,函数f(x)在(0,1)上单调递减;函数f(x)在(1,+∞)上单调递增当a=时,函数f(x)在(0,+∞)上单调递减当0<a<时,函数f(x)在(0,1),(﹣1,+∞)单调递减,在(1,﹣1)上单调递增.点评:本题考查导数的运用:求切线方程和单调区间,考查分类讨论的思想方法,考查运算能力,属于中档题.21.若数列{a n}(n∈N*)满足:①a n≥0;②a n﹣2a n+1+a n+2≥0;③a1+a2+…+a n≤1,则称数列{a n}为“和谐”数列.(1)已知数列{a n},(n∈N*),判断{a n}是否为“和谐”数列,说明理由;(2)若数列{a n}为“和谐”数列,证明:.(n∈N*)考点:数列的求和;数列递推式.专题:点列、递归数列与数学归纳法.分析:(1)通过对比“和谐”数列的三个条件,因此验证是否满足即可;(2)通过构造数列{c n}(c n=a n﹣a n+1),通过②可知c n≥c n+1,通过放缩可知a1+a2+…+a n≥,利用③化简即得结论.解答:(1)结论:数列{a n}为“和谐”数列.理由如下:对于数列{a n}数列{a n},显然符合①.∵,∴符合②∵,∴符合③综上所述,数列{a n}为“和谐”数列.(2)证明:构造数列{c n},令c n=a n﹣a n+1,由②可知a n﹣a n+1≥a n+1﹣a n+2,∴c n≥c n+1,a1+a2+…+a n=a1+(﹣a2+2a2)+(﹣2a3+3a3)+…+[﹣(n﹣1)a n+na n]≥a1+(﹣a2+2a2)+(﹣2a3+3a3)+…+[﹣(n﹣1)a n+na n]﹣na n+1=(a1﹣a2)+2(a2﹣a3)+…+n(a n﹣a n+1)=c1+2c2+…+nc n≥(1+2+…+n)c n=,由③知,∴,即:,∴.点评:本题考查在新概念“和谐”数列下数列的作差与求和,考查运算求解能力,注意解题方法的积累,属于中档题.22.已知函数f(x)=(1)当x>0时,证明:f(x)>;(2)当x>﹣1且x≠0时,不等式f(x)<恒成立,求实数k的值.考点:利用导数研究函数的单调性;函数恒成立问题.专题:导数的综合应用.分析:(1)令h(x)=ln(1+x)﹣,得到h′(x)=,从而求出h(x)在(0,+∞)上是增函数,故h(x)>h(0)=0,结论证出;(2)不等式f(x)<可化为:<0,令g(x)=(1+x)ln(1+x)﹣x﹣kx2,则g′(x)=ln(1+x)﹣2kx,从而g″(x)=﹣2k,对x分情况进行讨论:①x>0时,②﹣1<x<0时,从而证出结论.解答:解:(1)令h(x)=ln(1+x)﹣,∴h′(x)=,x>0时,h′(x)>0,∴h(x)在(0,+∞)上是增函数,故h(x)>h(0)=0,即:ln(1+x)>.从而,x>0时,f(x)>得证.(2)不等式f(x)<可化为:<0,令g(x)=(1+x)ln(1+x)﹣x﹣kx2,则g′(x)=ln(1+x)﹣2kxg″(x)=﹣2k,①x>0时,有0<<1,令2k≥1,则g″(x)<0,故g′(x)在(0,+∞)上是减函数,即g′(x)<g′(0)=0,∴g(x)在(0,+∞)上是减函数,从而,g(x)<g(0)=0,∴k≥时,对于x>0,有<0,②﹣1<x<0时,有>1,令2k≤1,则g″(x)>0,故g′(x)在(﹣1,0)上是增函数,即:g′(x)<g′(0)=0∴g(x)在(﹣1,0)上是减函数.从而,g(x)>g(0)=0.∴当k≤时,对于﹣1<x<0,有<0.综合①②,当k=时,在x>﹣1且x≠0时,有f(x)<.点评:本题考察了函数的单调性,导数的应用,不等式的证明,本题是一道中档题.。
2020届湖南省长沙市雅礼中学高三上学期第二次月考数学(理)试题及答案
2020届湖南省长沙市雅礼中学高三上学期第二次月考数学(理)试题及答案一、单选题1.集合{}{}{}202,1,1A a B a A B ==⋂=,,,若,则a 的值为( )A .0B .1C .-1D .±1【答案】C【解析】{}{}221,02,1,A B A a a ⋂==⇒=,又{}1,B a = ,1a ∴=- ,故选C.2.已知向量()()2,1,,2a b λ==,若a b ⊥,则实数λ= ( ) A .4- B .1-C .1D .4【答案】B【解析】由题得=0a b ⋅,解方程即得解. 【详解】因为a b ⊥,所以=220,1a b λλ⋅+=∴=-. 故选B 【点睛】本题主要考查向量垂直的坐标表示,意在考查学生对该知识的理解掌握水平和分析推理能力.3.已知ABCD 是复平面内的平行四边形,A ,B ,C 三点对应的复数分别是2i -+,1i -,22i +,则点D 对应的复数为( )【答案】D【解析】分析:利用平行四边形的性质得到AB DC =,再把点的坐标代入计算即得点D 的坐标,再写出点D 对应的复数.详解:由题得A(-2,1),B(1,-1),C(2,2),设D(x,y),则(3,2),(2,2),AB DC x y =-=-- 因为AB DC =,所以2322x y -=⎧⎨-=-⎩,解之得x=-1,y=4.所以点D 的坐标为(-1,4), 所以点D 对应的复数为-1+4i, 故选D.点睛:本题方法比较多,但是根据AB DC =求点D 的坐标,是比较简单高效的一种方法,大家解题时,注意简洁高效. 4.已知集合2{|0}1x A x x -=<+,{|}B x x a =<,若“1a =”是“B A ⊆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不是充分条件也不是必要条件 【答案】A【解析】化简两个集合,分别讨论充分性和必要性,可选【详解】由题意,集合()()2{|0}{|120}{|12}1x A x x x x x x x -=<=+-<=-<<+, 先来判断充分性,若1a =,则{|11}B x x =-<<,满足B A ⊆,即“1a =”是“B A ⊆”的充分条件;再来判断必要性,若B A ⊆,①集合B =∅,0a ≤,此时符合B A ⊆;②集合B ≠∅,此时21a a a a -<⎧⎪≤⎨⎪-≥-⎩,解得01a <≤.故B A ⊆时,1a ≤,即“1a =”不是“B A ⊆”的必要条件. 所以“1a =”是“B A ⊆”的充分不必要条件. 故选:A. 【点睛】本题考查不等式的解法,考查集合的包含关系,考查充分性与必要性,考查学生的计算能力与逻辑推理能力,属于基础题.5.