大学物理上册课后习题答案

合集下载

大学物理课后习题答案 第七章

大学物理课后习题答案 第七章
解:(1)气体在高温热源等温膨胀吸热,故
Q
RT1
ln
V2 V1
8.31 400 ln 0.005 0.001
5.35 103 J
(2) 根据卡诺循环的效率公式可得
1 T2 A净 T1 Q吸
A净
(1
T2 T1
)Q吸
(1
300 ) 5.35 103 400
1.34 103 J
(3)由能量守恒 Q吸 A净 Q放 可得
Pa Va )
1 2 (Pb
Pa ) (Vb
Va )
9.5 102 J
A 100 10.5% Q吸 950
B
C 2 V (L)
62
大学物理上习题册参考解答
10、一定质量理想气体(摩尔热容比为 γ)的某循环过程的 T-V 图如下,其中 CA 为绝
热过程,状态 A(T1,V1)和状态 B(T2,V2)为已知,试问:
RT2
ln
VA VB
R(T1 T2) ln
VA VB
T2 T1 T2
14、一台家用冰箱放在室温为 300K 的房间内,做一盘 2.09105 J 的热量。设冰箱为理想卡诺制冷机。 (1)求做一盘冰块所需要的功;
℃的冰块需从冷冻室取走
(2)若此冰箱能以 2.09102 J / s 的速率取出热量,求冰箱的电功率。
mR mR
60
大学物理上习题册参考解答
6、某理想气体在 P-V 图上等温线与绝热线相交于 A
点(如图所示)。 已知 A 点的压强 P1=2×105Pa,体积 V1=0.5 P ×10-3m3 ,而且 A 点处等温线的斜率与绝热线斜率之比为
0.714,现使气体从 A 点绝热膨胀至 B 点,其体积 V2=1×10-3m3。

大学物理第六版上册北京邮电大学出版课后答案详解精选全文完整版

大学物理第六版上册北京邮电大学出版课后答案详解精选全文完整版

可编辑修改精选全文完整版大学物理第六版上册北京邮电大学出版课后答案详解1、行驶的汽车关闭发动机后还能行驶一段距离是因为汽车受到惯性力作用[判断题] *对错(正确答案)答案解析:汽车具有惯性2、用如图所示的装置做“探究小车速度随时间变化的规律”实验:1.小车从靠近定滑轮处释放.[判断题] *对错(正确答案)3、马德堡半球实验测出了大气压,其大小等于760mm高水银柱产生的压强[判断题]对错(正确答案)答案解析:托里拆利实验最早测出了大气压强4、11.小敏学习密度后,了解到人体的密度跟水的密度差不多,从而她估测一个中学生的体积约为()[单选题] *A.50 m3B.50 dm3(正确答案)C.50 cm3D.500 cm35、9.在某原子结构模型示意图中,a、b、c是构成该原子的三种不同粒子,能得出的结()[单选题] *A.a和c数量不相等B.b决定原子种类C.质量集中在c上D.a和c之间存在吸引的力(正确答案)6、4.静止在水平地面上的物体受到向上的弹力是因为地面发生了形变.[判断题] *对(正确答案)错7、下列有关力做功的说法中正确的是()[单选题]A.用水平力推着购物车前进,推车的力做了功(正确答案)B.把水桶从地面上提起来,提水桶的力没有做功C.书静止在水平桌面上,书受到的支持力做了功D.挂钩上的书包静止时,书包受到的拉力做了功8、1.与头发摩擦过的塑料尺能吸引碎纸屑。

下列与此现象所反映的原理相同的是()[单选题] *A.行驶的汽车窗帘被吸出去B.挤压后的吸盘吸在光滑的墙上C.用干燥的双手搓开的塑料袋会吸在手上(正确答案)D.两个表面光滑的铅块挤压后吸在一起9、下列措施中,能使蒸发减慢的是()[单选题]A.把盛有酒精的瓶口盖严(正确答案)B.把湿衣服晾在通风向阳处C.用电吹风给湿头发吹风D.将地面上的积水向周围扫开10、停放在水平地面上的汽车对地面的压力和地面对车的支持力是平衡力[判断题] *对错(正确答案)答案解析:相互作用力11、52.“凿壁偷光”原指凿穿墙壁,让邻舍的烛光透过来,后用来形容家贫而勤奋读书。

赵近芳版《大学物理学上册》课后答案之欧阳德创编

赵近芳版《大学物理学上册》课后答案之欧阳德创编

习题解答习题一1-1|r ∆|与r ∆有无不同?td d r 和td d r 有无不同?td d v 和td d v 有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)td d r 是速度的模,即t d d r ==v t s d d .trd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rr r+=式中trd d 就是速度径向上的分量,∴tr td d d d 与r 不同如题1-1图所示.题1-1图 (3)td d v表示加速度的模,即tv a d d =,tv d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢),所以tv t v t v d d d d d d ττ +=式中dtdv 就是加速度的切向分量.(tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论)1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =trd d ,及a =22d d tr而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=, jty i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v yxy x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作其二,可能是将22d d d d trt r 与误作速度与加速度的模。

