室内热水供暖系统
哈工大供热工程 第三章 热水供暖系统1

二、系统型式
1.双管上供下回式 双管上供下回式
左侧ⅠⅡ立管 只适用于较低层数 的建筑,对高层建筑 易产生垂直失调 右侧ⅢⅣⅤ立管
为单管上供下回 式,详见图3-8
图3—6机械循环上供下回式热水供暖系统 1- 热水锅炉;2-循环水泵I;3-集气装置;4-膨胀水箱
3.单管上供下回式(单管顺流式) 3.单管上供下回式(单管顺流式) 单管上供下回式
垂直失调: 建筑物竖向房间出现冷热不均的现象。 双管系统:各层作用压力不同导致,楼层越多失调 就会越严重。 单管系统:各层散热器表面温度不一致导致。
重力循环系统特点: 不需要外来动力,运行时无噪声,调 节方便,管理简单。由于作用压头小,所 需管径大,只宜用于没有集中供热热源、 对供热质量有特殊要求的小型建筑物中。
3-2 机械循环热水供暖系统
垂直式系统、 垂直式系统、水平式系统 垂直系统: 垂直系统: 1.上供下回(单、双管) 上供下回( 双管) 上供下回 2.下供下回双管; 下供下回双管; 下供下回双管 3.中供式系统; 中供式系统; 中供式系统 4.下供上回系统; 下供上回系统; 下供上回系统 5.混合式系统 混合式系统
供回水管道都布置在房间 的中部。 的中部。适用于旧房改造 接层的建筑
混合式系统 混合式系统是由下供上回式(倒流式) 和上供下回式(顺流式)两组串联 组成的系统。高温水自下而上进入 第Ⅰ组系统,通过散热器放热后水 温降低,然后再引入第Ⅱ组系统, 放热后循环水温度再降低,然后返 回热源。 由于两组系统串联,系统的 压力损失大些。这种系统一般只宜 使用在连接于高温热水网路上的卫 生要求不高的民用建筑或生产厂房。
图3.1 重力循环热水供暖 系统工作原理图 一散热器; 一热水锅炉; 1一散热器;2一热水锅炉;3一供水管路 回水管路; 4~回水管路;5一膨胀水箱
热水供热系统+蒸汽供热系统

II III IV
立管 I
1 2
同程式系统
水平失调与垂直失调
在机械循环系统中,由于作用半径较大,连接立管较多, 因而通过各个立管环路的压力损失较难平衡。有时靠近总 立管最近的立管即使选用了最小的管径DN15,仍有很多剩 余压力。初调节不当时,会出现近处立管流量超过要求, 而远处立管流量不足。在远近立管处出现流量失调而引起 在水平方向冷热不均的现象,称为系统的水平失调。
见 图3-1
5
断面A-A右侧的水柱压力为
P 1g ) 右 g (h0 h hh h
h1
1
断面A-A左侧的水柱压力为
ρg
3 4
h
ρh
作用压力
2 A P左 A
h0
P P =gh( h g ) 右 P 左
P右
起循环作用的只有散热器中心和锅炉中心之间这段高度内的 水柱密度差。如果取供水温度 95℃,回水 70℃;则每 m 高差 可产生的作用压力为: 9.81×1×(977.81-961.92)=156 Pa 重力循环热水供暖系统维护管理简单,不需消耗电能。但由 于其作用压力小、管中水流速度不大,所以管径就相对大一 些,作用范围也受到限制。自然循环热水供暖系统通常只能 在单幢建筑物中使用,作用半径不宜超过50m。
优点:由于设置了循环水泵,作用压力加大,供暖范围扩大 。 缺点:由于设置了循环水泵,增加了系统的运行费用和维修 工作量。
应用:用于单幢、多幢建筑,甚至区域热水供暖系统。
形式:(按照散热器的连接方式)垂直式 、水平式
1.垂直式——上供下回式热水供暖系统
立管
I
3 II
4
III
IV
供暖系统.ppt