若关于x 的不等式2420x x a --->在区间()1,4内有解,则实数a 的取值范围是 A .2a <- B .2a >- C .6a >- D .6a <-【答案】A【解析】由题意可得224a xx +<-在区间(1,4)内成立,由224(2)4y x x x =-=--,求得顶点处的函数值和端点处的函数解:关于x 的不等式2420x x a --->在区间(1,4)内有解, 即为224a xx +<-在区间(1,4)内成立,由224(2)4y x x x =-=--,可得2x =处函数y 取得最小值4-;1x =时,3y =-;4x =时,0y =;则函数24y x x =-的值域为[)4,0-, 可得20a +<, 解得2a <-. 故选:A . 【点睛】本题考查不等式成立的条件,注意运用转化思想和二次函数的值域求法,考查运算能力,属于中档题.6.将函数()sin 6f x x π⎛⎫=+⎪⎝⎭的图象上各点的纵坐标不变,横坐标扩大到原来的2倍,所得函数()g x 图象的一个对称中心可以是( )A .,012π⎛⎫-⎪⎝⎭B .5,012π⎛⎫⎪⎝⎭C .,03π⎛⎫-⎪⎝⎭D .2,03π⎛⎫⎪⎝⎭【答案】C【解析】试题分析:()1sin 26g x x π⎛⎫=+ ⎪⎝⎭,,2,263x k x k k Z ππππ+=∴=-∈,令0,3k x π==-,∴()g x 图象的一个对称中心是,03π⎛⎫-⎪⎝⎭.7.在正方体1111ABCD A B C D -中,E 为棱1BB 的中点,则异面直线DE 与AB 所成角的正切..值为( ) A .2B .32C .5 D .7【答案】C【解析】依据异面直线所成角的定义,结合//AB DC ,就得到异面直线DE 与AB 所成角,解三角形,即可求出异面直线DE 与AB 所成角的正切值. 【详解】如图,因为//AB DC ,所以EDC ∠(或其补角)即为异面直线DE 与AB 所成角,连接EC ,设正方体棱长为2,利用勾股定理可以求得:2CD =,5CE =,3DE =,因此三角形DEC 是直角三角形,∴5tan 2EDC ∠=.故选:C【点睛】本题考查了异面直线所成的角,属于基础题.8.已知以双曲线的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为,则双曲线的离心率为( )A .B .C .D .【答案】B【解析】试题分析:由于,由题意知,,,因此,双曲线的离心率为,故选B.【考点】双曲线的离心率9.已知直线1:(3)10l mx m y +-+=,直线2:(1)10l m x my ++-=,若12l l ⊥则m =()A .0m =或1m =B .1m =C .32m =-D .0m =或32m =-【答案】A【解析】根据直线垂直的充要条件,列出等式,求解,即可得出结果. 【详解】因为直线1:(3)10l mx m y +-+=与直线2:(1)10l m x my ++-=垂直, 所以(1)(3)0m m m m ++-=,即(1)0m m -=,解得0m =或1m =. 故选A 【点睛】本题主要考查根据直线垂直求参数的问题,熟记直线垂直的充要条件即可,属于常考题型.10.已知函数2()log (46)x x f x a b =-+,满足2(1)1,(2)log 6f f ==,,a b 为正实数,则()f x 的最小值为( ) A .6- B .3- C .0 D .1【解析】试题分析:22462{466a b a b -+=-+=,解得2{4b a ==,∴222()log (44?26)log [(22)2]x x x f x =-+=-+,当1x =时,min ()1f x =,故选D .【考点】对数函数的性质11.直线l 是抛物线22x y =在点()2,2-处的切线,点P 是圆22420x y x y +--=上的动点,则点P 到直线l 的距离的最小值等于( )A2B CD .65【答案】C【解析】先由题意求出直线l 的方程,再求出圆22420x y x y +--=的圆心到直线的距离,减去半径,即为所求结果. 【详解】因为22x y =,所以y x '=,因此抛物线22x y =在点()2,2-处的切线斜率为22x y x =-==-', 所以直线l 的方程为22(2)y x -=-+,即22y x =--, 又圆22420x y x y +--=可化为22(2)(1)5x y -+-=, 所以圆心为(2,1),半径r =;则圆心到直线的距离为d ==又因点P 是圆22420x y x y +--=上的动点,所以点P 到直线l 的距离的最小值等于d r -=故选C本题主要考查圆上的点到直线距离的最值问题,熟记直线与圆位置关系即可,属于常考题型.12.若对任意的1,x e e ⎡⎤∈⎢⎥⎣⎦,不等式22ln 30x x x mx +-+≥恒成立,则实数m 的最大值为( )A .132e e +-B .32e e++C .2e1- D .4【答案】D【解析】通过分离变量将恒成立的不等式变为32ln m x x x ≤++,由此可知当1,x e e ⎡⎤∈⎢⎥⎣⎦时,min 32ln m x x x ⎛⎫≤++ ⎪⎝⎭,通过导数求解出右侧函数在区间内的最小值,从而得到结果. 【详解】22ln 30x x x mx +-+≥22ln 3mx x x x ⇒≤++32ln m x x x⇒≤++22ln 30x x x mx +-+≥在1,x e e ⎡⎤∈⎢⎥⎣⎦上恒成立等价于min 32ln m x x x ⎛⎫≤++ ⎪⎝⎭,1,x e e ⎡⎤∈⎢⎥⎣⎦令()32ln g x x x x =++,则()22223231x x g x x x x+-'=+-= 令()0g x '=,解得13x =-,21x =则1,1x e ⎡⎫∈⎪⎢⎣⎭时,()0g x '<,()g x 单调递减;(]1,x e ∈时,()0g x '>,()g x 单调递增则1,x e e ⎡⎤∈⎢⎥⎣⎦时,()()min 12ln1134g x g ==++= 4m ∴≤即m 的最大值为4本题正确选项:D【点睛】本题考查利用恒成立问题的求解,解题关键是能够通过分离变量的方式将问题转化为所求变量与某一函数的最值比较的问题,通过求解函数最值得到所求参数的取值范围,属于恒成立问题中的常规题型.二、填空题13.已知抛物线24y x=-的准线经过椭圆2221(0)4x ybb+=>的焦点,则b=________.【答案】3【解析】先根据抛物线的方程求得准线方程,根据椭圆的方程求得焦点,代入抛物线的准线方程求得b.【详解】解:依题意可得抛物线24y x=-的准线为1x=,又因为椭圆焦点为()240b±-,所以有241b-=.即b2=3故b3=.故答案为3.【点睛】本题主要考查了椭圆和抛物线的简单性质,椭圆的标准方程.考查了学生对圆锥曲线基础知识的掌握.14.若实数x,y满足,则的取值范围是______.【答案】【解析】化简题设条件,得到的取值范围,再化简为x的二次函数,借助二次函数的图象与性质,即可求解函数的最值,得到答案.