武汉理工大学大学物理上-课后习题答案第234章

武汉理工大学大学物理上-课后习题答案第234章

教材习题解答第二章 牛顿运动定律2-1解:设地球表面的重力加速度为1g ,月球表面的重力加速度为2g ,弹簧在地面上挂物体A(质量为1m )与在月球表面挂石块B(质量为2m )的读数相同,则有1122F m g m g == --------------------①如右图,取坐标轴向下为正,对物体A,B由牛顿第二定律得:221212()m g m g m m a -=+-------②联立解得 121201/g g a g g -=〉+将219.81/g m s =,22 1.67/g m s =代入解得22 1.18/a m s =故石块B 将以初速度为零,竖直向下作匀加速运动.2-2解:取U 形管底端的水平液柱为研究对象,竖直方向合外力为零(因为液柱在竖直方向无加速度)水平方向上受到的合外力大小为 F pS ghS ρ==其中S 为U 形管截面面积, ρ为液体密度, 由牛顿第二定律得:F ma lSa ρ==整理解得 /h la g =2-3解:取坐标轴向右为正方向,设人对板的水平力大小为F . 地面对木板的水平力大小为()2f u m M g =+,物体对木板的水平力大小为 1f umg =取m 为研究对象由牛顿第三定律知它受到木板水平向右的力,其大小为1f umg =再由牛顿第二定律得:X 方向: 11f umg ma == (1a 为m 向右的加速度大小) 再取M 为研究对象:X 方向: 122F f f Ma --= (2a 为M 向右的加速度大小) 因为要将木板从物体下面抽出,则 21a a ≥ 整理得 ()F umg u m M g uMg --+≥ 即 ()2F u m M g ≥+故至少需要大小为()2u m M g +的力才能将木板拉出. 2-4解:取小球为研究对象.小球受到重力mg ,绳子的拉力T圆锥体的支持力N ,各力方向如图所示:并如图建立直角坐标系: (1)由牛顿第二定律得:x 方向: 2sin cos sin T N mw l θθθ-=y 方向: cos sin 0T N mg θθ+-=整理解得2sin sin cos N mg mw l θθθ=-2cos sin T mg mw l θθ=+(2)当w 增大到0w 时,小球离开锥面此时0N = 则由(1)得 20sin sin cos 0T mw l T mg θθθ=-=解得:0/cos w T mg θ==2-5证明:如图建立平面直角坐标系.取xoy 平面内第一象限内的水滴为研究对象设该水滴所在位置坐标为(,)x y ,质量为m .水滴受到重力mg ,其它水滴对它的支持力N由牛顿定律得 x 轴方向: 2sin N mw x θ=y 轴方向: cos N mg θ=其中tan dydx θ=, 整理后得 2w x dy g dx =分离变量: 2w xdx dy g=·两边积分得: 00yx wxdx dy g =⎰⎰得 222w y x g= ---------------------------表示抛物线即第一象限内自由面的水滴都在抛物线222w y x g=上,则在空间中桶内水的自由面的形状是一个旋转抛物面. 2-6.解(1)由牛顿定律: 00F k F kt ma a t m m-=⇒=-(2)ⅰ.牛顿定律的微分形式: 0dvF kt mdt-=分离变量: ()0F kt dt mdv -= 两边积分: ()00tvF kt dt mdv -=⎰⎰202F k v t t m m=- 方向沿运动方向 ⅱ.由dxv dt=分离变量 dx vdt = 两边积分: 0xtdx vdt =⎰⎰ (设t 时刻质点在x 处)将2202F k v t t m m=- 代入解得23026F k x t t m m=-2-7解:取运动员与滑板作为一个整体为研究对象,受到重力mg ,变力F ,支持力N 的作用,各个力的方向如图所示 以运动员的初始位置为原点,竖直向上方向为y 轴 建立平面直角坐标系,如右图所示 ⑴由牛顿定律x 轴方向:cos cos dv dv F mAt m dt dtθθ=⇒= 分离变量:cos At dt mdv θ=两边积分:0cos tvA tdt m dv θ=⎰⎰xNyFθ2cos 2A t v mθ=y 轴方向有:sin F N mg θ+=当滑板离开水面时,地面的支持力此时为零 即 11sin sin mgAt mg t A θθ=⇒=将1t t =代入得222cos cos 22sin At mg v m A θθθ==⑵由运动微分方程得dxv dt=分离变量得:vdt dx =2cos 2A t dt dx mθ= 两边积分得:200cos 2txA t dt dx m θ=⎰⎰将1t t =代入上式解得:2323cos 6sin m g x A θθ=2-8解:⑴设作用于质点的力大小为F由牛顿运动微分方程得: 2dv dv dx F mm mkv k mx dt dx xt==== ⑵设质点在0x x =处对应时刻0t t =,在1x x =处的对应时刻1t t = 所需时间: 10t t t ∆=- 由⑴知: 1dx kdt x=两边积分得:1101x tx tdx kdt x =⎰⎰mg得: 11x t Inkx ∆=2-9解:取活塞为研究对象,它受到沿X 轴正方向的力()f x 的作用,由牛顿第二定律得运动方程 X 轴方向: ()dv dv dx dv k f x mm mv dt dx dt dx x==⋅== 上式中的变量为,v x 分离变量后k mvdv dx x=两边积分得: 0xv x kmvdv dx x=⎰⎰ (设活塞停止在X 处) 解得 2020202mv Inx km v ke x x ee-==2-10解:质点的运动速率0dsv v bt dt==+ 由牛顿运动定律:切向力dvF ma m mb dtττ===法向力()220n n m v bv v F ma mRR+===2-11解:(1)设星体(质量为M )的自转角速度为ω,取赤道上的某一物体(质量为m )为研究对象 由星体的自转周期知 2T πω=当ω最大时,T 最小,故由题意得2224MmG m R R Tπ=又 343M V R ρρπ==⋅联立上述等式解得最小自转周期T =(2)将2331123.010, 6.6710, 3.14m kg m G N kgρπ--=⨯=⨯=代入得 36.910T s =⨯(3)由(1)可得 2324R M GTπ= 将2331126.910,1010, 6.6710m T s R m G N kg-=⨯=⨯=⨯代入得 292.3110M kg =⨯2-12 解(1)对子弹分析得牛顿第二定律的微分形式: dvf kv m dt =-= 分离变量得 k dvdt m v-=两边积分得00t vv k dvdt m v -=⎰⎰即 0kt mv v e-=(2) 000tkt ktmm mv ds vdt s v e dt e k --=⇒==-⎰当t →∞时,子弹的最大深度为0m mv s k=. 