2012-2018年高考真题汇编:圆锥曲线理科无答案

合集下载

20182010圆锥曲线高考题全国卷真题汇总

20182010圆锥曲线高考题全国卷真题汇总

2018(新课标全国卷2 理科)5.双曲线22221(0,0)x y a b a b-=>>A .y =B .y =C .y =D .y = 12.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23B .12C .13D .1419.(12分)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.2018(新课标全国卷2 文科)6.双曲线22221(0,0)x y a b a b-=>>A .y =B .y =C .y =D .y = 11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1-B .2CD 120.(12分)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.2018(新课标全国卷1 理科)8.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .811.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |=A .32B .3C .D .419.(12分)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.2018(新课标全国卷1 文科)4.已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12C D 15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________. 20.(12分)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.2018(新课标全国卷3 理科)6.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣ 11.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左、右焦点,O 是坐标原点.过2F作C 的一条渐近线的垂线,垂足为P .若1PF =,则C 的离心率为AB .2CD20.(12分)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.2018(新课标全国卷3 文科)8.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是 A .[2,6]B .[4,8]C .[2,32]D .[22,32]10.已知双曲线22221(00)x y C a b a b-=>>:,的离心率为2,则点(4,0)到C 的渐近线的距离为 A .2B .2C .322D .2220.(12分)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:2||||||FP FA FB =+.2017(新课标全国卷2 理科)9.若双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( ).A .2B 3C 2D .23316.已知F 是抛物线2:8C y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N . 若M 为FN 的中点,则FN = .20. 设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .2017(新课标全国卷2 文科)5.若1a >,则双曲线2221x y a-=的离心率的取值范围是( ).A.)+∞ B.) C. ( D. ()12,12.过抛物线2:4C y x =的焦点F C 于点M (M 在x 轴上方),l为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为( ).B. C. D.20.设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N , 点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .2017(新课标全国卷1 理科)10.已知F 为抛物线24C y x =:的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l 与C 交于D ,E 两点,则AB DE +的最小值为( ). A .16 B .14 C .12 D .1015.已知双曲线()2222:10,0x y C a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若60MAN ∠=,则C 的离心率为________.20.已知椭圆()2222:=10x y C a b a b +>>,四点()111P ,,()201P ,,3–12P ⎛⎫ ⎪ ⎪⎝⎭,,412P ⎛ ⎝⎭,中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为–1,证明:l 过定点.2017(新课标全国卷1 文科)5.已知F 是双曲线22:13y C x -=的右焦点,P 是C 上一点,且PE 与x 轴垂直,点A 的坐标是()1,3,则APF △的面积为( ).A .13 B .12 C .23 D .3212.设A ,B 是椭圆22:13x y C m+=长轴的两个端点,若C 上存在点M 满足120AMB ∠=,则m 的取值范围是( ).A 20.设A ,B 为曲线2:4x C y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程..(][)0,19,+∞ B.([)9,+∞ C.(][)0,14,+∞ D.([)4,+∞2017(新课标全国卷3 理科)5.已知双曲线C :()2222:10,0x y C a b a b -=>>的一条渐近线方程为y x =,且与椭圆 221123x y +=有公共焦点,则C 的方程为( ). A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -=10.已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( ).AB C D .1320.已知抛物线22C y x =:,过点()20,的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点()42P -,,求直线l 与圆M 的方程.2017(新课标全国卷3 文科)11.已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( ).A B C D .1314.双曲线()222109x y a a -=>的一条渐近线方程为35y x =,则a = . 20.在直角坐标系xOy 中,曲线2–2y x mx =+与x 轴交于A ,B 两点,点C 的坐标为()01,.当m 变化时,解答下列问题:(1)能否出现AC BC ⊥的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.2016(新课标全国卷2 理科)(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a=( )(A )43-(B )34- (C (D )2 (11)已知12,F F 是双曲线2222:1x y E a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( )(A )2 (B )32(C )3 (D )220.(本小题满分12分)已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.2016(新课标全国卷2 文科)(5) 设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =( )(A )12 (B )1 (C )32 (D )2(6) 圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a =( )(A )−43 (B )−34(C 3 (D )2(21)(本小题满分12分)已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当AM AN =时,求AMN ∆的面积; (Ⅱ)当AM AN =32k <<.2016(新课标全国卷1 理科)(5)已知方程x 2m 2+n –y 23m 2–n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )(–1,3) (B )(–1,3) (C )(0,3) (D )(0,3)(10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的标准线于D 、E 两点.已知|AB |=|DE|=C 的焦点到准线的距离为 (A)2 (B)4 (C)6 (D)8 20. (本小题满分12分)理科设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.2016(新课标全国卷1 文科)(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13(B )12(C )23(D )34(15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若错误!未找到引用源。

浙江历年高考数学试题及答案汇编十圆锥曲线

浙江历年高考数学试题及答案汇编十圆锥曲线

浙江历年高考数学试题及答案汇编十圆锥曲线1.若双曲线的方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,则双曲线的离心率为$\sqrt{1+\frac{b^2}{a^2}}$。

2.图中给出的是一个斜三角形$ABP$,要求点$P$在平面$a$内运动,使得$\triangle ABP$的面积为定值。

根据题意可知,$\triangle ABP$的面积等于$\frac{1}{2}AB\cdot h$,其中$h$为$P$到$AB$的距离。

因此,$h$是一个定值,而$AB$是一个斜线段,所以$P$的轨迹是一条与$AB$垂直的直线。

3.设椭圆的焦点分别为$F_1$、$F_2$,椭圆上任意一点$P$到$F_1$、$F_2$的距离之和为常数$2a$($2a$为椭圆的长轴),即$|PF_1|+|PF_2|=2a$。

根据题意可得$|F_2A|+|F_2B|=12$,因此$|AB|=2a=24-|F_2A|-|F_2B|=12$。

4.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的两个焦点$F_1$、$F_2$的直线为双曲线的准线,且与$x$轴的夹角为$\theta=\arctan\frac{b}{a}$。

由于双曲线的左、右支分别对称,不妨考虑右支。

右支的渐近线方程为$y=\pm\frac{b}{a}x$。

过$F_1$的直线的斜率为$\tan(\theta+\frac{\pi}{4})=\frac{a}{b}$,因此该直线的方程为$y-\frac{b}{a}x=2b$。

