集成电路锁相环设计报告

合集下载

锁相环实验报告

锁相环实验报告

锁相环实验报告引言在电子、通信和控制系统中,锁相环(Phase-Locked Loop,PLL)是一种广泛应用的反馈控制系统,用于提供稳定的频率和相位锁定。

本实验旨在探究锁相环的原理、结构和性能,并通过实际实验验证其工作原理。

锁相环原理锁相环是一种负反馈控制系统,通常由相频控振荡器(VCO)、相锁环比较器、波形整形电路和滤波器组成。

其基本原理是:通过不断调节VCO的频率,使其输出信号与参考信号的相位差保持在一个稳定的工作范围内。

实验目的1.了解锁相环的基本原理和结构;2.学习锁相环在频率和相位锁定中的应用;3.通过实际实验验证锁相环的工作原理。

实验器材1.锁相环实验台;2.函数信号发生器;3.示波器;4.电压表;5.连接线等。

实验步骤搭建实验平台1.将锁相环实验台与函数信号发生器、示波器和电压表连接;2.正确接入电源,打开锁相环实验台的电源开关; 3.确认各仪器仪表的正常工作。

设置参考信号1.使用函数信号发生器产生一个正弦波信号作为参考信号;2.设置参考信号的频率和幅度。

调节锁相环参数1.调节锁相环的增益参数,观察VCO输出信号的变化;2.尝试不同的锁相环参数组合,观察系统的稳定性和响应性。

改变输入信号1.改变函数信号发生器输出信号的频率;2.观察锁相环的相位锁定和频率锁定过程。

测量锁相环性能1.使用示波器观察锁相环输入信号、输出信号和参考信号的波形;2.使用电压表测量VCO输出信号的频率。

实验结果与分析通过实验我们可以观察到锁相环的工作原理和性能。

在不同的锁相环参数设置下,VCO输出信号的频率和相位与参考信号的变化情况不同。

根据实验数据,我们可以分析锁相环的稳定性、响应速度和抗干扰能力等性能。

结论锁相环是一种广泛应用于电子、通信和控制系统中的反馈控制系统。

通过本实验,我们深入了解了锁相环的原理和结构,并通过实际实验验证了其工作原理。

锁相环具有稳定的频率和相位锁定能力,可以在信号处理和调节控制中起到重要作用。

集成锁相环应用实验

集成锁相环应用实验
式中CT为外接电容,单位为PF VCO微调频率的方法: a.在CT 两端并接一个微调电容,改变其容量 即
可调整fo,但因其变化范围小,只适用于工作 频率高的调整。 b.在CT 两端并联上电阻R和电源电压EA组成微 调电路,连接方法如图13所示。
图13.微调fo电路图如下:
锁相环应用 1. 利用锁相环实现鉴频: 对调频信号的解调,可采用普通鉴频器和锁 相 鉴频器。若用锁相鉴频器,可得到一些鉴频门 限上的改善,因此它很适用于对微弱调频信号 的解调。两种鉴频器性能比较见图14,鉴频原 理框图见图15。
良好的窄带滤波特性
图16.频率合成原理图如下:
PD
fr
LF
Ud
VCO
Uc
鉴相器
环路 滤波器
压控 振荡器
fo
fo'
N 图6 锁相频率合成组成框图
Fo=N*fr
图7. CD4046原理图如下:
图1.用CD4046构成的十分频电路
2.基本命题
①VCO特性的测量 测 试 电 路 见 图 2 , 测 VCO 的 fo ~ Uc 关 系 , UC 从 0V~5V变化,间隔1V,对应测量VCO的输出频率, 列表记录并绘成曲线。 正斜率 a:R2=10KΩ 的情况。
实验六.集成锁相环应用实验
锁相环是一个相位误差控制系统,它比较输入信 号和压控振荡器输出的信号之间的相位差,从而 产生误差控制电压来调整压控振荡器的频率,以 达到与输入信号同频,而保持一个稳定相位差。 PLL具有以下特点: 锁定时无剩余频差。 良好的窄带滤波特性。 良好的跟踪特性。 易于集成化。 锁相环使用时可根据不同用途,设计其工作锁定 状态或跟踪状态。
一台; 一台; 一台; 一台; 一台.

