锁相环电路设计
锁相环电路设计

锁相环的原理2007-01-23 00:241.锁相环的基本组成许多电子设备要正常工作,通常需要外部的输入信号与部的振荡信号同步,利用锁相环路就可以实现这个目的。
锁相环路是一种反馈控制电路,简称锁相环(PLL)。
锁相环的特点是:利用外部输入的参考信号控制环路部振荡信号的频率和相位。
因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。
锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。
锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1所示。
锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成u D(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压u C(t),对振荡器输出信号的频率实施控制。
2.锁相环的工作原理锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图8-4-2所示。
鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为:(8-4-1)(8-4-2)式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。
则模拟乘法器的输出电压u D为:用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压u C (t)。
即u C(t)为:(8-4-3)式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为:即(8-4-4)则,瞬时相位差θd为(8-4-5)对两边求微分,可得频差的关系式为(8-4-6)上式等于零,说明锁相环进入相位锁定的状态,此时输出和输入信号的频率和相位保持恒定不变的状态,u c(t)为恒定值。
《应用于LVDS的锁相环电路研究》

《应用于LVDS的锁相环电路研究》一、引言随着现代电子技术的飞速发展,数据传输速率的要求日益提高,低电压差分信号传输(LVDS)技术因其低功耗、高速度和低噪声的特性,在高速数据传输领域得到了广泛应用。
锁相环(PLL)电路作为LVDS系统中的关键部分,其性能的优劣直接影响到整个系统的稳定性和传输质量。
因此,对应用于LVDS的锁相环电路进行研究具有重要的现实意义。
二、锁相环电路的基本原理锁相环电路是一种闭环相位控制系统,主要由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成。
其基本原理是通过鉴相器比较输入信号和压控振荡器输出的信号之间的相位差,将相位差转换为电压或电流信号,经过环路滤波器的滤波后,控制压控振荡器的频率和相位,使输出信号的相位与输入信号的相位保持一致。
三、LVDS中锁相环电路的应用在LVDS系统中,锁相环电路主要用于实现数据的同步传输。
由于LVDS采用差分信号传输方式,要求发送端和接收端之间的时钟信号必须保持严格的同步。
锁相环电路通过捕获输入信号的相位信息,将其与压控振荡器输出的信号进行比对和调整,从而保证数据的准确传输。
四、应用于LVDS的锁相环电路设计要点在应用于LVDS的锁相环电路设计中,需要注意以下几个要点:1. 输入范围和稳定性:设计时应考虑到输入信号的范围、频率波动和噪声干扰等因素,确保鉴相器能够准确捕获输入信号的相位信息。
2. 环路滤波器的设计:环路滤波器的作用是滤除鉴相器输出的高频噪声和杂散信号,为压控振荡器提供稳定的控制信号。
设计时需要考虑滤波器的带宽、阶数和稳定性等因素。
3. 压控振荡器的选择:压控振荡器的性能直接影响到锁相环电路的频率和相位调整范围。
选择时需要考虑其频率范围、相位噪声、功耗和稳定性等因素。
4. 电路布局与调试:在电路布局和调试过程中,需要考虑到电磁干扰(EMI)和电磁兼容性(EMC)等问题,确保锁相环电路的稳定性和可靠性。
五、实验结果与分析通过实验验证了应用于LVDS的锁相环电路的有效性和性能。
锁相环电路的设计及相位噪声分析

和响应速度之间折衷考虑,相位裕度越大,系统越稳定,但是响应速度变慢。
这里取相位裕度为60度。
同样的,这两个环路参数是估计出来的,在实际电路中仍然需要多次考虑。