2-13解:取质点m 为研究对象由牛顿运动定律的微分形式得2dv dv dx dv k f mm mv x dt dx dt dx-====分离变量得 21mvdv dx kx=- 两边积分得 4201AvA mvdv dx k x ⎛⎫=- ⎪⎝⎭⎰⎰ (x A=时对应速度为0, /4x A =时对应速度为)v解得: v =2-14解:取飞机为研究对象,设其质量为m 受到重力mg ,支持力N ,升力2y c v j ,空气阻力2x c v i -,摩擦阻力Ni μ-,以0v 所在方向为x X 方向: 2x dv dv dx dv N c v mm mv dt dx dt dxμ+=== Y 方向: 2y c v N mg += 而飞机刚着地时0N =.则 2y x mgc c v=⇒=整理得: ()222001555dv gv gv v vdxμμ-+= 分离变量得: ()20225155v vdvdx gv gv μμ=⇒-+ 两边积分()00022005155x o vvv dvdx v gv gv μμ=-+⎰⎰ 用换元积分法求得()2051ln 2212155v x m g μμ==-2-15解:取该雨滴为研究对象,它受到重力mg 和空气阻力f 的作用.其方向如图所示: 且 2(f kv k =-为比例系数)21mg kv =由牛顿运动定律 22mg kv ma -= 将15/v m s = , 24/v m s = , 29.8/g m s = 代入得: 23.53/a m s =2-16证明:取小球为研究对象,小球受到重力,mg 浮力F 和粘滞阻力f 的作用,取F 所在方向为轴正方向,则由牛顿运动微分方程得dvmg F kv mdt--= 式中,v t 为变量,分离变量后dv dtmg F kv m=--两边积分得(注意初始条件为0,0v t ==)0v tdv dtmg F kv m =--⎰⎰ 即 00()v td mg F kv dtk mg F kv m ---=--⎰⎰解得 (1)ktm mg Fv e k--=- 故得证.xmgf第三章 动量 动量定理习题三3-1.解:取M 和m 为研究对象,设碰前M 的速率为2v ,碰后为'2v .由于水平方向系统受合外力为零,故水平方向动量守恒得:'122mv Mv Mv +=竖直方向由动量定理得2()tN mg Mg dt mv∆--=⎰解得滑块速度增加量'122mv v v v M∆=-=地面对滑块的平均作用力为2()mv N m M g t=++ 由牛顿第三定律知此过程中滑块对地的平均作用力也为2()mv N m M g t=++ 3-2.(1)对质量为dM 的沙子分析.在dt 时间内速率由0增到v ,设皮带对它的作用力为F (由于dt 很小,所以可看作是恒力),则由动量定理得Fdt dM v = 即 dMF v dt=所以所需的功率为2dMp Fv v dt==(2) 由(1)知F v M =⋅ 2p v M =代入数据得30F N = 45p w =3-3(1)设子弹刚穿出时绳中张力大小为T ,物体M 的速率为1v 则由圆周运动规律得:21v T Mg M l-=由于子弹穿透时间极短,故子弹m 和物体M 系统动量守恒得:01mv mv Mv =+联立解得 26.5T N =(2)取子弹为研究对象,由动量定理得:0I mv mv =-代入数据得 4.7I N s =-⋅(负号表示冲量方向与0v 方向相反) 3-4 取小球为研究对象如右图所示建立坐标系由动量定理的坐标分量式得X 方向: 0()cos (cos )tF x dt mv mv θθ=--⎰y 方向:()sin (sin )tF y dt mv mv θθ=-⎰整理得: 2cos ()mv F x tθ-=()0F y = 即墙壁对球的平均冲力为2cos mv tθ.由牛顿第三定律得:墙壁受到冲力也为2cos mv tθ方向垂直墙壁向内3-5(1) 子弹在射入A 的过程中,A 和B 有共同的速率为1v ,子弹的速率为'0v 则对系统(子弹,物体A 和B)分析,合外力为0,则由动能守恒可得:'001()A B mv mv m m v =++ ①对子弹由动量定理可得:'00ft mv mv =- ②对物体B 由动量定理可得: 1AB B N t m v = ③将2A m Kg =,3B m Kg =,0.1m Kg =, 0800/v m s =, 0.01t s =, 3310f =⨯N 代入联立解得B 受到A 的作用力大小为31.810AB N N =⨯ 方向向右(2)子弹穿出A 后A 以速率1v 作匀速直线运动,而子弹留在B 中时两者具有共同速率2v 则对子弹和B 组成的系统动量守恒得'012()B B mv m v m m v +=+ ④联立①②④可解得: 222/v m s = 又由(1)中①②可解得 16/v m s =故子弹留在B 中时A 的速大小为6/m s ,B 的速度大小为22/m s 3-6设月球(质量为m )的轨道半径为r ,地球(质量为M )的半径为R ,地球表面的重力加速度大小为g在地球表面有黄金代换式: 2GM gR =设月球绕地球的运行速率为v 则由万有引力提供向心力:22v mM G m v r r =⇒==因为月球在28天里绕地球一周,则在14天里月球初速度与末速度方向相反,即月球动量增量大小为22p mv == 代入数据解得:261.4610/p Kg m s =⨯⋅3-7 解:取小球为研究对象,由动量定理得 ()0cos ttI Fdt kA t dt ω==-⎰⎰将2t πω=代入解得 kAI ω=-即在此时间间隔内弹力施于小球的冲量kAI ω=-(负号表示方向与弹力方向相同)3-8 解:如右图所示,1/4周期内向心力给小球的冲量大小为2I m v mv ==v代入数据解得I= N s3-9 证:取竖直向上为x 轴正方向,单位向量为i ,当提起的链条长度为x 时,这段链条的动量为()0l P t xv i ρ=则这段链条所受的合外力为2100()l l dP t dx F v i v i dt dtρρ=== 设人对链条向上的拉力为F ,则有1l F F xg ρ=-所以拉力的大小为20l l F v xg ρρ=+当x l =时,所用的向上的力为20l l F gl v ρρ=+,得证.3-10 解:(1)令0F =即得子弹在枪膛中运动的时间为 3310t s -=⨯(2)由冲量公式得子弹受到得冲量为522104003tI Fdt t t ⨯==-⎰将3310t s -=⨯代入得 0.6I N s = (3) 对子弹分析,由动量定理得tI Fdt mv ==⎰代入数据解得 3210m kg -=⨯ .3-11 解:设子弹作用1t 时间后1m 和2m 的共同速率为1v ,子弹穿入2m 后,1m 以1v 向右做匀速直线运动.设子弹对2m 作用2t 时间后2m 的速率为2v .则有以1m 和2m 作为整体研究对象,由动量定理得()1121ft m m v =+以2m 为研究对象,同样由动量定理得22221ft m v m v =-解得 1112ft v m m =+ 122122ft ftv m m m =++ 3-12 解:取M 和m 为整体研究对象,水平方向合外力为0,则由动量守恒定律得: 12Mv mv =其中设小木块脱离大木块时M 的速率为1v ,m 的速率为2v . 又由机械能守恒得(以弧形槽的底端为零势能点)22211122mgR mv Mv =+ 整理解得2v =3-13 解:(1) 设小车移动的距离为x ,其斜边长为l ,木块相对小车的速度为r v ,相对地速度为u 小车对地速度为v 。