【详解】由题意,实数x,y 满足,即,可得.则,则函数的对称轴为,开口向下,所以在上,时函数取得最大值6,时,函数取得最小值.所以的取值范围是.故答案为:.【点睛】本题主要考查了二次函数的图象与性质的应用问题,其中解答中根据题设条件得到变量的取值范围,再结合二次函数的图象与性质求解是解答的关键,着重考查了转化思想,以及推理与运算能力,属于基础题.15.设x,y满足约束条件20230x yx yx y--≤⎧⎪-+≥⎨⎪+≤⎩,则46yx++的取值范围是__________.【答案】[]3,1-【解析】作出不等式组对应的平面区域,利用目标函数的【详解】作出不等式组对应的平面区域如图所示:则46y x ++的几何意义是区域内的点到定点P (﹣6,﹣4)的斜率,由230x y x y -+=⎧⎨+=⎩得x =﹣1,y =1,即A (﹣1,1),则AP 的斜率k =1416+-+=1,由20230x y x y --=⎧⎨-+=⎩得x =﹣5,y =﹣7,即B (﹣5,﹣7),则BP 的斜率k =7456-+-+=﹣3,则46y x ++的取值范围是[﹣3,1]故答案为:[﹣3,1].【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键,属于中档题.16.在数列{}n a 中,1253a a +=,()()11280n n n a na n N *+--+=∈,若()12n n n n b a a a n N *++=⋅⋅∈,则{}n b 的前n 项和取得最大值时n 的值为__________. 【答案】10【解析】解法一:利用数列的递推公式,化简得122n n n a a a ++=+,得到数列{}n a 为等差数列,求得数列的通项公式313n a n =-,得到12100a a a >>>>,1112130a a a >>>>,得出所以1280b b b >>>>,90b <,100b >,1112130b b b >>>>,进而得到结论;解法二:化简得()128 11n n a a n n n n +-=---,令1n n a c n +=,求得11281n c c n ⎛⎫-=- ⎪⎝⎭,进而求得313n a n =-,再由0n b ≥,解得8n ≤或10n =,即可得到结论.【详解】解法一:因为()11280n n n a na +--+=① 所以()211280n n na n a ++-++=②,①-②,得122n n n na na na ++=+即122n n n a a a ++=+,所以数列{}n a 为等差数列.在①中,取1n =,得1280a -+=即128a =,又1253a a +=,则225a =, 所以313n a n =-.因此12100a a a >>>>,1112130a a a >>>>所以1280b b b >>>>,99101180b a a a =⋅⋅=-<,10101112100b a a a =⋅⋅=>,1112130b b b >>>> 所以12389T T T T T <<, 9101112T T T T >>又1089108T T b b T =++>,所以10n =时,n T 取得最大值.解法二:由()11280n n n a na +--+=,得()12811n n a a n n n n +-=---, 令1n n a c n +=,则11111282811nn c c n n n n -⎛⎫⎛⎫-=--=- ⎪ ⎪--⎝⎭⎝⎭,则11281n c c n ⎛⎫-=- ⎪⎝⎭,即1211281281n c c a n n ⎛⎫⎛⎫=+-=+- ⎪ ⎪⎝⎭⎝⎭, 代入得()()1222812828n n a nc na n n a +==+-=+-,取1n =,得1280a -+=,解得128a =,又1253a a +=,则225a =,故1283n a n +=-所以313n a n =-,于是()()()12313283253n n n n b a a a n n n ++=⋅⋅=---. 由0n b ≥,得()()()3132832530n n n ---≥,解得8n ≤或10n =, 又因为98b =-,1010b =, 所以10n =时,n T 取得最大值. 【点睛】本题主要考查了数列的综合应用,以及数列的最值问题的求解,此类题目是数列问题中的常见题型,对考生计算能力要求较高,解答中确定通项公式是基础,合理利用数列的性质是关键,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等,属于中档试题.三、解答题 17.在锐角ABC 中角A ,B ,C 的对边分别是a ,b ,c ,且sin 02a B -=. (1)求角A 的大小; (2)若4a =,求ABC 面积的最大值.【答案】(1)60A =︒(2)【解析】(1)由正弦定理可得sin sin 0A B B =,结合sin 0B ≠,可求出sin A 与A ;(2)由余弦定理可得2222cos a b c bc A =+-,结合基本不等式可得162bc bc bc ≥-=,即可求出16bc ≤,从而可求出1sin 2ABCS bc A =的最大值. 【详解】解:(1)因为sin 0a B =,所以sin sin 0A B B =,又sin 0B ≠,所以sin A =,又ABC 是锐角三角形,则60A =.(2)因为2222cos a b c bc A =+-,60A =,4a =, 所以222211622b c bc b c bc =+-⨯=+-,所以162bc bc bc ≥-=,即16bc ≤(当且仅当4b c ==时取等号), 故11sin 16sin 432260ABCSbc A =≤⨯⨯=【点睛】本题考查了正弦定理、余弦定理在解三角形中的运用,考查了利用基本不等式求最值,考查了学生的计算能力,属于中档题.18.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量()1,2,,8i y i =⋅⋅⋅数据作了初步处理,得到下面的散点图及一些统计量的值.x y w()821ii x x =-∑()821ii w w =-∑ ()()81iii x x y y =-⋅-∑ ()(81iii w w y y =-⋅-∑ 46.6 563 6.8289.81.61469108.8表中i i w x =8118ii w w ==∑.(1)根据散点图判断,y a bx =+与y c x=+为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为0.2z y x =-.根据(2)的结果回答下列问题:(i )年宣传费49x =时,年销售量及年利润的预报值是多少?