最后根据上面的两个环路参数,利用第二章第六节的公式2-22到2-24可以计算出低通滤波器的电阻和电容的值大约为:R2=12K,C2=138PF,CI=1IPF。
根据以上估算的参数可以将锁相环系统的幅频和相频特性曲线画出,如图4.2所示。
图4-2PLL的幅频与相频特性曲线4.3锁相环系统级模型4.3.1Matlab构造数学模型Mauab是MathWorks公司开发的具有强大科学运算功能的数学工具,其中的软件包--Simulink是专门用于数学建模的工具。
通过建立锁相环系统的线性模型,如图4—3所示,分别建立环路中每个模块的传输函数,然后设置输入输出点。
该线性模型不仅可以分析系统的冲击响应和阶跃响应,还可以分析零极点与波特图。
冲击响应和阶越响应的模拟结果如图4-4所示,此模型可以很方便的修改参数,仿真速度非常快,模拟结果也非常直观,对于理解二阶系统的特性非常有帮助。
t№啦*血瞻呻目删e,ra口aap蝌m鼬rtrartim'哥缸眦h恤啪蚓of恤VCO图4-3Matlab建立PLL的线性模型图4—4PLL的阶跃响应与冲击响应4.3.2VerilogA构造行为级模型VerilogA语言是Verilog硬件描述语言的扩展,主要用来描述模拟系统的结构和行为,包括电子,机械,流体力学和热力学系统等㈣。
下面给出VerilogA描述锁相环的行为级模型,并应用Mica进行仿真。
首先,以电阻的行为级模型为例,简单的说明一下VerilogA语言的特点和应用。
、include“disciplines.”’’include“constants.h,’moduleres(a,b);inouta,b;electricala,b;parameterrealR21.O:analogbeginI(a,b)<+V(a,b)/R;//Altemative:V(a,b)<+I(a,b)4R;第五章锁相环电路设计及模拟第五章锁相环电路设计及模拟5.1整体设计本章主要是关于锁相环的晶体管级电路的设计,不但详细的分析了电路的结构,而且给出了模拟结构及相关的解释。
基于FPGA的锁相环位同步提取电路设计

基于FPGA的锁相环位同步提取电路设计锁相环(Phase-Locked Loop,PLL)是一种广泛应用于通信、控制及信号处理等领域的电路,能够实现频率同步和相位同步。
在本文中,我们将讨论基于FPGA的锁相环位同步提取电路设计。
首先,我们将介绍锁相环的基本原理。
锁相环由相位比较器、低通滤波器、VCO(Voltage-Controlled Oscillator)和分频器组成。
相位比较器用于比较参考信号和反馈信号的相位差,将相位差转换为电压差。
低通滤波器将电压差平滑处理,得到控制电压,用于控制VCO的频率。
VCO产生与输入信号频率相同的输出信号,通过分频器将输出信号分频后与参考信号进行比较,实现频率同步。
在基于FPGA的锁相环位同步提取电路设计中,我们的目标是实现一个能够提取输入信号的位同步信息的电路,其中输入信号可能包含多个周期不同的位同步序列。
首先,我们需要设计一个相位比较器,用于比较参考信号和输入信号的相位差。
可以使用FPGA中的数字时钟管理模块来实现相位比较器,将输入信号与参考信号都映射到固定的时钟边沿上,并通过计数器测量输入信号和参考信号之间的相位差。
然后,我们需要设计一个低通滤波器,用于平滑处理相位差。
可以使用FPGA中的滑动平均滤波器来实现低通滤波器,通过对相位差进行滑动平均运算,得到平滑的控制电压。
接下来,我们需要设计一个VCO,用于产生与输入信号频率相同的输出信号。
可以使用FPGA中的数字控制模块来实现VCO,通过调节VCO的控制电压来控制输出频率。
最后,我们需要设计一个分频器,将VCO的输出信号分频后与参考信号进行比较。
可以使用FPGA中的计数器来实现分频器,通过设置分频器的计数值来实现对VCO输出信号的分频。
在整个电路设计过程中,我们需要注意以下几点:1.选择合适的时钟频率和分辨率。
时钟频率要足够高,以满足输入信号的高速采样需求。
分辨率要足够高,以保证位同步信息的精确提取。
2.选择合适的滤波器参数。
锁相环电路设计

锁相环电路设计
锁相环电路是一种常用的电路,可以将输入信号与参考信号同步,使得输出信号与参考信号保持相位一致,从而实现信号的稳定调制和解调。
锁相环电路广泛应用于通信、雷达、测量等领域。
锁相环电路的基本原理是利用反馈控制的方式,将输入信号与参考信号的相位差控制在固定范围内。