▪ ★重力循环热水供暖系统管道布置的特点 为:
▪ 供水干管有向膨胀水箱方向上升的坡向 (即供水干管低头走) ,其坡度为0.5%~ 1%(排除空气);
▪ 散热器支管坡度为1%,坡向为供水支管低 头走,回水支管低头走;
▪ 回水干管有向锅炉方向下降的坡向(即回 水干管低头走) ,其坡度为0.5%~1%;
▪ (一)自然循环(重力循环)热水供暖系统 其示意图如下图所示。
▪ 循环动力:靠供、回水的密度差进行循环。 ▪ 系统组成:
锅炉、输热管道、膨胀水箱、散热设备。 ▪ ★工作原理及作用压力
下图为重力循环热水供暖系统工作原理图。
ቤተ መጻሕፍቲ ባይዱ
膨胀水箱
h1
供水管路 ρg
散热器
h
热水锅炉 A
P左
P右
A
h0
回水管路 ρh
▪ 特点:立管中的水在散热器旁分成两部分, 一部分直接进入该层散热器,而另一部分 则通过跨越管与该层散热器的回水混合后 再流向下层散热器。逐层被冷却,最后流 回锅炉。
▪ 可以在跨越管或散热器支管上安装阀门。 系统调试时用来调节热水流量,以缓和 “上热下冷”的弊端。该阀门建议采用钥 匙阀,以免调试后用户任意开启,影响系 统平衡。
▪ 循环动力:靠水泵产生的循环作用压力。
▪ 优点:管径小、升温快、作用半径大、起 动容易,应用更广泛。
▪ 系统组成:锅炉、输热管道、水泵、膨胀 水箱、集气罐(自动排气阀)、散热设备。
▪ 与自然循环系统相比,机械循环热水供暖 系统多了水泵和排气设备。另外,膨胀水 箱的连接位置不同。
▪ 机械循环热水供暖系统的主要型式分为:垂直式 系统和水平式系统两大类。
▪ 配管方式:
▪ 1)供、回水干管都敷设在底层散热器之下。 (不供暖的地下室或地沟中)
简述供暖系统的组成和分类

简述供暖系统的组成和分类供暖系统是指将热能转化为热空气或热水等形式,通过输送系统向建筑物内部提供热能,以保持舒适的室温和温度条件的设施。
简单来说,就是在寒冷的冬季,通过供暖系统为民众提供温暖的居住环境。
接下来,我们将从组成和分类两个方面,对供暖系统进行详细介绍。
一、供暖系统的组成供暖系统由四个主要组成部分构成:发热设备、输送系统、控制系统和辅助设备。
1. 发热设备:即供热设备,主要包括锅炉、换热器、热泵等。
锅炉是一种广泛应用的供暖设备,可使用煤、燃气、燃油等作为燃料,将水加热产生蒸汽或热水供给系统,实现热能转换。
热泵是一种新兴的供暖设备,具有高效、节能、环保等优点。
2. 输送系统:即热力输送系统,主要包括管道、散热器、风机盘管等。
通过热水或热空气在输送系统内流动,将热能输送到建筑物内部各个房间。
3. 控制系统:主要包括温控阀、传感器、中央控制系统等,实现对供暖系统的温度和运行状态控制,能够提高系统的效率和稳定性,减少能源浪费。
4. 辅助设备:主要包括水泵、阀门、水箱、排气阀等,用于维护供暖系统的正常运行。
二、供暖系统的分类根据供暖方式和能源来源不同,供暖系统可以分为以下几类:1. 锅炉供暖系统:利用燃气、燃油、煤等能源加热水,在建筑物内输送热水实现供暖的方式。
2. 暖气片供暖系统:通过管道输送热水或热空气,使散热器散发出热量,从而实现供暖的方式。
3. 空调供暖系统:利用空气冷热交替制冷或制热,通过空气供应系统将热空气输送到室内达到加热的目的。
4. 地暖供暖系统:利用地下的热能,通过地暖管道将热能输送至各个房间实现供暖的方式。
总之,供暖系统的组成和分类非常多样化,选择适合自己家庭的供暖方式,能够既保证居家舒适,又能节约能源,真正达到环保节能的目的。
供暖系统简介,很有价值解读

1.1 热负荷
热负荷
外门附加率
外门布置状况 一道门 两道门(有门斗) 三道门(有两个门斗) 公共建筑和厂房的主要出入口 附加率 65n% 80n% 60n% 500%
注:n——建筑物的层数
1.1 热负荷
热负荷
高度附加率
民用建筑筑和工业辅助建筑物(楼梯间除外)的房间 高度大于4m时,高出1m应附加2%,但总的附加率不应大 于15%。 需要修正的耗热量等于垂直的外围护结构(门、窗、 外墙及用顶的垂直部分)的基本耗热量和其它附加(修正) 耗热量的总和乘以相应的高度附加率。
3 i i
i 1 2
i
机械循环下供上回(倒流式)热水采暖系统
下供上回式采暖系统特点
3
无需设置集气罐等排 气装置(水与空气流 动方向一致) 。
底层散热器的面积减 小,便于布置。
i
i
i 1 2
i
机械循环下供上回(倒流式)热水采暖系统
5、混合式采暖系统
混合式系统是由上供下回式、下供下 回式和下供上回式等串联组成的系统。 由于两组及以上的系统串联,系统的 压力损失大些。这种系统一般只宜使用在 连接于高温热水网路上的卫生要求不高的 民用建筑或生产厂房。
下供下回式采暖系统特点
4 5
6
a b
>h
3 1 2
在地下室布置供水干管,管 路直接散热给地下室,无效热 损失小。 排除系统中的空气较易。
3、中供式采暖系统
水平供水干管敷设在 系统中部。 下部:上供下回; 上部:下供下回(左) 上供下回(右)
中供式采暖系统特点
中供式系统可避免由于顶层梁底标高过低,
放热中心1 (散热器) 加热中心2 (锅炉) 供水管3 回水管4 膨胀水箱5
机械循环热水供暖系统原理