(ii )年宣传费x 为何值时,年利润的预报值最大? 附:对于一组数()11,u v ,()22,u v ,…,(),n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为()()()121niii nii u u v v u u β==--=-∑∑,v u αβ=-.【答案】(1)y c =+适宜(2)100.6y =+3)(i )年销售量y 的预报值576.6,年利润的预报值66.32(ii )46.24x = 【解析】(1)根据所给的两个函数解析式的特点,结合图象直接选择即可; (2)令w =y 关于w 的线性回归方程,利用表中所给的数据求解即可.(3)(i )由(2)知,把49x =代入,100.6y =+后求出年利润的预报值即可;(ii )根据(2)的结果知,求出年利润z 的预报值的函数关系式,利用配方法求出当年利润的预报值最大时,年宣传费的值. 【详解】(1)由散点图可以判断,这些点明显不在同一条直线上,也不是在一条直线的附近,所以y c =+适宜作为年销售量y 关于年宣传费x 的回归方程类型. (2)令w =y 关于w 的线性回归方程,由于()()()81821108.8681.6iii i i w w y y d w w==--===-∑∑,56368 6.8100.6c y dw =-=-⨯=, 所以y 关于w 的线性回归方程为100.668y w =+,因此y 关于x 的回归方程为100.6y =+(3)(i )由(2)知,当49x =时,年销售量y 的预报值100.66849576.6y =+=,年利润的预报值0.2576.64966.32z =⨯-=. (ii )根据(2)的结果知,年利润z 的预报值()0.2100.66813.620.12x x x x z =+-=-++,所以当13.66.82x ==,即46.24x =时,z 取得最大值. 【点睛】本题考查了根据图象选择函数的解析式,考查了求线性回归方程,考查了线性回归方程的应用,考查了数学运算能力.19. 如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(Ⅰ)设G H ,分别为PB AC ,的中点,求证:GH ∥平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;(Ⅲ)求直线AD 与平面PAC 所成角的正弦值. 【答案】(I )见解析;(II )见解析;(III 3【解析】(I )连接BD ,结合平行四边形的性质,以及三角形中位线的性质,得到GH PD ,利用线面平行的判定定理证得结果;(II)取棱PC的中点N,连接DN,依题意,得DN PC⊥,结合面面垂直的性质以及线面垂直的性质得到DN PA⊥,利用线面垂直的判定定理证得结果;(III)利用线面角的平面角的定义得到DAN∠为直线AD与平面PAC所成的角,放在直角三角形中求得结果.【详解】(I)证明:连接BD,易知AC BD H⋂=,BH DH=,又由BG PG=,故GH PD,又因为GH⊄平面PAD,PD⊂平面PAD,所以GH∥平面PAD.(II)证明:取棱PC的中点N,连接DN,依题意,得DN PC⊥,又因为平面PAC⊥平面PCD,平面PAC平面PCD PC=,所以DN⊥平面PAC,又PA⊂平面PAC,故DN PA⊥,又已知PA CD=,⊥,CD DN D所以PA⊥平面PCD.(III)解:连接AN,由(II)中DN⊥平面PAC,可知DAN∠为直线AD与平面PAC所成的角.因为PCDCD=且N为PC的中点,∆为等边三角形,2所以3⊥,DN=DN AN在Rt AND ∆中,sin 3DN DAN AD ∠==,所以,直线AD 与平面PAC 所成角的正弦值为【点睛】本小题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识,考查空间想象能力和推理能力.20.已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点. 【答案】(Ⅰ)2212x y +=;(Ⅱ)见解析.【解析】(Ⅰ)由题意确定a ,b 的值即可确定椭圆方程; (Ⅱ)设出直线方程,联立直线方程与椭圆方程确定OM ,ON 的表达式,结合韦达定理确定t 的值即可证明直线恒过定点. 【详解】(Ⅰ)因为椭圆的右焦点为(1,0),所以1225;因为椭圆经过点(0,1)A ,所以1b =,所以2222a b c =+=,故椭圆的方程为2212x y +=. (Ⅱ)设1122(,),(,)P x y Q x y联立2212(1)x y y kx t t ⎧+=⎪⎨⎪=+≠⎩得222(12)4220k x ktx t +++-=,21212224220,,1212kt t x x x x k k -∆>+=-=++,121222()212t y y k x x t k +=++=+,222212121222()12t k y y k x x kt x x t k -=+++=+.直线111:1y AP y x x --=,令0y =得111x x y -=-,即111x OM y -=-;同理可得221x ON y -=-.因为2OM ON =,所以1212121212211()1x x x x y y y y y y --==---++;221121t t t -=-+,解之得0t =,所以直线方程为y kx =,所以直线l 恒过定点(0,0).【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题. 21.已知函数(I )若在处的切线的斜率为,求的值;(Ⅱ),不等式恒成立,求整数的最大值.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)由题意得,解之即得a 的值;(Ⅱ)不等式或化为,设,再利用导数研究函数h(x)的图像和性质得解. 【详解】 解:(Ⅰ),由题意得,则.(Ⅱ)不等式或化为.设,.设,当时,, 则在单调递增. 又,,则在存在唯一零点满足.则当时,单调递减,当时,单调递增,则. 又因为,则,因为,则,则整数的最大值为.【点睛】本题主要考查导数的几何意义,考查利用导数研究不等式的恒成立问题,考查函数的最值、单调性、零点问题的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于难题.22.