将该直线与双曲线的渐近线联立,解得交点坐标为$B(\frac{2a^2}{b},\frac{2ab}{b})$。

同理,过$F_2$的直线的方程为$y+\frac{b}{a}x=2b$,将其与双曲线的渐近线联立,解得交点坐标为$C(-\frac{2a^2}{b},-\frac{2ab}{b})$。

高考真题圆锥曲线集锦

高考真题圆锥曲线集锦

2008年一2012年圆锥曲线压轴题集锦(安徽卷)1、【2012年安徽卷,理x2y220】如图,点片(-6 0)、F2(C,0)分别是椭圆C: 2 2=1(a b 0)的左a ba2右焦点,经过F i做x轴的垂线交椭圆C的上半部分于点P,过点F2作直线PF2的垂线交直线x 于点c Q.(1)如果点Q的坐标是(4,4),求此时椭圆C的方程;(2)证明:直线PQ与椭圆C只有一个交点.2、【2011年安徽卷,理21】设’・0,点A的坐标为(1,1),点B在抛物线y = x2上运动,点Q满足BQ二,QA,经过Q点与x轴垂直的直线交抛物线于点M,点P满足QM二,MP,求点P的轨迹方程.3、【2010年安徽卷,理19】已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点R、F?在x轴上,离心率e =丄.2(2)求.F 1AF 2的角平分线所在直线I 的方程;l 对称的相异两点?若存在,请找出;若不存在,说明理由.0 ,直线l 2与直线1l :粤X •冷y = 1垂直,O 为坐标原点,直线OP 的倾斜角为〉,直线12的倾2 a b斜角为.2 2(1) 证明:点P 是椭圆x - =1与直线|1的唯一交点;a 2b 2(2) 证明:tan 〉、tan — tan 构成等比数列.2 25、【2008年安徽卷,理22】设椭圆C:笃•当=1( a b 0 )过点M('、2,1),且左焦点为 丘(-'..2,0). a b (1)求椭圆C 的方程;(2)当过点P(4,1)的动直线丨与椭圆C 相交与两不同点 A 、B 时,在线段AB 上取点Q ,满足| AP| |QB|=|AQ| | PB|.证明:点 Q 总在某定直线上.(全国卷)2 21 2 21、【2012年全国卷,理21】已知抛物线 C:y =(x ,1)与圆M:(x-1)(^-) =r ( r 0)有一个公共点A ,且在A 处两曲线的切线为同一直线 I .(1) 求 r ; (2) 设m 、n 是异于丨且与C 及M 都相切的两条直线,m 、n 的交点为D ,求D 到丨的距离.2、【2012年新课标,理20】设抛物线C:x 2 =2py ( p 0)的焦点为F ,准线为丨,A 为C 上一点,已 知以F 为圆心,FA25、 【2010年全国一,理21】已知抛物线 C: y =4x 的焦点为F ,过点K(-1,0)的直线|与C 相交于A 、4、【2009年安徽卷, a b 0) 上, X 。