锁相环电路由相位检测器、环路滤波器、控制电压源和振荡器等组成。
相位检测器是锁相环电路中最关键的部分,它的作用是检测输入信号与参考信号的相位差,并将相位差转换成控制电压。
常见的相位检测器有边沿触发型、比较型、旋转型等。
环路滤波器的作用是平滑控制电压,使得控制电压稳定地作用于振荡器。
常见的环路滤波器有低通滤波器、高通滤波器、带通滤波器等。
控制电压源是实现锁相环电路闭环控制的关键部分,它通过反馈控制方式来调整振荡器的频率和相位,使得振荡器的输出信号与参考信号保持同步。
常见的控制电压源有电容调谐型、电感调谐型、数字控制型等。
振荡器是锁相环电路中产生输出信号的部分,它的稳定性直接影响锁相环电路的性能。
常见的振荡器有晶体振荡器、LC振荡器、压控
振荡器等。
在设计锁相环电路时,需要根据具体的应用场景选择合适的元器件和参数,以保证锁相环电路的稳定性和可靠性。
同时,还需要对电路进行仿真和调试,以达到最佳的性能和效果。
锁相环电路是一种常用的电路,可以实现输入信号与参考信号的同步,广泛应用于通信、雷达、测量等领域。
锁相环电路的设计需要考虑多个因素,包括相位检测器、环路滤波器、控制电压源和振荡器等,同时需要进行仿真和调试,以达到最佳的性能和效果。
adisimpll锁相环设计过程

adisimpll锁相环设计过程锁相环(Phase-Locked Loop,PLL)是一种常用于时钟和信号恢复的电子电路。
它可以将输入信号的频率、相位和幅度与参考信号进行比较,然后通过调整其内部振荡器的频率和相位来保持与参考信号的同步。
在现代电子系统中,锁相环已成为许多应用的核心部件,例如通信系统、数据转换和数字信号处理等。
锁相环的设计过程通常包括以下几个主要步骤:1.确定锁相环的规格要求:首先需要确定系统的特定需求,包括输入和输出信号的频率范围、带宽、相位噪声要求以及抖动限制等。
这些规格要求将直接影响锁相环的设计参数和性能。
2.选择合适的锁相环架构:根据系统的特定需求,选择适合的锁相环架构。
常见的锁相环架构包括基于电压控制振荡器(Voltage-Controlled Oscillator,VCO)的基本锁相环、带自由运行振荡器(Free-Running Oscillator)的环-环(Ring-Oscillator)锁相环和数字控制振荡器(Digital-Controlled Oscillator,DCO)的混合锁相环等。
3.设计相位频率检测器:锁相环中的相位频率检测器(Phase-Frequency Detector,PFD)用于比较参考信号和反馈信号的相位和频率差异,并将其转化为控制信号。
常见的PFD电路包括EXOR门和带有多频偏的PFD等。
4.设计环路滤波器:设计环路滤波器用于平稳化锁相环的控制信号。
环路滤波器通常采用低通滤波器结构,能够滤除高频噪声和不稳定性。
5.设计振荡器:根据系统的频率范围和性能要求,设计合适的振荡器。
常见的VCO设计包括压控晶体振荡器(Voltage-Controlled Crystal Oscillator,VCXO)和频率可调振荡器(Voltage-Controlled Oscillator,VCO)。
6.设计控制电路:根据锁相环的设计需求,设计合适的控制电路。
锁相环电路设计

锁相环电路设计PLL(锁相环)电路原理及设计在通信机等所使用的振荡电路,其所要求的频率范围要广,且频率的稳定度要高。
无论多好的LC振荡电路,其频率的稳定度,都无法与晶体振荡电路比较。
但是,晶体振荡器除了可以使用数字电路分频以外,其频率几乎无法改变。
如果采用PLL(锁相环)(相位锁栓回路,PhaseLockedLoop)技术,除了可以得到较广的振荡频率范围以外,其频率的稳定度也很高。
此一技术常使用于收音机,电视机的调谐电路上,以及CD唱盘上的电路。
一 PLL(锁相环)电路的基本构成PLL(锁相环)电路的概要图1所示的为PLL(锁相环)电路的基本方块图。
此所使用的基准信号为稳定度很高的晶体振荡电路信号。
此一电路的中心为相位此较器。
相位比较器可以将基准信号与VCO (Voltage Controlled Oscillator……电压控制振荡器)的相位比较。
如果此两个信号之间有相位差存在时,便会产生相位误差信号输出。
(将VCO的振荡频率与基准频率比较,利用反馈电路的控制,使两者的频率为一致。
)利用此一误差信号,可以控制VCO的振荡频率,使VCO的相位与基准信号的相位(也即是频率)成为一致。
PLL(锁相环)可以使高频率振荡器的频率与基准频率的整数倍的频率相一致。