在平面直角坐标系xOy 中,曲线C 的参数方程为3cos 1sin x r y r ϕϕ⎧=⎪⎨=+⎪⎩(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的坐标方程为sin 13πρθ⎛⎫-= ⎪⎝⎭,若直线l 与曲线C 相切. (1)求曲线C 的极坐标方程;(2)在曲线C 上取两点M 、N 于原点O 构成MON ∆,且满足6MON π∠=,求面积MON ∆的最大值.【答案】(1)4sin3πρθ⎛⎫=+⎪⎝⎭; (2)2+.【解析】(1)求出直线l 的直角坐标方程为y=+2,曲线C,1),半径为r 的圆,直线l 与曲线C相切,求出r =2,曲线C 的普通方程为(x2+(y ﹣1)2=4,由此能求出曲线C 的极坐标方程.(2)设M (ρ1,θ),N (ρ2,6πθ+),(ρ1>0,ρ2>0),由126MONSOM ON sin π==2sin (23πθ+)由此能求出△MON面积的最大值. 【详解】(1)由题意可知将直线l 的直角坐标方程为2y =+,曲线C 是圆心为),半径为r 的圆,直线l 与曲线C 相切,可得:2r ==;可知曲线C 的方程为(()2214x y +-=,∴曲线C 的极坐标方程为2cos 2sin 0ρθρθ--=,即4sin 3πρθ⎛⎫=+⎪⎝⎭. (2)由(1)不妨设()1,M ρθ,2,6N πρθ⎛⎫+⎪⎝⎭,()120,0ρρ>>21211sin ?4sin ?sin 2sin cos 26432MON S OM ON πππρρθθθθθ∆⎛⎫⎛⎫===++=+ ⎪ ⎪⎝⎭⎝⎭sin22sin 23πθθθ⎛⎫=+=++ ⎪⎝⎭当12πθ=时,2MON S ∆≤MON ∴∆面积的最大值为2.【点睛】本题考查曲线的极坐标方程的求法,考查三角形的面积的最大值的求法,考查参数方程、极坐标方程、直角坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,是中档题. 23.设函数()2f x x x a =--+.(1)当1a =时,求不等式()2f x <-的解集;(2)当()()(),22x y R f y f x f y a ∈-+≤≤+时,,求的取值范围. 【答案】(1)32x x ⎧⎫>⎨⎬⎩⎭;(2)[]3,1-- 【解析】(1) 求出函数f (x )的分段函数的形式,通过讨论x 的范围求出各个区间上的x 的范围,取并集即可;(2)()()()22f y f x f y -+≤≤+等价于()()()()max min 22f x f y f x f x ⎡⎤⎡⎤-≤⇔-≤⎣⎦⎣⎦,求出()f x 的最值即可.【详解】 (1)当a =1时,()3,1,12,123,2x f x x x x ≤-⎧⎪=--<≤⎨⎪->⎩,可得()2f x <-的解集为32x x ⎧⎫>⎨⎬⎩⎭(2)当,x y R ∈时,()()()()()()()max min 2222f y f x f y f x f y f x f x ⎡⎤⎡⎤-+≤≤+⇔-≤⇔-≤⎣⎦⎣⎦,因为()()222x x a x x a a --+≤--+=+,所以()222a a +--+≤.所以21a+≤,所以31-≤≤-.a所以a的取值范围是[-3,-1]【点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用.。
2020届湖南省长沙市雅礼中学2017级高三上学期第一次月考数学(文)试卷及解析
2020届湖南省长沙市雅礼中学2017级高三上学期第一次月考数学(文)试卷★祝考试顺利★(解析版)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.时量120分钟.满分150分.第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合2}{0|A x x x =-<(),{|11}B x x =-<<,则A B =() A. {|12}x x -<<B. {|1x x <-或2x >}C. {|01}x x <<D. {|0x x <或}【答案】C【解析】 求出A 中不等式的解集,找出两集合的交集即可【详解】由题意可得{|02}A x x =<<,{|11}B x x =-<<,所以{|01}A B x x =<<.故选C.2.已知复数2a i i +-是纯虚数(i 是虚数单位),则实数a 等于 A. -2B. 2C. 12D. -1【答案】C【解析】2a i i +-21255a a i -+=+是纯虚数,所以21210,0552a a a -+=≠∴=,选C. 3.“26m <<”是“方程22126x y m m+=--为椭圆”的( ) A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B试题分析:若方程22126x y m m +=--表示椭圆,则20{6026m m m m ->->-≠-,解得26m <<且4m ≠,所以26m <<是方程22126x y m m+=--表示椭圆的必要不充分条件,故选B . 4.如果()()221f x ax a x =--+在区间1,2⎛⎤-∞ ⎥⎝⎦上为减函数,则a 的取值( ) A. (]0,1B. [)0,1C. [] 0,1D. ()0,1【答案】C【解析】 根据题意,利用一元二次函数的性质,对a 进行讨论,即可推得答案.【详解】由题意,当0a =时,可得()21f x x =-+,在R 上是单调递减,满足题意,当0a <时,显然不成立;当0a >时,要使()f x 在1,2⎛⎤-∞ ⎥⎝⎦上为减函数,则2122a a -≥,解得:1,01a a ≤∴<≤.综上:可得01a ≤≤故选C .5.已知函数()sin()(0)2f x x πωφωϕ=+><,图象相邻两条对称轴之间的距离为2π,将函数()y f x =的图象向左平移3π个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象( ) A. 关于点,012π⎛⎫- ⎪⎝⎭对称 B. 关于点,012π⎛⎫ ⎪⎝⎭对称 C. 关于直线12x π=-对称 D. 关于直线12x π=对称【答案】B【解析】 先根据相邻两条对称轴的距离可得周期为T π=,从而2ω=,再根据平移变换得到新图像对应的解析式,根据其对称性可计算φ,从而可确定()f x 图像的对称轴和对称中心,故可得正确答案. 【详解】因为相邻两条对称轴的距离为2π,故22T π=,T π=,从而2ω=.。
2020届雅礼中学高三第2次月考试卷-理科数学答案
'&1/%所以,!&"0!'&1/"6&%由,!$"0/0"%得$,!&"0 !'&1""6&%由,!&"#$%得$
'&1"#$
得出
解
为
!'#!槡%#&#
!'1槡%%其 #
中
恰有
两
个
整数
!#%!"%所
以+0$
时成
立%排
除
/#-!