高三数学-2018年高考题分章节汇编-圆锥曲线方程 精品

高三数学-2018年高考题分章节汇编-圆锥曲线方程 精品

2018年高考题分章节汇编 第八章 圆锥曲线方程一、选择题1.(2018年春考·北京卷·理5)设0≠abc ,“0>ac ”是“曲线c by ax =+22为椭圆”的( B )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件2.(2018年春考·北京卷·理6)已知双曲线的两个焦点为)0,5(1-F ,)0,5(2F ,P 是此双曲线上的一点,且21PF PF ⊥,2||||21=∙PF PF ,则该双曲线的方程是 ( C )A .13222=-y x B .12322=-y x C .1422=-y x D .1422=-y x 3.(2018年春考·北京卷·文5) “ab <0”是“曲线ax 2+by 2=1为双曲线”的( C )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件4.(2018年高考·上海卷·理15)过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B两点,它们的横坐标之和等于5,则这样的直线( B )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在5.(2018年高考·福建卷·理10)已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( D )A .324+B .13-C .213+ D .13+6.(2018年高考·福建卷·文9)已知定点A 、B 且|AB|=4,动点P 满足|PA|-|PB|=3,则|PA|的最小值是 ( C )A .21B .23 C .27 D .57.(2018年高考·广东卷5)若焦点在x 轴上的椭圆1222=+my x 的离心率为21,则m=( B )A .3B .23 C .38 D .32 8.(2018年高考·湖北卷·理5文6)双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( A )A .163B .83 C .316 D .38 9.(2018年高考·湖南卷·理7文8)已知双曲线22a x -22b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O 为原点),则两条渐近线的夹角为( D )A .30ºB .45ºC .60ºD .90º10.(2018年高考·辽宁卷11)已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线x y 42=的准线重合,则该双曲线与抛物线x y 42=的交点到原点的距离是 ( B )A .23+6B .21C .21218+D .2111.(2018年高考·重庆卷·理9文9)若动点(y x ,)在曲线)0(14222>=+b b y x 上变化,则y x 22+的最大值为 ( A )A .⎪⎩⎪⎨⎧≥<<+)4(2),40(442b b b bB .⎪⎩⎪⎨⎧≥<<+)2(2),20(442b b b bC .442+bD .2b12.(2018年高考·江苏卷6)抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是 (B )A .1617 B .1615 C .87 D .013.(2018年高考·江苏卷11)点P (-3,1)在椭圆)0(12222>>=+b a by a x 的左准线上,过点P 且方向为)5,2(-=的光线,经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为 (A )A .33B .31 C .22 D .21 14.(2018年高考·山东卷·理12文12)设直线:220l x y ++=关于原点对称的直线为l ',若l '与椭圆2214y x +=的交点为A 、B 、,点P 为椭圆上的动点,则使PAB ∆的面积为12的点P 的个数为( B )A .1B .2C .3D .415.(2018年高考·天津卷·理5文6)设双曲线以椭圆192522=+y x 长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为 ( C )A .2±B .34±C .21±D .43±16.(2018年高考·全国卷Ⅰ·理5)已知双曲线)0(1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为( A )A .23 B .23 C .26 D .332 17.(2018年高考·全国卷Ⅰ·文5)已知双曲线)0(1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为( A )A .23B .23 C .26 D .332 18.(2018年高考·全国卷II ·理6)已知双曲线13622=-y x 的焦点为F 1、F 2,点M 在双曲线上且MF 1⊥x 轴,则F 1到直线F 2M 的距离为 ( C )A .563 B .665 C .56 D .65 19.(2018年高考·全国卷II ·文5)抛物线y x 42=上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( D )A .2B .3C .4D .520.(2018年高考·全国卷II ·文6)双曲线19422=-y x 的渐近线方程是 ( C )A .x y 32±= B .x y 94±= C .x y 23±= D .x y 49±= 21.(2018年高考·全国卷Ⅲ·理9文9)已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为( C )A .43B .53C D 22.(2018年高考·全国卷Ⅲ·理10文10)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 ( D )A .2 B C .2 D 1二、填空题1.(2018年春考·北京卷·文10)192522=+y x 的离心率是 ,准线方程是 .42554±=x2. (2018年春考·上海卷7)双曲线116922=-y x 的焦距是 .65 3.(2018年高考·北京卷·文9)抛物线x y 42=的准线方程是 ,焦点坐标是 . )0,1(1-=x4.(2018年高考·上海卷·理5)若双曲线的渐近线方程为x y 3±=,它的一个焦点是()0,10,则双曲线的方程是__________.1922=-y x 5.(2018年高考·上海卷·文7)若椭圆长轴长与短轴长之比为2,它的一个焦点是()0,152,则椭圆的标准方程是__________.1208022=+y x 6.(2018年高考·江西卷·理16文16)以下同个关于圆锥曲线的命题中 ①设A 、B 为两个定点,k 为非零常数,k =-||||,则动点P 的轨迹为双曲线;②设定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若),(21OB OA OP +=则动点P 的轨迹为椭圆;③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点. 其中真命题的序号为 (写出所有真命题的序号)③④7.(2018年高考·重庆卷·理16)连接抛物线上任意四点组成的四边形可能是 (填写所有正确选项的序号).②③⑤ ①菱形 ②有3条边相等的四边形 ③梯形 ④平行四边形 ⑤有一组对角相等的四边形 8.(2018年高考·重庆卷·文16)已知B A ),0,21(-是圆F y x F (4)21(:22=+-为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为 .13422=+y x 9.(2018年高考·浙江卷·理13文13)过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________. 210.(2018年高考·山东卷·理14文14)设双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,右准线l 与两条渐近线交于P 、Q 两点,如果PQF ∆是直角三角形,则双曲线的离心率___________e =.e =三、解答题1.(本小题满分14分)(2018年春考·北京卷·理18)如图,O 为坐标原点,直线l 在x 轴和y 轴上的截距分别是a 和b ,且交抛物线)0(22>=p px y 于),(11y x M 、),(22y x N 两点.(1)写出直线l 的截距式方程; (2)证明:by y 11121=+; (3)当p a 2=时,求MON ∠的大小.