锁相环实验报告

锁相环实验报告

锁相环实验报告
《锁相环实验报告》
锁相环是一种常见的控制系统,广泛应用于通信、电力、自动控制等领域。


实验旨在通过搭建锁相环系统,验证其在信号同步和抑制噪声方面的性能。

实验设备包括信号发生器、锁相环模块、示波器等。

首先,我们将信号发生器
产生一个正弦波信号作为输入信号,然后将其输入到锁相环模块中。

锁相环模
块通过比较输入信号和反馈信号的相位差,控制其输出信号与输入信号同步。

最后,我们使用示波器观察输入信号、锁相环输出信号和反馈信号的波形,并
分析它们之间的相位关系和噪声抑制效果。

实验结果表明,锁相环系统能够有效地实现输入信号和输出信号的同步,且具
有良好的抑制噪声能力。

当输入信号频率发生变化时,锁相环系统能够迅速跟
随并调整输出信号,保持同步状态。

同时,锁相环系统还能够抑制输入信号中
的噪声,输出信号的波形更加稳定。

通过本次实验,我们深入了解了锁相环系统的工作原理和性能特点,为其在实
际应用中提供了有力的支持。

锁相环系统的同步性能和噪声抑制能力对于通信、电力系统等领域具有重要意义,本实验结果对于相关领域的研究和应用具有一
定的参考价值。

集成电路锁相环及其应用电路设计.pptx

集成电路锁相环及其应用电路设计.pptx
号频率获得一致。这时两个信号的频率相同,两相位差保持恒定(即同步)称作
相位锁定。
wi
wo
wo
1
锁相环路基本组成方框图
第2页/共18页
压控振荡器
压控振荡器是一个电压-频率变换装置,在环路
中 作 为 被 控 振 荡 器 , 它 的 振 荡 频 率 应 随 输 入 控 制 电 ωV(t)
压 Uc(t) 线 性 地 变 化 ( 在 一 定 范 围 内 ) , 可 用 线 性
without frequency
offset).
8
固有振荡频率f第v9与页/共R181页,C1的关系
锁相环电路的应用
倍频:
i 鉴相器
i (t )
'
y
yn
环路 滤波器
分频器
÷n
压控 y
振荡器 y (t )
wi
wy n
9
wy nwi
第10页/共18页
锁相环电பைடு நூலகம்的应用
分频:
i 鉴相器
i (t )
方程来表示

ωV(t)=ωV + KV Uc(t)
当Uc(t)=0时,VCO的固有振荡频率为ωV 。
ωV
Uc(t)
wi
wo
wo
2
锁相环路基本组成方框图
第3页/共18页
wi
wo
wo
锁相环路基本组成方框图
输入信号和输出信号的相位关系
系统的瞬时相差θe(t)=θ1(t)-θ2(t)
3
第4页/共18页
wi wo
VCO输出频率的高低由低通滤波器输出的平均电压Uc大小决定。VCO的输出 Uo接至相位比较器的一个输入端,外部输入信号Ui与来自VCO的输出信号Uo相 比较,经过相位比较器产生的误差输出电压Ud正比于Ui和Uo两个信号的相位差, 经过低通滤波器滤除高频分量后,得到一个平均值电压Uc。这个平均值电压Uc朝 着减小VCO输出频率和输入频率之差的方向变化,直至VCO输出频率和输入信

实验五锁相环测试及应用实验报告

实验五锁相环测试及应用实验报告

:锁相环测试及应用实验试验目的:1.了解锁相环的组成、基本原理及性能特点。

2.掌握集成锁相环4046芯片的使用方法。

3.掌握锁相环路及各部件性能(鉴相特性、压控特性、同步带和捕捉带)的测试方法。

4.掌握锁相调频、锁相鉴频电路的构成、基本原理及参数测试测试方法。

5.掌握简单锁相频率合成器的基本原理及性能指标的测试方法实验设备:1.调幅与调频发射模块。

2.直流稳压电压GPD-3303D3.F20A 型数字合成函数发生器/计数器 4.DSO-X 2014A 数字存储示波器实验原理:1. 锁相环的组成及基本原理锁相环路(PLL )亦称自动相位控制(APC )电路,它是一种利用相位误差消除频率误差的反馈控制系统。