当+0!6"# %则,!&"06& !'&1""#!6"# %0!&"06&1#!'&1""#!"%,.!&"06&1# !&1%&1("%
"'%以*'(12 0 "#5/;9:(0"('槡'! "#分
"*!&解析'!""证明$如图%连接(2%交13 于点6%连接76%
7(30(1%23021%(20(2%8'(32('(12% 易得'(36('(16%8)(630)(610+$>%8(2*13! 又 72*13%72+(202%72%(2,平面 (72% 813*平面(72%又67,平面(72%867*13! #分
湖南省长沙市雅礼中学2020届高三月考(六)数学(理)试题及答案
湖南省长沙市雅礼中学2020届高三月考(六)数学(理)试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合A ={x ∈N |x ≤3},B ={x |﹣1≤x ≤5},则A ∩B =( ) A .{1,2,3}B .{0,1,2}C .{0,1,2,3}D .{﹣1,0,1,2,3}2.若复数z 满足|z +1|+|z ﹣1|=4,则|z|的最小值为( ) A .1B .√2C .√3D .23.已知a →=(−2,−1),b →=(λ,1),则λ>−12是“a →与b →的夹角为钝角”的( )条件 A .充分不必要 B .必要不充分 C .充分必要D .既不充分也不必要4.函数y =xlnx 的图象大致是( )A .B .C .D .5.在等差数列{a n }中,其公差d ≠0,若S 7=S 12,现有以下四个命题:①S 19=0;②S 10=S 9;③若d >0,则S n 有最大值;④若d >0,则S n 有最小值. 则关于这四个命题,正确的是( ) A .①②③B .①②④C .①④D .②③.6.甲、乙、丙、丁四位同学站成一排照相,则甲.乙两人中至少有一人站在两端的概率为( ) A .56B .12C .13D .237.在空间中,a 、b 、c 是三条不同的直线,α、β是两个不同的平面,则下列说法正确的是( ) A .若a ⊥c ,b ⊥c ,则a ∥b B .若a ⊂α,b ⊂β,则a ⊥bC .若a ∥α,b ∥β,α∥β,则a ∥bD .若α∥β,a ⊂α,则a ∥β8.已知变量x ,y 之间的线性回归方程为y =−0.7x +10.3,且变量x ,y 之间的一组相关数据如表所示,则下列说法错误的是( ) x 6 8 10 12 y6m32A .变量x ,y 之间呈现负相关关系B .可以预测,当x =20时,y =﹣3.7C .m =4D .该回归直线必过点(9,4) 9.cos10°sin10°−4cos10°=( ) A .1B .√2C .√3D .210.设a =log 23,b =log 45,c =212,则a ,b ,c 的大小关系为( ) A .a >c >bB .a >b >cC .c >a >bD .b >c >>a11.在数列{a n }中,a 1=a ,a n +1=2a n ﹣1,若a n 为递增数列,则a 的取值范围为( ) A .a >0B .a >1C .a >2D .a >312.双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)上存在一点P ,使sin∠PF 2F1sin∠PF 1F 2=ca ,则双曲线C 的离心率的取值范围为( ) A .(1,1+√2)B .(1,2]C .(1+√2,+∞)D .[2,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件{x −y +1≥0x +y −3≥0x −3≤0,则z =x ﹣2y 的最小值为 .14.点P 为椭圆C :x 2a 2+y 2a 2−1=1(a >1)上的任意﹣一点,AB 为圆M :(x ﹣1)2+y 2=1的任意一条直径,若PA →⋅PB →的最大值为15,则a = .15.在(x +y +z )6的展开式中,所有形如x 3y a z b (a ∈N ,B ∈N )的项的系数之和为 . 16.函数f (x )=1sinx+8cosx(0<x <π2)的最小值为 .三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知(a +b )(sin A ﹣sin B )=(c ﹣b )sin C . (1)求角A 的大小; (2)求b+c a的取值范围.18.(12分)在平行六面体ABCD ﹣A 1B 1C 1D 1中,所有棱长均为2,∠AA 1D 1=∠AA 1B 1=60°,∠D 1A 1B 1=90°. (1)求证:A 1C ⊥B 1D 1; (2)求对角线AC 1的长;(3)求二面角C 1﹣AB 1﹣D 1的平面角的余弦值的大小.19.(12分)已知中心在原点的双曲线C 的渐近线方程为y =±2x ,且该双曲线过点(2,2). (1)求双曲线C 的标准方程;(2)点A 为双曲线C 上任一点,F 1、F 2分别为双曲线的左、右焦点,过其中的一个焦点作∠F 1AF 2的角平分线的垂线,垂足为点P ,求点P 的轨迹方程. 20.(12分)已知函数f (x )=lnx ﹣ax +a ,a ∈R . (1)求f (x )的单调区间;(2)当x ≥1时,恒有g (x )=(x +1)f (x )﹣lnx ≤0恒成立,求a 的取值范围..21.(12分)现有甲、乙、丙、丁四个人相互之间传球,从甲开始传球,甲等可能地把球传给乙、丙、丁中的任何一个人,依此类推.(1)通过三次传球后,球经过乙的次数为ξ,求ξ的分布列和期望; (2)设经过n 次传球后,球落在甲手上的概率为a n , (i )求a 1,a 2,a n ;(ii )探究:随着传球的次数足够多,球落在甲、乙、丙、丁每个人手上的概率是否相等,并简单说明理由.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.[选修4-4:坐标系与参数方程]22.(10分)已知直线l 的参数方程为{x =1+t y =3+2t (t 为参数),曲线C 的极坐标方程为ρ2=91+8sin 2θ.(1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)直线l 与曲线C 交于A 、B 两点,P (1,3),求1|PA|+1|PB|的值.[选修4-5:不等式选讲]23.已知函数f (x )=|x ﹣1|+|2x ﹣6|(x ∈R ),记f (x )的最小值为c . (1)求c 的值;(2)若实数a 、b 满足a >0,b >0,a +b =c ,求a 2a+1+b 2b+1的最小值.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.【详解详析】∵集合A ={x ∈N |x ≤3}={0,1,2,3}, B ={x |﹣1≤x ≤5}, ∴A ∩B ={0,1,2,3}. 故选:C .2.【详解详析】设z 对应的点为(x ,y ),则x 24+y 23=1,所以 |z|最小值=√3. 故选:C .3.【详解详析】∵a →=(−2,−1),b →=(λ,1), ∴a →与b →的夹角为钝角⇔﹣2λ﹣1<0且﹣2+λ≠0, 即λ>−12且λ≠2.∴λ>−12是“a →与b →的夹角为钝角”的必要不充分条件.故选:B .4.【详解详析】当x →0+时,lnx →﹣∞,∴xlnx <0,排除A 、B 选项, 当x →+∞时,xlnx →+∞,排除C 选项, 故选:D .5.