由于,基准振荡器大多为使用晶体振荡器,因此,高频率振荡器的频率稳定度可以与晶体振荡器相比美。
只要是基准频率的整数倍,便可以得到各种频率的输出。
从图1的PLL(锁相环)基本构成中,可以知道其是由VCO,相位比较器,基准频率振荡器,回路滤波器所构成。
在此,假设基准振荡器的频率为fr,VCO的频率为fo。
在此一电路中,假设frgt;fo时,也即是VC0的振荡频率fo比fr低时。
此时的相位比较器的输出PD会如图2所示,产生正脉波信号,使VCO的振荡器频率提高。
相反地,如果frlt;fo时,会产生负脉波信号。
(此为利用脉波的边缘做二个信号的比较。
如果有相位差存在时,便会产生正或负的脉波输出。
锁相环集成电路设计

锁相环集成电路设计嘿,朋友们!今天咱就来聊聊锁相环集成电路设计这档子事儿。
你说这锁相环集成电路啊,就像是一个神奇的魔法盒子。
它能把那些杂乱无章的信号变得乖乖听话,整整齐齐地排好队。
就好比一个调皮的孩子,被老师好好管教后变得乖巧懂事了。
咱设计这玩意儿的时候,可得像个细心的工匠,一点一点雕琢。
每个元件的选择,就像给房子选砖头,得挑质量好的,不然房子可就不结实啦!布线呢,就跟给城市规划道路似的,得合理安排,不能这儿堵那儿塞的。
你想想看,如果设计不好,那会出啥乱子呀?信号就跟没头苍蝇似的到处乱撞,那可不行!咱得让它按照咱的想法,稳稳当当、顺顺利利地跑。
在这个过程中,经验可太重要啦!就跟老司机开车一样,开得多了,啥路况都见过,自然就得心应手啦。
要是没经验,那可就像刚学开车的新手,手忙脚乱的。
还有啊,测试也不能马虎。
这就好比给刚做好的衣服检查有没有线头一样,得仔细再仔细。
要是有个小毛病没发现,等用起来出问题了,那不就傻眼啦?设计锁相环集成电路也得有耐心,不能着急。
就像炖一锅好汤,得小火慢慢炖,急不得。
要是火大了,汤就烧干啦,那可就全白费功夫了。
而且啊,这可不是一个人能搞定的事儿,得团队合作。
大家各显神通,把自己的本事都拿出来,一起攻克难题。
这就像一场足球比赛,每个人都有自己的位置和任务,只有配合好了,才能赢得比赛。
你说,要是咱能设计出一个超级厉害的锁相环集成电路,那得多有成就感啊!就跟登上了珠穆朗玛峰似的,那感觉,爽歪歪!总之,锁相环集成电路设计可不是一件容易的事儿,但只要咱用心、细心、有耐心,再加上团队的力量,就一定能把它搞定!让那些信号都乖乖听咱的话,为我们所用!怎么样,是不是觉得很有意思呀?那就赶紧行动起来吧!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锁相环的原理2007-01-23 00:241.锁相环的基本组成许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。
锁相环路是一种反馈控制电路,简称锁相环(PLL)。
锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。
因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。
锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。
锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1所示。
锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成u D(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压u C(t),对振荡器输出信号的频率实施控制。
2.锁相环的工作原理锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图8-4-2所示。
鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为:(8-4-1)(8-4-2)式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。
则模拟乘法器的输出电压u D为:用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压u C (t)。