如图1所示,由鉴相器(相位比较器)、环路滤波器(低通滤波器)和压控振荡器三个基本部件组成。

若o i f f ≠,瞬时相位差ϕ∆将随时间而变化;若i of f ϕ∆=保持固定值。

锁相环就是利用两个信号之间相位差的变化,控制压控振荡器的输出信号频率,最终使两个信号相位差保持为常数,达到频率相等。

锁相环的工作过程:如图1所示,若o i f f ≠,必将引起ϕ∆的变化,鉴相器输出正比于ϕ∆的误差电压()d u t 。

经环路滤波器滤除()d u t 中的高频分量和噪声,产生缓慢变动的直流电压()c u t 。

VCO 受控于()c u t ,使得振荡频率o f 与输入参考频率i f 的频差逐渐减小,直到o i f f =,电路达到稳定平衡状态,即锁定状态。

此时,ϕ∆保持一个不变的稳态相差ϕ∞,以维持电路的平衡状态。

需要指出,环路能达到锁定状态,是在o f 与i f 相差不大的范围内。

2. 几个重要概念 ⑴ 失锁与锁定开始工作时, o i f f ≠,ϕ∆不固定,环路处于不稳定状态,称为失锁。

当o i f f =时,ϕ∆保持常数,电路进入稳定状态,称为锁定。

⑵ 跟踪过程与捕捉过程在环路锁定状态下,如果输入信号频率i f 发生变化,环路通过自身的调节作用,使输出信号频率o f 以同样的规律跟随着变化,并且始终保持o i f f =,这个过程称为跟踪过程或同步过程。