【详解详析】在等差数列{a n }中,其公差d ≠0,若S 7=S 12, 则:a 8+a 9+a 10+a 11+a 12=0,整理得5a 10=0, 所以a 10=0, 所以A :S 19=19(a 1+a 19)2=19a 10=0.B :由S 10=S 9;整理得a 10=0,C :若d >0,则S n 有=na 1+n(n−1)2d =d 2n 2+(a 1−d2)n ,所以S n 有最小值. 故;①②④正确. 故选:B .6.【详解详析】∵甲、乙、丙、丁四位同学站成一排照相,基本事件总数n=A44=24,甲、乙两人中至少有一人站在两端包含的基本事件个数m=A44−A22A22=20,∴甲.乙两人中至少有一人站在两端的概率为:P=mn =2024=56.故选:A.7.【详解详析】对于选项A:若a⊥c,b⊥c,则a和b可能是异面直线,故错误.对于选项B:若a⊂α,b⊂β,则a和b不能判定有垂直和平行的关系,故错误.对于选项C:若a∥α,b∥β,α∥β,则a和b可能异面,故错误.对于选项D:若α∥β,a⊂α,则a∥β,正确.故选:D.8.【详解详析】对于A:根据b的正负即可判断正负相关关系.线性回归方程为y=−0.7x+10.3,b=﹣0.7<0,负相关.对于B,当x=20时,代入可得y=﹣3.7.对于C:根据表中数据:x=14(6+8+10+12)=9.可得y=−0.7×9+10.3=4.即14(6+m+3+2)=4,解得:m=5.对于D:由线性回归方程一定过(x,y),即(9,4).故选:C.9.【详解详析】原式=cos10°−2sin20°sin10°=cos10°−2sin(30°−10°)sin10°=√3sin10°sin10°=√3.故选:C.10.【详解详析】log23>log2232>log2√5=log45,∴a>32>b,又log45<log4443=43<212<32,∴a>c>b.故选:A.11.【详解详析】∴a n+1=2a n﹣1,∴a n+1﹣1=2(a n﹣1),∴a n+1−1a n−1=2,又∵a1﹣1=a﹣1,∴数列{a n﹣1}是首项为a﹣1,公比为2的等比数列,∴a n−1=(a−1)2n−1,∴a n =(a −1)2n−1+1, 又∵{a n }为递增数列,∴a n+1−a n =(a −1)2n −(a −1)2n−1=12(a −1)2n >0, ∴a ﹣1>0,∴a >1, 故选:B .12.【详解详析】设P 在右支上,设|PF 1|=m ,|PF 2|=n ,则m ﹣n =2a , 又因为sin∠PF 2F 1sin∠PF 1F 2=c a =m n ,可得c−a a=m−n n,所以2a n =c−a a,所以n =2a 2c−a >c ﹣a ,即c 2﹣2ac ﹣a 2<0,即e 2﹣2e ﹣1<0,解得1−√2<e <1+√2, 由于e >1,所以可得1<e <1+√2, 故选:A .二、填空题:本大题共4小题,每小题5分,共20分. 13.【详解详析】由约束条件{x −y +1≥0x +y −3≥0x −3≤0作出可行域如图,联立{x =3x −y +1=0,解得B (3,4).化目标函数z =x ﹣2y 为y =12x −12z ,由图可知,当直线y =12x −12z 过B (3,4)时,直线在y 轴上的截距最大,z 有最小值为:3﹣2×4=﹣5.故答案为:﹣5.14.【详解详析】圆M :(x ﹣1)2+y 2=1的圆心M (1,0),半径为1, AB 为圆M 的直径,可得MB →=−MA →, 椭圆C :x 2a 2+y 2a 2−1=1(a >1)的焦点为(﹣1,0),(1,0),则PA →⋅PB →=(PM →+MA →)•(PM →+MB →)=(PM →+MA →)•(PM →−MA →)=|PM →|2﹣|MA →|2=|PM →|2﹣1,又P 为椭圆上一点,M为椭圆的右焦点,可得|PM →|2﹣|MA →|2≤(a +c )2﹣1=15,当P 为椭圆的左顶点(﹣a ,0),上式取得等号, 则a +c =4,又c =1,可得a =3. 故答案为:3.15.【详解详析】(x +y +z )6表示6个因式(x +y +z )的乘积,其中有3个因式都取x ,得C 63⋅x 3,另外的三个因式取y 或z ,即可得到形如x 3y a z b (a ∈N ,B ∈N )的项. 而(y +z )3的各项系数和为23,故所有形如x 3y a z b (a ∈N ,B ∈N )的项的系数之和为C 63•23=160,故答案为:160. 16.【详解详析】f′(x)=−cosx sin 2x+8sinx cos 2x=8sin 3x−cos 3x (sinxcosx)2=(2sinx−cosx)(4sin 2x+2sinxcosx+cos 2x)(sinxcosx)2,由f ′(x )=0可得cos x =2sin x 即tan x =12, 又因为0<x <12π,根据导数与单调性的关系可知,当tan x =12时,函数取得最小值,此时sin x =5cos x =5,故f (x )min =5√5.故答案为:5√5.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤. 17.【详解详析】(1)∵(a +b )(sin A ﹣sin B )=(c ﹣b )sin C . 由正弦定理可得:(a +b )(a ﹣b )=(c ﹣b )c . 化为b 2+c 2﹣a 2=bc , 由余弦定理可得:cos A =b 2+c 2−a 22bc=12,∵A ∈(0,π), ∴A =π3. (2)∵A =π3, ∴a 2=b 2+c 2﹣bc ≥(b+c)22−(b+c 2)2=(b+c)24,∴(b+c a)2≤4,∴b+c a≤2,可得b+c a的最大值为2,又b +c >a , ∴b+c a的取值范围为(1,2].18.【详解详析】(1)证明:(1)∵在平行六面体ABCD ﹣A 1B 1C 1D 1中,所有棱长均为2, ∴AD 1=AB 1=2,连结A 1C 1,B 1D 1,交于点O ,连结AO , ∵∠AA 1D 1=∠AA 1B 1=60°,∠D 1A 1B 1=90°.∴AO ⊥B 1D 1, ∵四边形A 1B 1C 1D 1为正方形,∴B 1D 1⊥A 1C 1, ∴B 1D 1⊥平面A 1ACC 1,∵A 1C ⊂平面A 1ACC 1,∴B 1D 1⊥A 1C .(2)解:在△AB 1D 1中,AO =√2,A 1O =√2,AA 1=2, ∴AO 2+A 1O 2=A 1A 2,∴AO ⊥A 1O , ∵AO ⊥B 1D 1,∴AO ⊥平面A 1B 1C 1D 1, ∴AO ⊥OC 1,∴AC 1=√AO 2+OC 12=2. (3)解:由(2)知AO ⊥平面A 1B 1C 1D 1,以点O 为原点,OA 1为x 轴,OB 1为y 轴,OA 为z 轴,建立空间直角坐标系, A (0,0,√2),B 1(0,√2,0),C 1(−√2,0,0), AB 1→=(0,√2,−√2),AC 1→=(−√2,0,−√2),设平面AB 1C 1的法向量m →=(x ,y ,z ),则{m →⋅AB 1→=√2y −√2z =0m →⋅AC 1→=−√2x −√2z =0,取x =1,得m →=(1,﹣1,﹣1), 平面AB 1D 1的法向量n →=(1,0,0), 设二面角C 1﹣AB 1﹣D 1的平面角为θ, 则cosθ=|m →⋅n →||m →|⋅|n →|=√3=√33, ∴二面角C 1﹣AB 1﹣D 1的平面角的余弦值为√33.19.