大学物理学(第五版)上册课后习题选择答案_马文蔚

大学物理学(第五版)上册课后习题选择答案_马文蔚

习题11-1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,t 至()t t +∆时间内的位移为r ∆,路程为s ∆,位矢大小的变化量为r ∆(或称r ∆),平均速度为v ,平均速率为v 。

(1)根据上述情况,则必有( B ) (A )r s r ∆=∆=∆(B )r s r ∆≠∆≠∆,当0t ∆→时有dr ds dr =≠ (C )r r s ∆≠∆≠∆,当0t ∆→时有dr dr ds =≠ (D )r s r ∆=∆≠∆,当0t ∆→时有dr dr ds == (2)根据上述情况,则必有( C )(A ),v v v v == (B ),v v v v ≠≠ (C ),v v v v =≠ (D ),v v v v ≠=1-2 一运动质点在某瞬间位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即(1)dr dt ;(2)dr dt ;(3)dsdt;(4下列判断正确的是:( D )(A )只有(1)(2)正确 (B )只有(2)正确 (C )只有(2)(3)正确 (D )只有(3)(4)正确1-3 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度。

对下列表达式,即(1)dv dt a =;(2)dr dt v =;(3)ds dt v =;(4)t dv dt a =。

下述判断正确的是( D )(A )只有(1)、(4)是对的 (B )只有(2)、(4)是对的 (C )只有(2)是对的 (D )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( B ) (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C )切向加速度可能不变,法向加速度不变(D )切向加速度一定改变,法向加速度不变*1-5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动。

大学物理教程 上课后习题 答案

大学物理教程 上课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让瞧的题)27页 1-2 1-4 1-121-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求:(1) 质点的运动轨迹;(2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度与加速度。

解:(1)由运动方程消去时间t 可得轨迹方程,将t =,有21)y =或 1=(2)将1t s =与2t s =代入,有11r i =, 241r i j =+213r r r i j =-=-位移的大小 231r =+=(3) 2x dxv t dt== 2(1)y dy v t dt==-22(1)v ti t j =+-2xx dv a dt==, 2y y dv a dt == 22a i j =+当2t s =时,速度与加速度分别为42/v i j m s =+22a i j =+ m/s 21-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+,式中的R 、ω均为常量。