锁相环电路设计

锁相环电路设计

锁相环电路设计PLL(锁相环)电路原理及设计在通信机等所使用的振荡电路,其所要求的频率范围要广,且频率的稳定度要高。

无论多好的LC振荡电路,其频率的稳定度,都无法与晶体振荡电路比较。

但是,晶体振荡器除了可以使用数字电路分频以外,其频率几乎无法改变。

如果采用PLL(锁相环)(相位锁栓回路,PhaseLockedLoop)技术,除了可以得到较广的振荡频率范围以外,其频率的稳定度也很高。

此一技术常使用于收音机,电视机的调谐电路上,以及CD唱盘上的电路。

一 PLL(锁相环)电路的基本构成PLL(锁相环)电路的概要图1所示的为PLL(锁相环)电路的基本方块图。

此所使用的基准信号为稳定度很高的晶体振荡电路信号。

此一电路的中心为相位此较器。

相位比较器可以将基准信号与VCO (Voltage Controlled Oscillator……电压控制振荡器)的相位比较。

如果此两个信号之间有相位差存在时,便会产生相位误差信号输出。

(将VCO的振荡频率与基准频率比较,利用反馈电路的控制,使两者的频率为一致。

)利用此一误差信号,可以控制VCO的振荡频率,使VCO的相位与基准信号的相位(也即是频率)成为一致。

PLL(锁相环)可以使高频率振荡器的频率与基准频率的整数倍的频率相一致。

由于,基准振荡器大多为使用晶体振荡器,因此,高频率振荡器的频率稳定度可以与晶体振荡器相比美。

只要是基准频率的整数倍,便可以得到各种频率的输出。

从图1的PLL(锁相环)基本构成中,可以知道其是由VCO,相位比较器,基准频率振荡器,回路滤波器所构成。

在此,假设基准振荡器的频率为fr,VCO的频率为fo。

在此一电路中,假设frgt;fo时,也即是VC0的振荡频率fo比fr低时。

此时的相位比较器的输出PD会如图2所示,产生正脉波信号,使VCO的振荡器频率提高。

相反地,如果frlt;fo时,会产生负脉波信号。

(此为利用脉波的边缘做二个信号的比较。

如果有相位差存在时,便会产生正或负的脉波输出。

锁相环实验报告

锁相环实验报告

锁相环实验报告锁相环实验报告一、实验目的本次实验的目的是了解锁相环(PLL)的原理和应用,掌握PLL电路的设计和调试方法,以及了解PLL在通信系统中的应用。

二、实验原理1. PLL原理锁相环是一种基于反馈控制的电路,由比例积分环节、相位检测器、低通滤波器和振荡器等组成。

其基本原理是将输入信号与参考信号进行比较,并通过反馈调整振荡频率,使得输入信号与参考信号同步。

2. PLL应用PLL广泛应用于通信系统中,如频率合成器、时钟恢复器、数字调制解调器等。

三、实验设备和材料1. 实验仪器:示波器、函数发生器等。

2. 实验元件:电阻、电容等。

四、实验步骤1. 搭建PLL电路并连接到示波器上。

2. 调节函数发生器输出正弦波作为参考信号,并将其输入到PLL电路中。

同时,在函数发生器上设置另一个正弦波作为输入信号,并将其连接到PLL电路中。

3. 调节PLL参数,包括比例积分系数和低通滤波器截止频率等,使得输入信号与参考信号同步。

4. 观察示波器上的输出波形,记录下PLL参数的取值。

五、实验结果与分析1. 实验结果通过调节PLL参数,成功实现了输入信号与参考信号的同步,并在示波器上观察到了稳定的输出波形。

记录下了PLL参数的取值,如比例积分系数和低通滤波器截止频率等。

2. 实验分析通过本次实验,我们深入了解了锁相环的原理和应用,并掌握了PLL电路的设计和调试方法。

同时,我们也了解到PLL在通信系统中的重要作用,如时钟恢复、数字调制解调等。

六、实验结论本次实验成功地实现了输入信号与参考信号的同步,并掌握了PLL电路的设计和调试方法。

同时也加深对于PLL在通信系统中应用的认识。

七、实验注意事项1. 在搭建电路时应注意接线正确性。

2. 在调节PLL参数时应注意逐步调整,避免过度调整导致系统失控。

3. 在观察示波器输出波形时应注意放大倍数和时间基准设置。

CMOS集成锁相环电路设计

CMOS集成锁相环电路设计
章讨论了差分积分调制分数线锁相环设计:第 8~ 9 章讲述全数 字锁相环设计和相位调制。 第1 0~ 1 1 章介绍振荡器设计 、 相位
参考文献
[ 1 】 h t t p : / / n e w s . x i n h u a n e t . c o m / 2 0 1 3 一O 4 /1 1 / c _ 1 1 5 5 5 7 7 6 5 . h i m . 教 育
供 实 际操 作 与理 论 知识 相 结 合的学 习平 台 ,并 且能 突 出重 点 ,培养他们的重点技能 ,迎合 当地 照明产业的重 点需 求 ;与此 同 时 ,我 们也 能够 发挥 高校 在 科研 上 的优 势 ,寻 求 与 企业 合 作研 发 的契 合 点 ;总 之 ,通 过产 学 研 的结 合 ,
通知 . 人 民 网一时政 频 道 . 2 0 1 5 # - 5 月1 6 E l
年级本科 和研 究生教材 同时可作为模拟 混合 电路设计 、射频
通信 电路系统设计人员的参考 书。 张刚,美 国卡耐基梅隆大学 电子与计算机工程博 士 .清 华 大学 电子工程微 电子专业学 士。近十年来在美国加 卅 I 圣地亚哥 高通公司射频模拟 集成 电路部 工作 ,任资深高级工程师 ,主持 设计 多款大规模生产的射频频率合成器 .现有 9 项 已获批美国 专利。在加州大学圣地 亚哥分校任兼职助理教授 .讲授射频频 率合成和时钟恢复的研 究生课程 。曾应邀于清华大学和北京 大 学微 电子所讲授短期高级锁相环课程 。
题 ,达 到 三方 共赢 的结 果 。
所属分类 :
图 书 > 电子 与 通信 > 微 电子 学、 集成 电路 ( I C )
5 结语
当前 ,半 导 体 照 明产业 作 为 战 略新 兴产 业 正 迅猛 向前 发 展 ,对 专 业 人才 的需 求 紧 迫 而 旺 盛 ,我 们 作 为 地 方 高 校 ,建 设光 源 与 照 明专 业方 向 结合 了当地 的 重 点产业 发 展 需求 ,能够 做 到 人才 培 养与 人 才需 求 的对 接 ,从 而 为地 方 经济 和社 会 发展提 供 有效 服务 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锁相环CD4046设计频率合成器
------集成电路考试实验设计报告
学校:福州大学
学院:物理与信息工程学院
班级:09级信息工程类2班
姓名:吴志强学号:110900636
姓名:吴鑫学号:110900635
目录
一、设计和制作任务 (3)
二、主要技术指标 (3)
三、确定电路组成方案 (3)
四、设计方法 (3)
(一)、振荡源的设计 (3)
(二)、N分频的设计 (3)
(三)、10HZ标准信号源设计(即M分频的设计) (5)
五、锁相环参数设计 (6)
六、调试步骤 (6)
七、参考文献 (7)
附录:各芯片的管脚图 (7)
锁相环CD4046设计频率合成器
一、设计和制作任务
1.确定电路形式,画出电路图。