机械循环热水供暖系统是一种常用的供暖方式,其基本原理是通过循环泵将热水从热源(如锅炉)输送到各个供暖终端(如散热器、地暖等),实现室内的供暖。
该系统的基本组成包括热源、循环泵、管道系统、供暖终端以及控制系统等。
1.热源:热源一般是锅炉,它通过燃烧燃料产生热能,将水加热至一定温度。
锅炉可以使用不同的燃料,如煤、油、天然气等。
2.循环泵:循环泵是该系统的核心组件,它负责将热水从热源输送到各个供暖终端。
循环泵通过电动机驱动,将热水从锅炉中吸入,然后通过管道系统输送到供暖终端。
3.管道系统:管道系统包括供水管道和回水管道。
供水管道将热水从锅炉输送到供暖终端,而回水管道将冷却的热水从供暖终端输送回锅炉进行再次加热。
管道系统一般采用金属管道,如钢管、铜管等。
4.供暖终端:供暖终端是室内的散热设备,如散热器、地暖等。
热水通过供水管道流入供暖终端,释放热量后的冷却水通过回水管道返回锅炉。
5.控制系统:控制系统用于监测和控制供暖系统的运行。
它可以根据室内温度和设定的温度要求,自动调节锅炉的工作状态和循环泵的运行。
控制系统可以采用传统的机械控制方式,也可以使用现代化的电子控制方式。
机械循环热水供暖系统的工作原理如下:首先,当室内温度低于设定的温度要求时,控制系统会启动循环泵和锅炉。
循环泵开始工作,将热水从锅炉中吸入,然后通过供水管道输送到供暖终端。
热水在供暖终端释放热量,使室内温度逐渐升高。
同时,冷却的热水通过回水管道返回锅炉。
回水管道通常设置有自动排气阀和调节阀,以确保系统中的空气排出和水流量的平衡。
当室内温度达到设定的温度要求时,控制系统会停止循环泵和锅炉的工作。
此时,热水停止循环,供暖终端停止释放热量,室内温度保持在设定的温度范围内。
需要注意的是,机械循环热水供暖系统中的热水循环是持续不断的。
循环泵不断将热水从锅炉输送到供暖终端,然后冷却的热水通过回水管道返回锅炉进行再次加热。
这样循环往复,保持室内温度的稳定。
1-1-1-5同程式和异程式热水供暖系统的特点

项目一:室内热水供暖工程施工
模块一:识读、绘制室内热水供暖系统施工图
单元1 热水供暖系统形式
1-1-1-5同程式和异程式热水供暖系统的特点
1.同程式和异程式热水供暖系统的特点
异程式系统是指通过各立管的循环环路总长度不相等,如图1-1-15所示。
前面介绍垂直式系统时列举的各种图示均是异程式系统。
图1-1-15 异程式系统
1-热水锅炉 2-循环水泵 3-膨胀水箱 4-集气罐
图1-1-16 同程式系统
1-热水锅炉 2-循环水泵 3-膨胀水箱 4-集气罐
由于机械循环系统的作用半径较大,各立管循环环路的总长度就可能相差很大,各并联环路的阻力不易平衡,离总立管最近的立管虽采用了最小管径DN15,有时仍有过多的剩余压力,当初调节不当时,会出现远近立管流量的分配不均,造成近处立管分配的流量多,房间过热;远处立管分配的流量少,房间过冷的水平失调问题。
在大型的供暖系统中,为了减轻水平失调,使各并联环路的压力损失易于平衡,多采用同程式系统,同程式系统各立管的循环环路总长度相等,阻力易于平衡,如图1-1-16。
但同程式系统会增加干管长度,需要精心考虑,布置得当。
采暖系统水力计算.pptx