本小题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力,满分14分. (Ⅰ)解:直线l 的截距式方程为.1=+bya x ① (Ⅱ)证明:由①及y 2=2px 消去x 可得0222=-+pab pay by ②点M ,N 的纵坐标y 1, y 2为②的两个根,故.12211.2,22121212121b pa b pay y y y y y pa y y bpay y =--=+=+-=-=+所以 (Ⅲ)解:设OM ,ON 的斜率分别为k 1,k 2,.90,,144,44)4(4)(,4)(2,2,42,)(,2.,2221212122222212*********2121221222111 =∠⊥-=-========-=-====MON ON OM p p x x y y k k p p p p y y x x x x p y y px y px y p pa y y II p a x y k x y k 即所以因此相乘得由知由时当则2.(本小题满分14分)(2018年春考·北京卷·文18)如图,O 为坐标原点,过点P (2,0)且斜率为k 的直线l 交抛物线y 2=2x 于M (x 1,y 1),N(x 2, y 2)两点. (1)写出直线l 的方程; (2)求x 1x 2与y 1y 2的值; (3)求证:OM ⊥ON .本小题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力,满分14分. (Ⅰ)解:直线l 的方程为 )0()2(≠-=k x k y ①(Ⅱ)解:由①及y 2=2x 消去y 可得.04)1(22222=++-k x k x k ②点M ,N 的横坐标x 1与 x 2是②的两个根, 由韦达定理得22212122212,2.44x y x y k k x x ====由.4,0,16444)(212121221-=<=⨯==y y y y x x y y 所以注意到得(Ⅲ)证明:设OM ,ON 的斜率分别为k 1, k 2,.,144.,212121222111ON OM x x y y k k x y k x y k ⊥-=-====所以相乘得则 3. (本题满分18分) (2018年春考·上海卷22)本题共有3个小题,第1小题满分5分,第2小题满分8分. 第3小题满分5分.(1)求右焦点坐标是)0,2(,且经过点)2,2(--的椭圆的标准方程;(2)已知椭圆C 的方程是12222=+by a x )0(>>b a . 设斜率为k 的直线l ,交椭圆C 于A B 、两点,AB 的中点为M . 证明:当直线l 平行移动时,动点M 在一条过原点的定直线上;(3)利用(2)所揭示的椭圆几何性质,用作图方法找出下面给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.[解](1)设椭圆的标准方程为12222=+b y a x ,0>>b a ,∴ 422+=b a ,即椭圆的方程为142222=++by b x , ∵ 点(2,2--)在椭圆上,∴ 124422=++b b , 解得 42=b 或22-=b (舍),由此得82=a ,即椭圆的标准方程为14822=+y x . …… 5分 (2)设直线l 的方程为m kx y +=, …… 6分与椭圆C 的交点A (11,y x )、B (22,y x ),则有⎪⎩⎪⎨⎧=++=12222b y a x m kx y , 解得 02)(222222222=-+++b a m a kmx a x k a b ,∵ 0>∆,∴ 2222k a b m +<,即 222222k a b m k a b +<<+-.则 222221212222212,2ka b mb m kx m kx y y k a b kma x x +=+++=++-=+, ∴ AB 中点M 的坐标为⎪⎪⎭⎫⎝⎛++-22222222,k a b m b k a b km a . …… 11分∴ 线段AB 的中点M 在过原点的直线 022=+y k a x b 上. …… 13分(3)如图,作两条平行直线分别交椭圆于A 、B 和D C 、,并分别取AB 、CD 的中点N M 、,连接直线MN ;又作两条平行直线(与前两条直线不平行)分别交椭圆于1A 、1B 和11D C 、,并分别取11B A 、11D C 的中点11N M 、,连接直线11N M ,那么直线MN 和11N M 的交点O 即为椭圆中心. …… 18分 4.(本小题共14分)(2018年高考·北京卷·理18文20)如图,直线l 1:)0(>=k kx y 与直线l 2:kx y -=之间的阴影区域(不含边界)记为W ,其左半部分记为W 1,右半部分记为W 2.(Ⅰ)分别用不等式组表示W 1和W 2;(Ⅱ)若区域W 中的动点P (x ,y )到l 1,l 2的距离之积等于d 2,求点P 的轨迹C 的方程;(Ⅲ)设不过原点O 的直线l 与(Ⅱ)中的曲线C 相交于M 1,M 2两点,且与l 1,l 2分别交于M 3,M 4两点. 求证△OM 1M 2的重心与△OM 3M 4的重心重合. 解:(I )},0,|),{(1<-<<=x kx y kx y x W }.0,|),{(2><<-=x kx y kx y x W(II )直线.0:,0:21=+=-y kx l y kx l 直线由题意得.0)1(0)1(,1,0,),(,1||,1||1||22222222222222222222222222=+--=+--=+->-∈=+-=++⋅+-d k y x k C P d k y x k d k y x k y x k W y x P d k y x k d k y kx k y kx 的方程为的轨迹所以动点即所以知由即(III )当直线l 与x 轴垂直时,可设直线l 的方程为)0(≠=a a x . 由于直线l ,曲线C 关于x 轴对称,且l 1与l 2关于x 轴对称,于是M 1M 2,M 3M 4的中点坐标都为(a ,0),所以△OM 1M 2,△OM 3M 4的重心坐标都为)0,32(a,即它们的重心重合.当直线l 与x 轴不垂直时,设直线l 的方程为).0(≠+=n n mx y由.02)(,0)1(222222222222=-----⎩⎨⎧+==+--d d k n mnx x m k nmx y d k y x k 得由直线l 与曲线C 有两个不同交点,可知且,022≠-m k),,(),,(,.2)(2),,(),,(,,0)()(4)2(443343212122212211212222222y x y x M M n x x m y x mk mn x x y x y x M M d d k n m k mn x 的坐标分别为设则的坐标分别为设++=+-=+>++⨯-+=∆,3030,3030,2)(2)(,2,,,,432143212121434321224343y y y y x x x x y y n x x m n x x m y y x x mk mnx x m k nx m k n x n mx y kx y n mx y kx y ++=++++=+++=++=++=++=-=++-=-=⎩⎨⎧+=-=⎩⎨⎧+==所以所以从而得及由 于是△OM 1M 2的重心与△OM 3M 4的重心也重合. 5.(本题满分14分)(2018年高考·上海卷·理19)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥.(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于||MB ,求椭圆上的点到点M 的距离d 的最小值.[解](1)由已知可得点A (-6,0),F (4,0)设点P 的坐标是},4{},,6{),,(y x y x y x -=+=则,由已知得.623,018920)4)(6(120362222-===-+⎪⎩⎪⎨⎧=+-+=+x x x x y x x y x 或则 由于).325,23(,325,23,0的坐标是点于是只能P y x y ∴==> (2)直线AP 的方程是.063=+-y x设点M 的坐标是(m ,0),则M 到直线AP 的距离是2|6|+m , 于是,2,66|,6|2|6|=≤≤--=+m m m m 解得又 椭圆上的点),(y x 到点M 的距离d 有,15)29(94952044)2(222222+-=-++-=+-=x x x x y x d 由于.15,29,66取得最小值时当d x x =∴≤≤- 6.(本题满分16分)(2018年高考·上海卷·文21)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知抛物线)0(22>=p px y 的焦点为F ,A 是抛物线上横坐标为4、且位于x 轴上方的点,A 到抛物线准线的距离等于5.过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M.