2.计算电路元件参数并选取元件。

3.组装焊接电路。

4.调试并测量电路性能。

5.写出课程设计报告书
二、主要技术指标
1.频率步进 10Hz
2.频率范围:1kHz—10kHz
3.电源电压 Vcc=5V
三、确定电路组成方案
原理框图如下,锁相环路对稳定度的参考振动器锁定,环内串接可编程的分频器,通过改变分频器的分配比N,从而就得到N倍参考频率的稳定输出。

晶体振荡器输出的信号频率f1,
经固定分频后(M分频)得到
基准频率f1’,输入锁相环的相
位比较器(PC)。

锁相环的VCO
输出信号经可编程分频器(N分频)
后输入到PC的另一端,这两个信号进行相位比较,当锁相环路锁定后得到:f1/M=f1’=f2/N 故f2=Nf’1 (f’1为基准频率)
当N变化时,或者N/M变化时,就可以得到一系列的输出频率f2。

四、设计方法
(一)、振荡源的设计
用CMOS与非门和1M晶体组成
1MHz振荡器,如图14。

图中Rf 使
F1工作于线性放大区。

晶体的等效
电感,C1、C2构成谐振回路。

C1、
C2可利用器件的分布电容不另接。

F1、F2、F3使用CD4049。

(二)、N分频的设计
用三片4522组成1——10kHZ频率合成器
CD1522的二一十进制1/N减计数器。

其引脚见附录。

其中D1-D4是预置端,Q1
—Q4是计数器输出端,其余控制端的功能如下:
PE(3)=1时,D1—D4值置进计数器EN(4)=0,且
CP(6)时,计数器(Q1—Q4)减计数;CF(13)=1
且计数器(Q1—Q4)减到0时,QC(12)=1 Cr(10) =1时,计数器清零。

如下图,最终应做到拨盘开关的数值是多少,VCO
输出信号的频率就是(10*数值)Hz。

图3 1kHz—10 kHz 频率合成器(三)、10HZ标准信号源设计(即M分频的设计)
根据4518的输出波形图,可以看出4518包含二分频、四分频、十分频,用三片CD4518(共5个计数器)组成一个100000分频器,也就是五个十分频器,这样就可把1MHz的晶振信号变成10Hz的标准信号。

如下图所示:
基准频率10Hz
通过前面的分析可以得到总体的设计电路图如下:
五、锁相环参数设计
本设计中,M固定,N可变。

基准频率f’1定为10Hz,改变N值,使N=1-1000,则可产生f2=1KHz—10KHz的频率范围。

锁相环锁存范围:
fmax=1M~1.1MHz
fmin=100~1KHz
则fmax/fmin=1K~11K
使用相位比较器PC2
1)若R2≠∞,则由fmax/fmin=1K-11K
由右图大概确定R2/R1的值约为(1-10)K
选定R1=10K Ω,可得R2=(100-500)K Ω。

选定Vdd=5-10v,参照右图与fmin=100~1kHz 可求出
C1=2*10-4uF
2) 若R2=∞,由fo=fmax /2=500KHz,参照图5并
选定Vdd=5~10v ,可得C1=1.5*10-4~2*10-4uF
又 2fc=fmax+fmin=(1000.1~1001)kHz,
2fl=fmax-fmin=(999~999.9)kHz,
T1=R3*C2
最终算出
R3*C2=2π*fl /(2πfc)2 =0.318uF
令R3=10K Ω,则C2≈31.8pF
六、调试步骤
1、接上电源后,测试晶振产生的频率f0和经过各次分频后的频率fi 。

晶振产生的频率f0(Hz ) 第一次百分频f1(Hz ) 第二次百分频 f2(Hz ) 第三次十分频
f3(Hz ) 1.0007MHz 10.1kHz 101Hz 10.06Hz
2、拨动拨码盘,测输出频率
拨码盘数值 (十进制) 输出频率
(kHz )
1000 1.000
1220 1.220
5680 5.680
9340 9.340
10000 10.000
七、参考文献
[1]罗国新.CMOS 集成电路电路应用设计[M].福州:福建科学技术出版设,2004.10
附录:各芯片的管脚图
CD4049
CD4522。

相关文档
最新文档