求(1)质点的速度;(2)速率的变化率。

解 (1)质点的速度为sin cos d rv R ti R t j dtωωωω==-+ (2)质点的速率为v R ω==速率的变化率为0dvdt= 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。

求质点在t 时刻的法向加速度n a 的大小与角加速度β的大小。

解 由于 4d t dtθω== 质点在t 时刻的法向加速度n a 的大小为2216n a R Rt ω==角加速度β的大小为 24/d rad s dtωβ==77页2-15, 2-30, 2-34,2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。

大学物理教材习题答案

⼤学物理教材习题答案第⼀章质点运动习题解答⼀、分析题1.⼀辆车沿直线⾏驶,习题图1-1给出了汽车车程随时间的变化,请问在图中标出的哪个阶段汽车具有的加速度最⼤。

答: E 。

位移-速度曲线斜率为速率,E 阶段斜率最⼤,速度最⼤。

2.有⼒P 与Q 同时作⽤于⼀个物体,由于摩擦⼒F 的存在⽽使物体处于平衡状态,请分析习题图1-2中哪个可以正确表⽰这三个⼒之间的关系。

答: C 。

三个⼒合⼒为零时,物体才可能处于平衡状态,只有(C )满⾜条件。

3.习题图1-3(a )为⼀个物体运动的速度与时间的关系,请问习题图1-3(b )中哪个图可以正确反映物体的位移与时间的关系。

答:C 。

由v-t 图可知,速度先增加,然后保持不变,再减少,但速度始终为正,位移⼀直在增加,且三段变化中位移增加快慢不同,根据v-t 图推知s-t 图为C 。

三、综合题:1.质量为的kg 50.0的物体在⽔平桌⾯上做直线运动,其速率随时间的变化如习题图1-4所⽰。

问:(1)设s 0=t 时,物体在cm 0.2=x 处,那么s 9=t 时物体在x ⽅向的位移是多少?(2)在某⼀时刻,物体刚好运动到桌⼦边缘,试分析物体之后的运动情况。

解:(1)由v-t 可知,0~9秒内物体作匀减速直线运动,且加速度为:220.8cm/s 0.2cm/s 4a == 由图可得:0 2.0cm s =,00.8cm/s v =, 1.0cm/s t v =-,则由匀减速直线运动的位移与速度关系可得:22002() t a s s v v -=- 2200()/2t s v v a s =-+ 22[0.8( 1.0)]/20.2 2.0cm =--?+1.1c m =(2)当物体运动到桌⼦边缘后,物体将以⼀定的初速度作平抛运动。

2.设计师正在设计⼀种新型的过⼭车,习题图1- 5为过⼭车的模型,车的质量为0.50kg ,它将沿着图⽰轨迹运动,忽略过⼭车与轨道之间的摩擦⼒。

赵近芳版《大学物理学上册》课后答案之欧阳道创编

习题解答习题一1-1|r ∆|与r ∆有无不同?td d r 和td d r 有无不同?t d d v 和td d v 有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)td d r 是速度的模,即t d d r ==v t s d d .trd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d r r r+=式中trd d 就是速度径向上的分量,∴tr td d d d 与r 不同如题1-1图所示.题1-1图 (3)td d v表示加速度的模,即tv a d d =,tv d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢),所以tv t v t v d d d d d d ττ +=式中dtdv 就是加速度的切向分量.(tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论)1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =tr d d ,及a =22d d tr而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=, jty i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作其二,可能是将22d d d d trt r 与误作速度与加速度的模。