(1)求抛物线方程;(2)过M 作FA MN ⊥,垂足为N ,求点N 的坐标;(3)以M 为圆心,MB 为半径作圆M ,当)0,(m K 是x 轴上一动点时,讨论直线AK 与圆M 的位置关系.解:(1)抛物线.2,524,222=∴=+-==p pp x px y 于是的准线为 ∴抛物线方程为y 2= 4x .(2)∵点A 的坐标是(4,4), 由题意得B (0,4),M (0,2),又∵F (1,0), ∴,43,;34-=∴⊥=MN FA k FA MN k 则FA 的方程为y=34(x -1),MN 的方程为.432x y -=-解方程组).54,58(5458,432)1(34N y x x y x y ∴⎪⎪⎩⎪⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧-=--=得(3)由题意得,圆M 的圆心是点(0,2),半径为2.当m=4时,直线AK 的方程为x =4,此时,直线AK 与圆M 相离, 当m ≠4时,直线AK 的方程为),(44m x my --=即为,04)4(4=---m y m x 圆心M (0,2)到直线AK 的距离2)4(16|82|-++=m m d ,令1,2>>m d 解得1>∴m 当时,直线AK 与圆M 相离;当m=1时,直线AK 与圆M 相切; 当1<m 时,直线AK 与圆M 相交. 7.(本小题满分12分)(2018年高考·福建卷·理21文22)已知方向向量为v =(1,3)的直线l 过点(0,-23)和椭圆C :)0(12222>>=+b a by a x 的焦点,且椭圆C 的中心关于直线l 的对称点在椭圆C 的右准线上.(Ⅰ)求椭圆C 的方程;(Ⅱ)是否存在过点E (-2,0)的直线m 交椭圆C 于点M 、N ,满足634=⋅OM , cot ∠MON ≠0(O 为原点).若存在,求直线m 的方程;若不存在,请说明理由.本小题主要考查直线、椭圆及平面向量的基本知识,平面解析几何的基本方法和综合解题能力.满分14分.(I )解法一:直线323:-=x y l , ①过原点垂直l 的直线方程为x y 33-=, ② 解①②得.23=x ∵椭圆中心(0,0)关于直线l 的对称点在椭圆C 的右准线上,.32322=⨯=∴c a∵直线l 过椭圆焦点,∴该焦点坐标为(2,0)..2,6,222===∴b a c 故椭圆C 的方程为.12622=+y x ③ 解法二:直线333:-=x y l .设原点关于直线l 对称点为(p ,q ),则⎪⎪⎩⎪⎪⎨⎧-=⋅-⋅=.1332232p q p q 解得p=3. ∵椭圆中心(0,0)关于直线l 的对称点在椭圆C 的右准线上,.32=∴c a ∵直线l 过椭圆焦点,∴该焦点坐标为(2,0)..2,6,222===∴b a c 故椭圆C 的方程为.12622=+y x ③ (II )解法一:设M (11,y x ),N (22,y x ).当直线m 不垂直x 轴时,直线)2(:+=x k y m 代入③,整理得,061212)13(2222=-+++k x k x k ,13612,131222212221+-=⋅+-=+∴k k x x k k x x ,13)1(62136124)1312(14)(1||22222222212212++=+-⋅-+-+=-++=k k k k k k kx x x x kMN点O 到直线MN 的距离21|2|kk d +=,cot 634MON ON OM ∠=⋅ 即 ,0sin cos 634cos ||||≠∠∠=∠⋅MONMON MON OM ,634||.632,634sin ||||=⋅∴=∴=∠⋅∴∆d MN S MON ON OM OMN即).13(6341||6422+=+k k k 整理得.33,312±=∴=k k当直线m 垂直x 轴时,也满足632=∆OMN S .故直线m 的方程为,33233+=x y或,33233--=x y 或.2-=x经检验上述直线均满足0≠⋅ON OM . 所以所求直线方程为,33233+=x y 或,33233--=x y 或.2-=x 解法二:设M (11,y x ),N (22,y x ).当直线m 不垂直x 轴时,直线)2(:+=x k m 代入③,整理得,061212)13(2222=-+++k x k x k ,13122221+-=+∴k k x x∵E (-2,0)是椭圆C 的左焦点,∴|MN|=|ME|+|NE|=.13)1(6262)1312(622)()()(2222212212++=++-⋅=++=+++k k k k a x x a c x c a e x c a e以下与解法一相同.解法三:设M (11,y x ),N (22,y x ).设直线2:-=ty x m ,代入③,整理得.024)3(22=--+ty y t,32,34221221+-=+=+∴t y y t t y y.)3(242438)34(4)(||222222212121++=+++=-+=-t t t t t y y y y y y ,cot 634MON OM ∠=⋅ 即 ,0sin cos 634cos ||||≠∠∠=∠⋅MONMON MON OM.632,634sin ||||=∴=∠⋅∴∆OMN S MON OM=-⋅=+=∆∆∆||||2121y y OE S S S OENOEM OMN .)3(2424222++t t∴222)3(2424++t t =632,整理得.324t t =解得,3±=t 或.0=t故直线m 的方程为,33233+=x y 或,33233--=x y 或.2-=x经检验上述直线方程为.0≠⋅所以所求直线方程为,33233+=x y 或,33233--=x y 或.2-=x 8.(本小题满分14分)(2018年高考·广东卷17)在平面直角坐标系x Oy 中,抛物线y=x 2上异于坐标原点O 的两不同动点A 、B 满足AO ⊥BO (如图4所示).(Ⅰ)求△AOB 的重心G (即三角形三条中线的交点)的轨迹方程;(Ⅱ)△AOB 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.解:(I )设△AOB 的重心为G(x,y),A(x 1,y 1),B(x 2,y 2), 则1212,3.3x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩ (1)∵OA ⊥OB ,即12120x x y y +=, (2)又点A ,B 在抛物线上,有221122,y x y x ==,代入(2)化简得121-=x x ∴222221212121211122()[()2](3)3333333y y y x x x x x x x x +==+=+-=⨯+=+, 所以重心为G 的轨迹方程为3232+=x y .(II )1||||2AOB S OA OB ∆===由(I )得AOB S ∆==12 1.2=≥==⨯= 当且仅当2212x x =即121x x =-=-时,1AOB S ∆=. 所以△AOB 的面积存在最小值,且最小值为1. 9.(本小题满分12分)(2018年高考·湖北卷·理21文22)设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由. (此题不要求在答题卡上画图) 本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力. (Ⅰ)解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得 .0)3()3(2)3(222=--+--+λk x k k x k ① 设212211,),,(),,(x x y x B y x A 则是方程①的两个不同的根, ∴,0])3(3)3([422>--+=∆k k λ ② 且,3)3(2221+-=+k k k x x 由N (1,3)是线段AB 的中点,得.3)3(,12221+=-∴=+k k k x x解得k=-1,代入②得,λλ即,12>的取值范围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设),,(),,(2211y x B y x A 则有.0))(())((332121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ依题意,.)(3,212121y y x x k x x AB ++-=∴≠∵N (1,3)是AB 的中点, ∴.1,6,22121-==+=+AB k y y x x 从而 又由N (1,3)在椭圆内,∴,1231322=+⨯>λ∴λ的取值范围是(12,+∞). 直线AB 的方程为y -3=-(x -1),即x +y -4=0.