【详解详析】(1)根据题意,双曲线的渐近线方程是y =±2x ,则设双曲线方程为:4x 2﹣y 2=λ,(λ≠0), 点(2,2)代入得:λ=12, 则双曲线方程为:4x 2﹣y 2=12, 即x 23−y 212=1,(2)∵F 1,F 2是双曲线x 23−y 212=1的左右焦点,过F 2作角的平分线AB 的垂线,垂足为P ,并且交AF 1于Q ,连接OP ,则OP =∥12F 1Q ,由角的平分线定理可得:|AQ |=|AF 2|,∴|F 1Q |=|AF 1|﹣|AQ |=|AF 1|﹣|AF 2|=2a ,∴|OP |=a =√3,由圆的定义可知,点P 的轨迹是以点O 为圆心,√3为半径的圆,所以P 的轨迹方程为:x 2+y 2=3.20.【详解详析】(1)函数的定义域(0,+∞),f′(x)=1x −a =1−ax x,(i )当a ≤0时,f ′(x )>0恒成立,f (x )在(0,+∞)上单调递增,(ii )当a >0时,由f ′(x )>0可得,0<x <1a ,此时函数单调递增,由f ′(x )<0可得,x >1a ,此时函数单调递减,(2)当x ≥1时,g (x )=(x +1)(lnx ﹣ax +a )﹣lnx =xlnx ﹣ax 2+a ,g ′(x )=lnx +1﹣2ax , 令h (x )=lnx +1﹣2ax ,则h ′(x )=1x −2a ,(i )当a ≤0时,h ′(x )>0恒成立,h (x )在[1,+∞)上单调递增,h (x )≥h (1)=1﹣2a >0, 即g ′(x )》0,故g (x )在[1,+∞)上单调递增,g (x )≥g (1)=0,不合题意;(ii )当0<a <12时,h (x )在[1,12a ]上单调递增,h (x )≥h (1)=1﹣2a >0,此时g (x )在[1,12a ]上单调递增,所以g (12a )>g (1)=0,不合题意;(iii )当a ≥12时,h ′(x )≤0,h (x )在[1,+∞)上单调递减,所以h (x )≤h (1)=1﹣2a <0,故g ′(x )≤0, 所以g (x )在[1,+∞)上单调递减,所以g (x )≤g (1)=0,所以g (x )≤0恒成立. 21.【详解详析】(1)由题意得ξ的取值为0,1,2, P (ξ=0)=23×23×23=827,P (ξ=1)=13×1×23+23×13×1+23×23×13=1627,P (ξ=2)=13×1×13=19, ∴ξ的分布列为: ξ 0 1 2 P827162719∴E (ξ)=0×827+1×1627+2×19=2227. (2)(i )由题意可知,a 1=0,a 2=13,a n =13(1−a n−1),n ≥2,∴a n −14=−13(a n−1−14),(n ≥2), ∴a n −14=(a 1−14)×(−13)n ﹣1, ∴a n =14−14×(−13)n−1.11 (ii )由(i )可知,当n →+∞时,a n →14, ∴当传球次数足够多时,球落在甲手上的概率趋向于一个常数14,又第一次从甲开始传球,而且每一次都是等可能地把球传给任何一个人,∴球落在每个人手上的概率都相等,∴球落在乙、丙、丁手上的概率为(1−14)÷3=14,∴随着传球的次数足够多,球落在甲、乙、丙、丁每个人手上的概率相等,都是14. 请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.[选修4-4:坐标系与参数方程]22.【详解详析】(1)直线l 的参数方程为 {x =1+t y =3+2t(t 为参数),消去参数,可得直线l 的普通方程y =2x +1,曲线C 的极坐标方程为ρ2=91+8sin 2θ,即8ρ2sin 2θ+ρ2=9,∴x 2+y 2+8y 2=9,∴曲线C 的直角坐标方程为x 29+y 2=1;(2)直线的参数方程改写为 {x =1+√55t y =3+2√55t(t 为参数), 代入x 29+y 2=1,375t 2√5t +73=0,t 1+t 2=−√5375,t 1t 2=73375, 1|PA|+1|PB|=|t 1−t 2t 1t 2|=√5×73=22√573. ∴当直线l 与曲线C 相交时,1|PA|+1|PB|=22√573. [选修4-5:不等式选讲]23.【详解详析】(1)f (x )=|x ﹣1|+|2x ﹣6=|x ﹣1|+|x ﹣3|+|x ﹣3|,f (x )表示数轴上的点到数轴上1,3,3对应点的距离之和.∴f (x )min =f (3)=2,∴c =2.(2)∵a +b =2,∴a 2a+1+b 2b+1=14[(a +1)+(b +1)](a 2a+1+b 2b+1); =14[a 2+b 2+(b+1)a 2a+1+(a+1)b 2b+1]≥14(a 2+b 2+2ab )=14(a +b )2=1;当且仅当{a +b =2(b+1)a 2a+1=(a+1)b 2b+1,即{a =1b =1时,有最小值1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届湖南省长沙市雅礼中学2017级高三上学期第二次月考
数学(文)试卷
★祝考试顺利★
(解析版)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟.满分150分.
第Ⅰ卷
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是
符合题目要求的.
1.集合202,1,1AaBaAB,,,若,则a的值为( )
A. 0 B. 1 C. -1 D.
【答案】C
【解析】
22
1,02,1,ABAaa,
又1,Ba ,1a ,故选C.
2.已知向量2,1,,2ab,若ab,则实数 ( )
A. 4 B. 1 C. 1 D. 4
【答案】B
【解析】
由题得=0ab,解方程即得解.
【详解】因为ab,所以=220,1ab.
故选B
3.已知ABCD是复平面内的平行四边形,A,B,C三点对应的复数分别是2i,1i,22i,则
点D对应的复数为( )
A. 4i B. 32i C. 5 D. 14i
【答案】D
分析:利用平行四边形的性质得到ABDC,再把点的坐标代入计算即得点D的坐标,再写出点
D对应的复数.
详解:由题得A(-2,1),B(1,-1),C(2,2),
设D(x,y),
则(3,2),(2,2),ABDCxy
因为ABDC,
所以2322xy,
解之得x=-1,y=4.
所以点D的坐标为(-1,4),
所以点D对应的复数为-1+4i,
故选D.
点睛:本题方法比较多,但是根据ABDC求点D的坐标,是比较简单高效的一种方法,
大家解题时,注意简洁高效.
4.已知集合2{|0}1xAxx,{|}Bxxa,若“1a”是“BA”的( )
A. 充分不必要条件 B. 必要不充分条件
C. 充要条件 D. 既不是充分条件也不是必要条件
【答案】A
【解析】
化简两个集合,分别讨论充分性和必要性,可选出答案.
【详解】由题意,集合2{|0}{|120}{|12}1xAxxxxxxx,
先来判断充分性,
若1a,则{|11}Bxx,满足BA,即“1a”是“BA”的充分条件;
再来判断必要性,
若BA,①集合B,0a,此时符合BA;②集合B,此时21aaaa,解得01a.
故BA时,1a,即“1a”不是“BA”的必要条件.
所以“1a”是“BA”的充分不必要条件.
故选:A.