大学物理学(第五版)上册(马文蔚)课后答案及解析

1-1 分析与解(1) 质点在t 至(t +Δt)时间内沿曲线从P点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr|=PP′,而Δr =|r|-|r|表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt→0 时,点P′无限趋近P点,则有|dr|=ds,但却不等于dr.故选(B).(2) 由于|Δr |≠Δs,故,即||≠ .但由于|dr|=ds,故,即||=.由此可见,应选(C).1-2 分析与解表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号vr表示,这是速度矢量在位矢方向上的一个分量;表示速度矢量;在自然坐标系中速度大小可用公式计算,在直角坐标系中则可由公式求解.故选(D).1-3 分析与解表示切向加速度at,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;在极坐标系中表示径向速率vr(如题1 -2 所述);在自然坐标系中表示质点的速率v;而表示加速度的大小而不是切向加速度at.因此只有(3) 式表达是正确的.故选(D).1-4 分析与解加速度的切向分量at起改变速度大小的作用,而法向分量an起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于at是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, at恒为零;质点作匀变速率圆周运动时, at为一不为零的恒量,当at改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1-5 分析与解本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l,则小船的运动方程为,其中绳长l 随时间t 而变化.小船速度,式中表示绳长l 随时间的变化率,其大小即为v0,代入整理后为,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).1-6 分析位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据来确定其运动方向改变的时刻tp ,求出0~tp 和tp~t 内的位移大小Δx1 、Δx2 ,则t 时间内的路程,如图所示,至于t =4.0 s 时质点速度和加速度可用和两式计算.解(1) 质点在4.0 s内位移的大小(2) 由得知质点的换向时刻为(t=0不合题意)则,所以,质点在4.0 s时间间隔内的路程为(3) t=4.0 s时,,1-7 分析根据加速度的定义可知,在直线运动中v-t曲线的斜率为加速度的大小(图中AB、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a-t 图上是平行于t 轴的直线,由v-t 图中求出各段的斜率,即可作出a-t 图线.又由速度的定义可知,x-t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x–t 图为t 的二次曲线.根据各段时间内的运动方程x=x(t),求出不同时刻t 的位置x,采用描数据点的方法,可作出x-t 图.解将曲线分为AB、BC、CD 三个过程,它们对应的加速度值分别为(匀加速直线运动), (匀速直线运动)(匀减速直线运动)根据上述结果即可作出质点的a-t 图[图(B)].在匀变速直线运动中,有由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作的匀速直线运动, 其x -t 图是斜率k=20的一段直线[图(c)].1-8 分析质点的轨迹方程为y =f(x),可由运动方程的两个分量式x(t)和y(t)中消去t 即可得到.对于r、Δr、Δr、Δs 来说,物理含义不同,可根据其定义计算.其中对s的求解用到积分方法,先在轨迹上任取一段微元ds,则,最后用积分求s.解(1) 由x(t)和y(t)中消去t 后得质点轨迹方程为,这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为,图(a)中的P、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得其中位移大小而径向增量*(4) 如图(B)所示,所求Δs 即为图中PQ段长度,先在其间任意处取AB 微元ds,则,由轨道方程可得,代入ds,则2s内路程为1-9 分析由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解(1) 速度的分量式为,当t =0 时, vox =-10 m?6?1s-1 , voy =15 m?6?1s-1 ,则初速度大小为设vo与x 轴的夹角为α,则α=123°41′(2) 加速度的分量式为,则加速度的大小为设a 与x 轴的夹角为β,则,β=-33°41′(或326°19′)1-10 分析在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y1 =y1(t)和y2 =y2(t),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1(1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为当螺丝落至底面时,有y1 =y2 ,即(2) 螺丝相对升降机外固定柱子下降的距离为解2(1)以升降机为参考系,此时,螺丝相对它的加速度大小a′=g +a,螺丝落至底面时,有(2) 由于升降机在t 时间内上升的高度为则1-11 分析该题属于运动学的第一类问题,即已知运动方程r =r(t)求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t)和y′=y′(t)来表示圆周运动是比较方便的.然后,运用坐标变换x =x0 +x′和y =y0 +y′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解(1) 如图(B)所示,在O′x′y′坐标系中,因,则质点P的参数方程为,坐标变换后,在Oxy 坐标系中有,则质点P 的位矢方程为(2) 5s时的速度和加速度分别为1-12 分析为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s=htgωt,下午2∶00 时,杆顶在地面上影子的速度大小为当杆长等于影长时,即s =h,则即为下午3∶00 时.1-13 分析本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由和可得和.如a=a(t)或v =v(t),则可两边直接积分.如果a 或v不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解由分析知,应有得(1)由得(2)将t=3s时,x=9 m,v=2 m?6?1s-1代入(1) (2)得v0=-1 m?6?1s-1,x0=0.75 m.于是可得质点运动方程为1-14 分析本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v的函数,因此,需将式dv =a(v)dt 分离变量为后再两边积分.解选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知(1)用分离变量法把式(1)改写为(2)将式(2)两边积分并考虑初始条件,有得石子速度由此可知当,t→∞时, 为一常量,通常称为极限速度或收尾速度.(2) 再由并考虑初始条件有得石子运动方程1-15 分析与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量ax 和ay分别积分,从而得到运动方程r的两个分量式x(t)和y(t).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即和,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解由加速度定义式,根据初始条件t0 =0时v0 =0,积分可得又由及初始条件t=0 时,r0=(10 m)i,积分可得由上述结果可得质点运动方程的分量式,即x =10+3t2 y =2t2消去参数t,可得运动的轨迹方程3y =2x -20 m这是一个直线方程.直线斜率,α=33°41′.轨迹如图所示.1-16 分析瞬时加速度和平均加速度的物理含义不同,它们分别表示为和.在匀速率圆周运动中,它们的大小分别为, ,式中|Δv|可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt→0 时的极限值.解(1) 由图(b)可看到Δv =v2 -v1 ,故而所以(2) 将Δθ=90°,30°,10°,1°分别代入上式,得,, ,以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度.1-17 分析根据运动方程可直接写出其分量式x =x(t)和y =y(t),从中消去参数t,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即,它与时间间隔Δt 的大小有关,当Δt→0 时,平均速度的极限即瞬时速度.切向和法向加速度是指在自然坐标下的分矢量at和an ,前者只反映质点在切线方向速度大小的变化率,即,后者只反映质点速度方向的变化,它可由总加速度a 和at得到.在求得t1 时刻质点的速度和法向加速度的大小后,可由公式求ρ.解(1) 由参数方程x =2.0t,y =19.0-2.0t2消去t 得质点的轨迹方程:y =19.0 -0.50x2(2) 在t1 =1.00s到t2 =2.0s时间内的平均速度(3) 质点在任意时刻的速度和加速度分别为则t1 =1.00s时的速度v(t)|t =1s=2.0i -4.0j切向和法向加速度分别为(4) t =1.0s质点的速度大小为则1-18 分析物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量vx 、vy求出,这样,也就可将重力加速度g 的切向和法向分量求得.