(Ⅱ)解法1:∵CD 垂直平分AB ,∴直线CD 的方程为y -3=x -1,即x -y+2=0,代入椭圆方程,整理得 .04442=-++λx x又设),,(),,(4433y x D y x C CD 的中点为4300,),,(x x y x C 则是方程③的两根, ∴).23,21(,232,21)(21,10043043-=+=-=+=-=+M x y x x x x x 即且 于是由弦长公式可得 .)3(2||)1(1||432-=-⋅-+=λx x kCD ④将直线AB 的方程x +y -4=0,代入椭圆方程得016842=-+-λx x ⑤同理可得 .)12(2||1||212-=-⋅+=λx x k AB ⑥∵当12>λ时,||||,)12(2)3(2CD AB <∴->-λλ假设存在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为 .2232|42321|2|4|00=-+-=-+=y x d ⑦于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ 故当λ>12时,A 、B 、C 、D 四点匀在以M 为圆心,2||CD 为半径的圆上.(注:上述解法中最后一步可按如下解法获得:)A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角⇔|AN|2=|CN|·|DN|,即 ).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边,212-=λ 由④和⑦知,⑧式右边,2122923)2232)3(2)(2232)3(2(-=--=--+-=λλλλ ∴⑧式成立,即A 、B 、C 、D 四点共圆.解法2:由(Ⅱ)解法1及λ>12,∵CD 垂直平分AB , ∴直线CD 方程为13-=-x y ,代入椭圆方程,整理得.04442=-++λx x ③将直线AB 的方程x +y -4=0,代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,21224,32,1-±-=-±=λλx x不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A∴)21233,23123(---+-+-+=λλλλCA)21233,23123(-------+=λλλλ计算可得0=⋅,∴A 在以CD 为直径的圆上. 又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆.(注:也可用勾股定理证明AC ⊥AD ) 10.(本小题满分14分)(2018年高考·湖南卷·理19文21)已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ. (Ⅰ)证明:λ=1-e 2; (Ⅱ)若43=λ,△PF 1F 2的周长为6;写出椭圆C 的方程;(理科无此问) (Ⅲ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c a b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由.所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a e a -设M 的坐标是),,(),(),,(0000a eay e a x AM y x λλ=+=得由 所以⎪⎩⎪⎨⎧=-=.)1(00a y ea x λλ 因为点M 在椭圆上,所以 ,1220220=+b y a x 即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以 ,0)1()1(2224=-+--λλe e 解得.1122e e -=-=λλ即(Ⅱ)当43=λ时,21=c ,所以.2c a = 由△MF 1F 2的周长为6,得.622=+c a所以.3,1,2222=-===c a b c a 椭圆方程为.13422=+y x(Ⅲ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e e e =+- 所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,设点P 的坐标是),(00y x ,则⎪⎪⎩⎪⎪⎨⎧+-=+-=⎪⎪⎩⎪⎪⎨⎧+-=+-=+-.1)1(2,13.220102202200000e a e y c e e x a c x e y e cx y 解得 由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ. 即当32=λ时,△PF 1F 2为等腰三角形. 11.(本小题满分14分)(2018年高考·辽宁卷21)已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT (Ⅰ)设x 为点P 的横坐标,证明x aca F +=||1; (Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M , 使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.本小题主要考查平面向量的概率,椭圆的定义、标准方程和有关性质,轨迹的求法和应用,以及综合运用数学知识解决问题的能力.满分14分.(Ⅰ)证法一:设点P 的坐标为).,(y x 由P ),(y x 在椭圆上,得.)()()(||222222221x aca xa b b c x y c x F +=-++=++=由0,>+-≥+≥a c x a c a a x 知,所以 .||1x aca P F +=………………………3分 证法二:设点P 的坐标为).,(y x 记,||,||2211r P F r P F ==则.)(,)(222221y c x r y c x r ++=++=由.||,4,211222121x a ca r F cx r r a r r +===-=+得 证法三:设点P 的坐标为).,(y x 椭圆的左准线方程为.0=+x aca由椭圆第二定义得a c ca x F =+||||21,即.||||||21x a c a c a x a c F +=+=由0,>+-≥+-≥a c x a c a a x 知,所以.||1x aca P F +=…………………………3分 (Ⅱ)解法一:设点T 的坐标为).,(y x当0||=时,点(a ,0)和点(-a ,0)在轨迹上.当|0||0|2≠≠TF PT 且时,由0||||2=⋅TF PT ,得2TF PT ⊥. 又||||2PF =,所以T 为线段F 2Q 的中点.在△QF 1F 2中,a Q F OT ==||21||1,所以有.222a y x =+ 综上所述,点T 的轨迹C 的方程是.222a y x =+…………………………7分 解法二:设点T 的坐标为).,(y x 当0||=PT 时,点(a ,0)和点(-a ,0)在轨迹上. 当|0||0|2≠≠TF 且时,由02=⋅TF ,得2TF ⊥.又||||2PF =,所以T 为线段F 2Q 的中点.设点Q 的坐标为(y x '',),则⎪⎪⎩⎪⎪⎨⎧'=+'=.2,2y y cx x因此⎩⎨⎧='-='.2,2y y c x x ①由a Q F 2||1=得.4)(222a y c x ='++' ② 将①代入②,可得.222a y x =+综上所述,点T 的轨迹C 的方程是.222a y x =+……………………7分(Ⅲ)解法一:C 上存在点M (00,y x )使S=2b 的充要条件是⎪⎩⎪⎨⎧=⋅=+.||221,2022020b y c a y x 由③得a y ≤||0,由④得.||20c b y ≤ 所以,当cb a 2≥时,存在点M ,使S=2b ; 当cb a 2<时,不存在满足条件的点M.………………………11分 当cb a 2≥时,),(),,(002001y xc MF y x c MF --=---=, 由2222022021b c a y c x MF MF =-=+-=⋅,212121cos ||||MF F MF MF MF MF ∠⋅=⋅,③ ④22121sin ||||21b MF F MF MF S =∠⋅=,得.2tan 21=∠MF F 解法二:C 上存在点M (00,y x )使S=2b 的充要条件是⎪⎩⎪⎨⎧=⋅=+.||221,2022020b y c a y x 由④得.||20c b y ≤ 上式代入③得.0))((2224220≥+-=-=c b a c b a cb a x 于是,当cb a 2≥时,存在点M ,使S=2b ;当cb a 2<时,不存在满足条件的点M.………………………11分当c b a 2≥时,记cx y k k c x y k k M F M F -==+==00200121,,由,2||21a F F <知︒<∠9021MF F ,所以.2|1|tan 212121=+-=∠k k k k MF F …………14分12.