即u C(t)为:(8-4-3)式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为:即(8-4-4)则,瞬时相位差θd为(8-4-5)对两边求微分,可得频差的关系式为(8-4-6)上式等于零,说明锁相环进入相位锁定的状态,此时输出和输入信号的频率和相位保持恒定不变的状态,u c(t)为恒定值。
当上式不等于零时,说明锁相环的相位还未锁定,输入信号和输出信号的频率不等,u c(t)随时间而变。
因压控振荡器的压控特性如图8-4-3所示,该特性说明压控振荡器的振荡频率ωu以ω0为中心,随输入信号电压u c(t)的变化而变化。
该特性的表达式为(8-4-6)上式说明当u c(t)随时间而变时,压控振荡器的振荡频率ωu也随时间而变,锁相环进入“频率牵引”,自动跟踪捕捉输入信号的频率,使锁相环进入锁定的状态,并保持ω0=ωi的状态不变。
8.4.2锁相环的应用1.锁相环在调制和解调中的应用(1)调制和解调的概念为了实现信息的远距离传输,在发信端通常采用调制的方法对信号进行调制,收信端接收到信号后必须进行解调才能恢复原信号。
所谓的调制就是用携带信息的输入信号u i来控制载波信号u C的参数,使载波信号的某一个参数随输入信号的变化而变化。
载波信号的参数有幅度、频率和位相,所以,调制有调幅(AM)、调频(FM)和调相(PM)三种。
调幅波的特点是频率与载波信号的频率相等,幅度随输入信号幅度的变化而变化;调频波的特点是幅度与载波信号的幅度相等,频率随输入信号幅度的变化而变化;调相波的特点是幅度与载波信号的幅度相等,相位随输入信号幅度的变化而变化。
调幅波和调频波的示意图如图8-4-4所示。
上图的(a)是输入信号,又称为调制信号;图(b)是载波信号,图(c)是调幅波和调频波信号。
解调是调制的逆过程,它可将调制波u O还原成原信号u i。
2.锁相环在调频和解调电路中的应用调频波的特点是频率随调制信号幅度的变化而变化。
由8-4-6式可知,压控振荡器的振荡频率取决于输入电压的幅度。
当载波信号的频率与锁相环的固有振荡频率ω0相等时,压控振荡器输出信号的频率将保持ω0不变。
若压控振荡器的输入信号除了有锁相环低通滤波器输出的信号u c 外,还有调制信号u i,则压控振荡器输出信号的频率就是以ω0为中心,随调制信号幅度的变化而变化的调频波信号。
由此可得调频电路可利用锁相环来组成,由锁相环组成的调频电路组成框图如图8-4-5所示。
根据锁相环的工作原理和调频波的特点可得解调电路组成框图如图8-4-6所示。
3.锁相环在频率合成电路中的应用在现代电子技术中,为了得到高精度的振荡频率,通常采用石英晶体振荡器。
但石英晶体振荡器的频率不容易改变,利用锁相环、倍频、分频等频率合成技术,可以获得多频率、高稳定的振荡信号输出。
输出信号频率比晶振信号频率大的称为锁相倍频器电路;输出信号频率比晶振信号频率小的称为锁相分频器电路。
锁相倍频和锁相分频电路的组成框图如图8-4-7所示。
图中的N大于1时,为分频电路;当0<1时,为倍频电路。
< FONT锁相环原理锁相环包含三个主要的部分:⑴鉴相环(或相位比较器,记为PD或PC):是完成相位比较的单元,用来比较输入信号和基准信号的之间的相位.它的输出电压正比于两个输入信号之相位差.⑵低通滤波器(LPF):是个线性电路,其作用是滤除鉴相器输出电压中的高频分量,起平滑滤波的作用.通常由电阻、电容或电感等组成,有时也包含运算放大器。
⑶压控振荡器(VCO):振荡频率受控制电压控制的振荡器,而振荡频率与控制电压之间成线性关系。
在PLL中,压控振荡器实际上是把控制电压转换为相位。
图1为上述三个部分组成PLL的方框图,它的工作过程如下:相位比较器把输入信号作为标准,将它的频率和相位与从VCO输出端送来的信号进行比较。
如果在它的工作范围内检测出任何相位(频率)差,就产生一个误差信号V e(t),这个误差信号正比于输入信号和VCO输出信号之间的相位差,通常是以交流分量调制的直流电平。
由低通滤波器滤除误差信号中的交流分量,产生信号Vd(t)去控制VCO,强制VCO朝着减小相位/频率误差的方向改变其频率,使输入基准信号和VCO输出信号之间的任何频率或相位差逐渐减小直至为0,这时我们就称环路已被锁定。
如果VCO的输出频率低于输入基准信号的频率,相位比较器的输出振幅就为正,经滤波后去控制VCO,使其频率增加,直到两个信号的频率和相位精确同步。
相反,若VCO输出频率高于输入基准信号,相位比较器的输出会下降,使VCO锁定在输入基准信号的频率。
下面较详细地介绍它的捕捉过程和跟踪状态。