解(1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt,y =1/2 gt2飞机水平飞行速度v=100 m?6?1s-1 ,飞机离地面的高度y=100 m,由上述两式可得目标在飞机正下方前的距离(2) 视线和水平线的夹角为(3) 在任意时刻物品的速度与水平轴的夹角为取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为1-19 分析这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v0cosβ和v0sinβ,其加速度分别为gsinα和gcosα.在此坐标系中炮弹落地时,应有y =0,则x =OP.如欲使炮弹垂直击中坡面,则应满足vx =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得(即图中的r 矢量).解1由分析知,炮弹在图(a)所示坐标系中两个分运动方程为(1) (2)令y =0 求得时间t 后再代入式(1)得解2做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和vx =0,则(3)由(2)(3)两式消去t 后得由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v0 的大小无关.讨论如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1-20 分析选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布解(1) 如图(a)所示坐标系中,雨滴落地的运动方程为(1) (2)由式(1)(2)可得由图(a)所示几何关系得雨滴落地处圆周的半径为(2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1-21 分析被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x、y 值代入即可求出.解取图示坐标系Oxy,由运动方程,消去t 得轨迹方程以x =25.0 m,v =20.0 m?6?1s-1 及3.44 m≥y≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1-22 分析在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s(t),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量at,而加速度的法向分量为an=v2 /R.这样,总加速度为a =atet+anen.至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs=st -s0.因圆周长为2πR,质点所转过的圈数自然可求得.解(1) 质点作圆周运动的速率为其加速度的切向分量和法向分量分别为,故加速度的大小为其方向与切线之间的夹角为(2) 要使|a|=b,由可得(3) 从t=0 开始到t=v0 /b 时,质点经过的路程为因此质点运行的圈数为1-23 分析首先应该确定角速度的函数关系ω=kt2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k,ω=ω(t)确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解因ωR =v,由题意ω∝t2 得比例系数所以则t′=0.5s时的角速度、角加速度和切向加速度分别为总加速度在2.0s内该点所转过的角度1-24 分析掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解(1) 由于,则角速度.在t =2 s时,法向加速度和切向加速度的数值分别为(2) 当时,有,即得此时刻的角位置为(3) 要使,则有t =0.55s1-25 分析这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v1 为S′相对S的速度,v2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解以地面为参考系,火车相对地面运动的速度为v1 ,雨滴相对地面竖直下落的速度为v2 ,旅客看到雨滴下落的速度v2′为相对速度,它们之间的关系为(如图所示),于是可得1-26 分析这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v2′的方向)应满足.再由相对速度的矢量关系,即可求出所需车速v1.解由[图(b)],有而要使,则1-27 分析船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u的存在, v 与船在静水中划行的速度v′之间有v=u +v′(如图所示).若要使船到达正对岸,则必须使v沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.解(1) 由v=u +v′可知,则船到达正对岸所需时间为(2) 由于,在划速v′一定的条件下,只有当α=0 时, v 最大(即v=v′),此时,船过河时间t′=d /v′,船到达距正对岸为l 的下游处,且有1-28 分析该问题涉及到运动的相对性.如何将已知质点相对于观察者O 的运动转换到相对于观察者O′的运动中去,其实质就是进行坐标变换,将系O 中一动点(x,y)变换至系O′中的点(x′,y′).由于观察者O′相对于观察者O 作匀速运动,因此,该坐标变换是线性的.解取Oxy 和O′x′y′分别为观察者O 和观察者O′所在的坐标系,且使Ox 和O′x′两轴平行.在t =0 时,两坐标原点重合.由坐标变换得x′=x - v t =v t - v t =0 y′=y =1/2 gt2加速度由此可见,动点相对于系O′是在y 方向作匀变速直线运动.动点在两坐标系中加速度相同,这也正是伽利略变换的必然结果.2-1 分析与解当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力FT(其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a,如图(b)所示,由其可解得合外力为mgcot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2-2 分析与解与滑动摩擦力不同的是,静摩擦力可在零与最大值μFN范围内取值.当FN增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2-3 分析与解由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μFN.由此可算得汽车转弯的最大速率应为v=μRg.因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2-4 分析与解由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力FN作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m gcos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程可判断,随θ 角的不断增大过程,轨道支持力FN也将不断增大,由此可见应选(B).2-5 分析与解本题可考虑对A、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A、B 两物体受力情况如图(b)所示,图中a′为A、B 两物体相对电梯的加速度,ma′为惯性力.对A、B 两物体应用牛顿第二定律,可解得FT=5/8 mg.故选(A).讨论对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度aA和aB 均应对地而言,本题中aA和aB的大小与方向均不相同.其中aA应斜向上.对aA、aB 、a 和a′之间还要用到相对运动规律,求解过程较繁.有兴趣的读者不妨自己尝试一下.2-6 分析动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力.当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来.本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系α=f(t),然后运用对t 求极值的方法即可得出数值来.解取沿斜面为坐标轴Ox,原点O 位于斜面顶点,则由牛顿第二定律有(1)又物体在斜面上作匀变速直线运动,故有则(2)为使下滑的时间最短,可令,由式(2)有则可得,此时2-7 分析预制板、吊车框架、钢丝等可视为一组物体.处理动力学问题通常采用―隔离体‖的方法,分析物体所受的各种作用力,在所选定的惯性系中列出它们各自的动力学方程.根据连接体中物体的多少可列出相应数目的方程式.结合各物体之间的相互作用和联系,可解决物体的运动或相互作用力.解按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy 轴正方向(如图所示).当框架以加速度a 上升时,有FT-(m1 +m2 )g =(m1 +m2 )a (1) ,FN2 - m2 g =m2 a (2)解上述方程,得FT=(m1 +m2 )(g +a) (3) FN2 =m2 (g +a) (4)(1) 当整个装置以加速度a =10 m?6?1s-2 上升时,由式(3)可得绳所受张力的值为FT=5.94 ×103 N乙对甲的作用力为F′N2 =-FN2 =-m2 (g +a) =-1.98 ×103 N(2) 当整个装置以加速度a =1 m?6?1s-2 上升时,得绳张力的值为FT=3.24 ×103 N此时,乙对甲的作用力则为F′N2 =-1.08 ×103 N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2-8 分析该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A、B 及滑轮列动力学方程,有mA g -FT=mA a (1)F′T1 -Ff=mB a′ (2)F′T-2FT1 =0 (3)考虑到mA=mB =m, FT=F′T, FT1 =F′T1 ,a′=2a,可联立解得物体与桌面的摩擦力讨论动力学问题的一般解题步骤可分为:(1) 分析题意,确定研究对象,分析受力,选定坐标;(2) 根据物理的定理和定律列出原始方程组;(3) 解方程组,得出文字结果;(4) 核对量纲,再代入数据,计算出结果来.2-9 分析当木块B 平稳地轻轻放至运动着的平板A上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.。