(本小题满分14分)(2018年高考·江西卷·理22)如图,设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点. (1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA=∠PFB.解:(1)设切点A 、B 坐标分别为))((,(),(0121120x x x x x x ≠和,∴切线AP 的方程为:;02200=--x y x x切线BP 的方程为:;02211=--x y x x 解得P 点的坐标为:1010,2x x y x x x P P =+=③ ④所以△APB 的重心G 的坐标为 P PG x x x x x =++=310,,343)(3321021010212010pP P G y x x x x x x x x x y y y y -=-+=++=++=所以243G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:).24(31,02)43(22+-==-+--x x y x y x 即(2)方法1:因为).41,(),41,2(),41,(2111010200-=-+=-=x x x x x x x x 由于P 点在抛物线外,则.0||≠∴||41)1)(1(||||cos 102010010FP x x x x x x x x FA FP AFP +=--+⋅+==∠同理有41)1)(1(cos 102110110x x x x x x x x BFP +=--+⋅+==∠ ∴∠AFP=∠PFB.方法2:①当,0,0,,0000101==≠=y x x x x x 则不妨设由于时所以P 点坐标为)0,2(1x ,则P 点到直线AF 的距离为:,4141:;2||12111x x x y BF x d -=-=的方程而直线即.041)41(1121=+--x y x x x 所以P 点到直线BF 的距离为:2||412||)41()()41(|42)41(|1211212122111212x x x x x x x x x d =++=+-+-=所以d 1=d 2,即得∠AFP=∠PFB.②当001≠x x 时,直线AF 的方程:,041)41(),0(041410020020=+-----=-x y x x x x x x y 即 直线BF 的方程:,041)41(),0(041411121121=+-----=-x y x x x x x x y 即 所以P 点到直线AF 的距离为:2||41)41)(2|)41(|41)2)(41(|1020201020220012010201x x x x x x x x x x x x x x d -=++-=+-+-+-=,同理可得到P 点到直线BF 的距离2||012x x d -=,因此由d 1=d 2,可得到∠AFP=∠PFB. 13.(本小题满分12分)(2018年高考·江西卷·文21)如图,M 是抛物线上y 2=x 上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA=MB.(1)若M 为定点,证明:直线EF 的斜率为定值;(2)若M 为动点,且∠EMF=90°,求△EMF 的重心G 的轨迹方程.解:(1)设M (y 20,y 0),直线ME 的斜率为k(l>0)则直线MF 的斜率为-k ,).(200y x k y y ME -=-∴的方程为直线⎪⎩⎪⎨⎧=-=-∴xy y x k y y 2200)(由消0)1(002=-+-ky y y ky x 得2200)1(,1k ky x k ky y F F -=∴-=解得).(2142)1()1(1102022022000定值y k ky k k ky k ky k ky k ky x x y y k F E F E EF-=-=+---+--=--=∴所以直线EF 的斜率为定值(2),1,45,90==∠=∠k MAB EMF 所以时当).(200y x k y y ME -=-∴的方程为直线 ).1,)1((,0202200y y E xy y x y y --⎪⎩⎪⎨⎧=-=-得由 同理可得)).1(,)1((020y y F +-+设重心G (x , y ),则有⎪⎪⎩⎪⎪⎨⎧-=+--+=++=+=++-+=++=33)1()1(33323)1()1(3000020202020y y y y x x x x y y y y x x x x F E M F E M).32(2729120>-=x x y y 得消去参数 14.(本小题满分12分)(2018年高考·重庆卷·理21)已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程;(Ⅱ)若直线2:+=kx y l 与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6<⋅OB OA (其中O 为原点),求k 的取值范围.解:(Ⅰ)设双曲线C 2的方程为12222=-by a x ,则.1,31422222==+=-=b c b a a 得再由故C 2的方程为.1322=-y x (II )将.0428)41(1422222=+++=++=kx x k y x kx y 得代入 由直线l 与椭圆C 1恒有两个不同的交点得,0)14(16)41(16)28(22221>-=+-=∆k k k即 .412>k ① 0926)31(1322222=---=-+=kx x k y x kx y 得代入将.由直线l 与双曲线C 2恒有两个不同的交点A ,B 得.131.0)1(36)31(36)26(,0312222222<≠⎪⎩⎪⎨⎧>-=-+-=∆≠-k k k k k k 且即)2)(2(,66319,3126),,(),,(22+++=+<+<⋅--=⋅-=+B A B A B A B A B A B A BA B A B B A A kx kx x x y y x x y y x x OB OA k x x k k x x y x B y x A 而得由则设.1373231262319)1(2)(2)1(222222-+=+-⋅+--⋅+=++++=k k kk k k k x x k x x k B A B A .0131315,613732222>--<-+k k k k 即于是解此不等式得 .31151322<>k k 或 ③ 由①、②、③得.11513314122<<<<k k 或 故k 的取值范围为)1,1513()33,21()21,33()1513,1( ---- 15.(本小题满分12分)(2018年高考·重庆卷·文21)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程;(2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b a c a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且 ① 设),(),,(B B A A y x B y x A ,则,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k 于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得 .1312<<k故k 的取值范围为).1,33()33,1(⋃-- 16.(2018年高考·浙江卷·理17文19)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1.(Ⅱ)(文)若点P 为l 上的动点,求∠F 1PF 2最大值.解:(Ⅰ)设椭圆方程为()222210x y a b a b+=>>,半焦距为c ,则2111,a MA a A F a c c=-=-()2222224a a a c c a abc ⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩由题意,得2,1a b c ∴=== 221.43x y +=故椭圆方程为(Ⅱ)(理) 设()0,,||1P m y m >, 当00y >时,120F PF ∠=;当00y ≠时,22102F PF PF M π<∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m =+,直线2PF 的斜率021y k m =-, 021********||tan 11y k k F PF k k m y -∴∠==≤=+-+0||y =时,12F PF ∠最大,(,,||1Q m m ∴>(Ⅱ)(文)()004,,0P y y -≠设x =001122121102112212000121212350,22tan 115tan y y PF k PF k F PF PF M F PF y k k F PF k k y y y F PF F PF F PF π=-=-<∠<∠<∴∠-∴∠==≤=++=±∠∠∠设直线的斜率,直线的斜率 为锐角。