设VCO在没有输入控制信号时的固有振荡频率为Wo。
开机后,若相位比较器的输入信号频率Wi与Wo很接近,则相位比较器将输出这两个频率信号的差拍波,因其频率很低,它将顺利通过低通滤波器,然后加到VCO输入端去作控制电压,VCO受此差拍调频,其中心频率仍为Wo。
调频信号又立即返回相位比较器中,在它的输出信号中已具有一个直流分量,经过低通滤波器的积分作用取出来,再加到VCO输入端,从而使VCO的中心频率发生偏移。
这个偏移方向恰好是朝着输入信号频率Wi的方向移动,使相位比较器输出的差拍信号频率变得越来越低,相位差的直流分量也会越来越大。
这个逐渐变大的直流分量经低通滤波器后去控制VCO,以更快的速度使VCO的振荡频率趋向于Wi。
上述过程以极快的速度反复循环进行,直至从量变发生质变:VCO的振荡频率由原来的Wo变为Wi,环路在这个频率上稳定下来,这时相位比较器的输出也由差拍波变为直流电压,环路进入锁定状态。
这种锁定状态是环路通过频率的逐步牵引而进入的,这个过程叫做捕捉过程。
若Wo与Wi的频差太大,环路通过频率的逐步牵引也可能始终进入不了锁定状态,就称处于失锁状态。
这是因为Wo与Wi相差很大时,相位比较器输出的差拍电压的频率很高,它将被低通滤波器除掉,滤波器的输出电压基本上为0或保持不变,因此VCO的输出频率也保持Wo不变,这种情况将一直持续下去。
对于已经锁定的环路,若输入信号的频率或相位稍有变化,立刻会在两个输入信号的相位差上反映出来,鉴相器的输出也会随着改变并驱动VCO的频率和相位以同样的规律跟着变化。
环路的这种状态称为跟踪状态。
因此可以说锁相环是一个相位自动控制系统,其锁定状态的取得是靠相位差的作用,锁定状态的维持也仍然依靠相位差的作用。
以上介绍了锁相环的原理和结构,下面简单介绍PLL的应用。
锁相环可以用于改善振荡器的频率稳定度,用做分频倍频及频率变换等,将它们组合起来就可以组成频率合成器锁相环具有良好的跟踪性能。
若输入FM信号时,让环路通带足够宽,使信号的调制频谱落在带宽之内,这时压控振荡器的频率跟踪输入调制的变化。
对于锁相环的详细分析可参阅有关锁相技术的书籍。
在此仅说明锁相环鉴频原理。
可以简单地认为压控振荡器频率与输入信号频率之间的跟踪误差可以忽略。
因此任何瞬时,压控振荡器的频率ωv(t)与FM波的瞬时频率ωFM(t)相等。
FM波的瞬时角频率可表示为假设VCO具有线性控制特性,其斜率Kv(压控灵敏度)为(弧度/秒·伏),而VCO 在Sd(t)=0时的振荡频率为ωo’,则当有控制电压时,VCO的瞬时角频率为令上两式相等,即ωv(t)≈ωFM(t),可得其中ωo为FM波的载频,ωo’为压控振荡器的固有振荡频率,两者皆为常数。
因此上式第一项为直流项,可用隔直元件消除,或者开始时已经把压控振荡器的频率调整为ωo=ωo’。
因此上式还可进一步写成,可见,锁相环输出,除了常系数Kf/Kv之外,近似等于原调制波形f(t),因而达到频率解调的目的。
同理,锁相环也可用于解调PM信号,此时只需在输出端接入一个积分器就可以了。
通过合理选择环路参数(主要是环路滤波器的参数)可以在满足解调要求的条件下使闭环带宽尽可能窄,以便抑制噪声。
因此锁相环具有良好的噪声性能。
当接收信号电平微弱,噪声成为主要考虑因素时,采用PLL解调器可以改善解调性能,它可用于各种移动FM电台、微波接力系统、卫星通信系统以及电视、遥测等系统中,它与普通鉴频器相比,门限改善可达6dB,所以PLL解调器又称为门限扩张解调器或低门限解调器。
因为近来设计800-1000MHz射频板,吃尽了苦头,一块板,在原理和器件没有变的情况下,做了4-5次电路板,才基本达到指标要求。
以下是一些教训:1.晶振(TCXO)布线时,上下面板和周围都不要布地线.因为TCXO是很容易通过地线泄露的,如果你不小心布了大面积地,和和,你的周遍电路都会串过TCXO的频率。
2.电源一定要有多次滤波,不要用开关电源,用环行隔离线形电源自己做整流滤波.不要用7805之类的烂片子,用317要比7805好一个数量级.射频的电源要求很高,否则,会死的很快,如果自己对电源没有信心,可以先用干电池或手机电池试试.在每个片子电源输入端都要加一个0.1u的电容退耦.在重要的部分,还要有源退耦.其实就是一个三极管,一个电阻和两个电容。
3.VCO的布线要特别讲究,否则,会有很多的串扰,FR比相频率干扰,如果在VCO的下面(器件面)布一层外圈,焊接面用大面积地,外圈地和大面积地用很过过孔,就会有很大的效果。