[实用参考]大学物理学第四版课后习题答案(赵近芳)上册

习题11.1选择题(1)一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dt dr(B)dt r d(C)dtr d ||(D)22)()(dt dy dt dx +[答案:D](2)一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零(B)等于-2m/s (C)等于2m/s(D)不能确定。

[答案:D](3)一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)t R t R ππ2,2(B)tRπ2,0 (C)0,0(D)0,2tRπ[答案:B]1.2填空题(1)一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。

[答案:10m ;5πm] (2)一质点沿G 方向运动,其加速度随时间的变化关系为a=3+2t(SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。

[答案:23m·s -1](3)轮船在水上以相对于水的速度1V 航行,水流速度为2V,一人相对于甲板以速度3V 行走。

如人相对于岸静止,则1V 、2V和3V 的关系是 。

[答案:0321=++V V V]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1)物体的大小和形状; (2)物体的内部结构; (3)所研究问题的性质。

解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。

1.4 下面几个质点运动学方程,哪个是匀变速直线运动?(1)G=4t -3;(2)G=-4t 3+3t 2+6;(3)G=-2t 2+8t+4;(4)G=2/t 2-4/t 。

给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理上册课后习题答案
大学物理上册课后习题答案
大学物理是一门重要的基础学科,它为我们提供了理解自然界的物质和能量运
动规律的工具。

然而,学习物理并不仅仅是理论知识的学习,更需要通过实践
和习题的解答来巩固和应用所学的知识。

本文将为大家提供大学物理上册课后
习题的答案,希望能够帮助大家更好地学习和理解物理知识。

第一章:运动的描述
1. 一个物体从静止开始做匀加速直线运动,经过2秒后速度达到10m/s,求物
体的加速度和位移。

答案:加速度a = (10m/s - 0m/s) / 2s = 5m/s²,位移s = (0m/s + 10m/s) / 2 ×
2s = 10m。

2. 一个物体做直线运动,已知它的初速度为20m/s,加速度为4m/s²,求它在5秒内的位移。

答案:位移s = 20m/s × 5s + 1/2 × 4m/s² × (5s)² = 100m + 50m = 150m。

第二章:力学
1. 一个质量为2kg的物体受到一个10N的水平力,求物体的加速度。

答案:根据牛顿第二定律F = ma,可得加速度a = F / m = 10N / 2kg = 5m/s²。

2. 一个质量为0.5kg的物体受到一个向上的力10N和一个向下的力5N,求物
体的加速度。

答案:合力F = 10N - 5N = 5N,根据牛顿第二定律F = ma,可得加速度a = F / m = 5N / 0.5kg = 10m/s²。

第三章:能量守恒
1. 一个质量为0.1kg的物体从地面上抛起,初速度为10m/s,求物体达到最高
点时的动能、势能和总机械能。

答案:最高点时,物体的速度为0,所以动能为0;势能由重力势能计算,势能mgh = 0.1kg × 9.8m/s² × h,总机械能为动能和势能之和。

2. 一个质量为2kg的物体从高度为5m的斜面上滑下,摩擦系数为0.2,求物体滑到底部时的动能损失。

答案:物体滑到底部时,动能损失等于摩擦力所做的功,摩擦力F = μmg = 0.2 × 2kg × 9.8m/s²,功W = Fd,动能损失为W。

第四章:力学中的一些问题
1. 一个质量为10kg的物体放在光滑的斜面上,斜面的角度为30°,求物体所受
的重力分解力和沿斜面方向的加速度。

答案:重力分解力F = mg × sinθ,加速度a = g × sinθ。

2. 一个质量为2kg的物体受到一个斜向上的力10N和一个斜向下的力8N,斜
面的角度为45°,求物体的加速度。

答案:合力F = 10N - 8N = 2N,加速度a = F / m。

通过以上习题的解答,我们可以更好地理解和应用大学物理上册的知识。

物理
学习需要不断地思考和实践,通过解答习题可以帮助我们巩固所学的知识,并
培养我们的分析和解决问题的能力。

希望这些答案能够对大家的学习有所帮助。

相关文档
最新文档