第9页/共13页
第四章 室内热水供暖系统的水力计算
同程式系统管路系统图
第10页/共13页
第四章 室内热水供暖系统的水力计算
4-4、不等温降的水力计算原理和方法
• 一、室内热水供暖系统管路的阻力数
定通过该管段的水流量。 室内热水供暖管路系统是由许多串联或并联管段
组成的管路系统。
第2页/共13页
第四章 室内热水供暖系统的水力计算
进行第一种情况的水力计算时,可以预先求出最不利循环环路或分支环路 的平均比摩阻 。
Rpj
P l
Pa/m
式中 —P—最不利循环环路或分支环路的循环作用压力,Pa;
——最不利循环环路或分支环路的管路总长度,m;
第4页/共13页
第四章 室内热水供暖系统的水力计算
4-3、机械循环单管热水供暖系统管路的 水力计算方法和例题
与重力循环系统相比,机械循环系统的作用半径大,传统的室内热水供暖 系统的总压力损失一般约为10~20kPa;对于分户采暖等水平式或大型的系统, 可达20~50kPa。
传统的采暖系统进行水力计算时,机械循环室内热水供暖系统多根据入口 处的资用循环压力,按最不利循环环路的平均比摩阻Rpj来选用该环路各管段 的管径。当入口处资用压力较高时,管道流速和系统实际总压力损失可相应 提高。但在实际工程设计中,最不利循环环路的各管段水流速过高,各并联 环路的压力损失难以平衡,所以常用控制Rpj值的方法,按Rpj=60~120Pa/m 选取管径。剩余的资用循环压力,由入口处的调压装置节流。
第四章 室内热水供暖系统的水力计算
三、室内热水供暖系统管路水力计算的主要任务和方法 • 室内热水供暖系统管路水力计算的主要任务,通常为: • 1.按已知系统各管段的流量和系统的循环作用压力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
室内热水供暖系统
室内热水供暖系统是一种常见的取暖方式,主要通过循环加热水来提供室内的供暖需求。
该系统以高效、节能的方式为用户提供舒适的室温,成为许多家庭和建筑物的首选取暖方式。
本文将从系统原理、设备组成、优势和应用前景等方面进行论述。
一、系统原理
室内热水供暖系统的原理基于水的热传导性质,通过加热水使其成为热源,通过管道输送到室内各个供暖设备,如散热器或地暖,以达到室内加热的目的。
加热水的方式可以采用传统的燃气锅炉、电热锅炉、太阳能等能源形式,使水温达到设定的温度后,将热水输送到各个供暖设备进行加热。
二、设备组成
室内热水供暖系统主要由以下几个基本组成部分构成:
1. 热源设备:燃气锅炉、电热锅炉、太阳能集热器等,负责加热水的设备。
2. 管道系统:负责将加热后的水输送到各个供暖设备,通常采用耐高温、隔热性能好的管道。
3. 供暖设备:如散热器、地暖等,将热能传递给室内空气。
4. 水泵:用于推动热水在管道中的循环流动,确保水流畅通。
5. 控制系统:包括温控器、压力控制器等,用于监测和控制系统运
行状态。
三、优势
室内热水供暖系统相较于其他取暖方式有着明显的优势:
1. 高效节能:热水供暖系统利用水的热传导性质,通过循环加热方式,使取暖效果更加高效,能够快速提供舒适的室温,并且可根据实
际需求进行灵活调节,达到节能的效果。
2. 均匀舒适:由于水的传热方式较空气更加均匀,室内热水供暖系
统可以实现整个室内空间的均匀供暖,避免了传统取暖方式中的冷热
不均的问题,为用户提供更加舒适的居住环境。
3. 安全可靠:室内热水供暖系统选用的热源设备通常具备多种安全
保护功能,如过热保护、断电保护等,能够确保系统的安全稳定运行。
4. 环保节能:室内热水供暖系统可以使用可再生能源作为热源,如
太阳能集热器,减少对传统能源的依赖,从而降低环境污染和二氧化
碳排放。
四、应用前景
随着人们对舒适室温的需求不断提升,室内热水供暖系统的应用前
景十分广阔。
它已广泛应用于住宅、商业建筑、工业厂房等多个领域。
特别是在北方寒冷地区,室内热水供暖系统因其高效、节能的特点,
成为主流的取暖方式之一。
未来,随着技术的不断创新和发展,室内热水供暖系统将更加智能化、自动化。
通过智能温控系统、远程监控等技术手段,用户可以更加方便地控制和管理供暖设备,实现个性化的取暖需求。
同时,新型材料的应用,如高效散热器、高效节能管道等,也将进一步提升系统的性能和效率。
总之,室内热水供暖系统以其高效、节能、舒适的特点受到广大用户的青睐。
在未来的发展中,它将继续发挥重要的作用,并不断创新和完善,为人们创造更加宜居的生活环境。