2018年全国各地高考数学试题及解答分类汇编大全(12 圆锥曲线与方程)

2018年全国各地高考数学试题及解答分类汇编大全(12 圆锥曲线与方程)

2018年全国各地高考数学试题及解答分类汇编大全(12圆锥曲线与方程)一、选择题1.(2018浙江)双曲线221 3=xy-的焦点坐标是()A.(−2,0),(2,0) B.(−2,0),(2,0)C.(0,−2),(0,2) D.(0,−2),(0,2)1..答案:B解答:∵2314c=+=,∴双曲线2213xy-=的焦点坐标是(2,0)-,(2,0).2.(2018上海)设P是椭圆²5x+²3y=1上的动点,则P到该椭圆的两个焦点的距离之和为()(A)2(B)2(C)2(D)43.(2018天津文、理)已知双曲线22221(0,0)x ya ba b-=>>的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于,A B两点.设,A B到双曲线的同一条渐近线的距离分别为1d和2d,且126,d d+=则双曲线的方程为()(A)22139x y-=(B)22193x y-=(C)221412x y-=(D)221124x y-=3.【答案】A【解析】设双曲线的右焦点坐标为(),0F c,()0c>,则A Bx x c==,由22221c ya b-=可得2bya=±,不妨设2,bA ca⎛⎫⎪⎝⎭,2,bB ca⎛⎫-⎪⎝⎭,双曲线的一条渐近线方程为0bx ay-=,据此可得22122bc b bc bdca b--=+,22222bc b bc bdca b++==+,则12226bcd d bc+===,则3b=,29b=,双曲线的离心率:2229112c bea a a==++,据此可得23a=,则双曲线的方程为22139x y-=.故选A.4.(2018全国新课标Ⅰ文)已知椭圆C:22214x y+=的一个焦点为(20),,则C的离心率为()A.13B.12CD4、答案:C解答:知2c=,∴2228a b c=+=,a=,∴离心率2e=.5.(2018全国新课标Ⅰ理)已知双曲线C:2213xy-=,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN△为直角三角形,则|MN|=()A.32B.3 C.D.45. 答案:B解答:渐近线方程为:2203xy-=,即3yx=±,∵OMN∆为直角三角形,假设2ONMπ∠=,如图,∴NMk=MN方程为2)y x=-.联立32)y xy x⎧=-⎪⎨⎪=-⎩∴3(,22N-,即ON=3MONπ∠=,∴3MN=,故选B.6.(2018全国新课标Ⅰ理)设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为23的直线与C 交于M,N两点,则FM FN⋅=()A.5 B.6 C.7 D.86. 答案:D解答:由题意知直线MN的方程为2(2)3y x=+,设1122(,),(,)M x y N x y,与抛物线方程联立有22(2)34y xy x⎧=+⎪⎨⎪=⎩,可得1112xy=⎧⎨=⎩或2244xy=⎧⎨=⎩,∴(0,2),(3,4)FM FN==,∴03248FM FN⋅=⨯+⨯=.7.(2018全国新课标Ⅱ文)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A.1-B.2 CD1 7.【答案】D【解析】在12F PF △中,1290F PF ∠=︒,2160PF F ∠=︒,设2PF m =,则1222c F F m ==,1PF =,又由椭圆定义可知)1221a PF PF m =+=则离心率212c ce a a===,故选D .8.(2018全国新课标Ⅱ文、理)双曲线22221(0,0)x y a b a b-=>>则其渐近线方程为( )A.y = B.y = C.y =D.y = 8.【答案】A【解析】c e a ==,2222221312b c a e a a -∴==-=-=,b a ∴,因为渐近线方程为b y x a =±,所以渐近线方程为y =,故选A .9.(2018全国新课标Ⅱ理)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A.23 B .12 C .13D .14 9.【答案】D【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以2122PF F F c ==,由AP得,2tan PAF ∠,2sin PAF ∴∠=,2cos PAF ∠=,由正弦定理得2222sin sin PF PAF AF APF ∠=∠,2225sin 3c a c PAF ∴===+-∠ ⎪⎝⎭, 4a c ∴=,14e =,故选D .10.(2018全国新课标Ⅲ文)已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为( )AB .2C .2D .10.答案:D解答:由题意c e a ==1ba=,故渐近线方程为0x y ±=,则点(4,0)到渐近线的距离为d ==.故选D.11.(2018全国新课标Ⅲ理)设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1P F P =,则C 的离心率为( )AB .2 CD11.答案:C解答:∵2||PF b =,2||OF c =,∴||PO a =; 又因为1|||PF OP =,所以1||6PF a =; 在2Rt POF ∆中,22||cos ||PF bOF cθ==; ∵在12Rt PF F ∆中,2222121212||||||cos 2||||PF F F PF bPF F F cθ+-==⋅⋅,222222224644633bb c a b c a c a c=⇒+-=⇒-=- 223c a ⇒=e ⇒=.二、填空1.(2018北京文)已知直线l 过点()1,0且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.1.【答案】()1,0【解析】1a =,24y x ∴=,由抛物线方程可得,24p =,2p =,12p=, ∴焦点坐标为()1,0.2.(2018北京文)若双曲线()222104x y a a -=>,则a =_________. 2.【答案】4【解析】在双曲线中,c=,且c e a ==,22454a a +=,216a ∴=,04a a >∴=Q .3.(2018北京理)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________. 3.1;2【解析】由正六边形性质得椭圆上一点到两焦点距离之和为3c c +,再根据椭圆定义得32c c a +=,所以椭圆M 的离心率为3113c a ==-+.双曲线N 的渐近线方程为n y x m =±,由题意得双曲线N 的一条渐近线的倾斜角为π3,222πtan 33n m ∴==,222222234m n m m e m m ++∴===,2e ∴=.4. (2018上海)双曲线2214x y -=的渐近线方程为。

【[全国]高考真题(理)分类汇编——直线与圆、圆锥曲线(教师版)

【[全国]高考真题(理)分类汇编——直线与圆、圆锥曲线(教师版)

2018高考真题分类汇编——直线与圆、圆锥曲线1.(2018北京·理)在平面直角坐标系中,记d 为点P (c osθ,s inθ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为( ) (A)1ﻩ ﻩﻩﻩ(B)2 (C)3ﻩﻩ ﻩﻩﻩ(D)41.C2.(2018北京·理)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n -=:.若双曲线N的两条渐近线与椭圆M 的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.123.(2018全国I·理)设抛物线C:y 2=4x的焦点为F,过点(–2,0)且斜率为的直线与C 交于M ,N 两点,则=( ) A.5 ﻩﻩ B.6ﻩC.7ﻩD.83.D4.(2018全国I·理)已知双曲线C:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M、N .若为直角三角形,则|MN |=( ) A .ﻩﻩﻩ B.3 ﻩ ﻩC .ﻩ ﻩﻩD .423FM FN ⋅2213x y -=OMN △325.(2018全国II·理)双曲线则其渐近线方程为()A.B .C.D.5.A6.(2018全国II·理)已知,是椭圆的左、右焦点,是的左顶点,点在过的直线上,为等腰三角形,,则的离心率为( ) A.ﻩ ﻩB.ﻩ ﻩﻩC . ﻩﻩﻩD.6.D7.(2018全国III·理)直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是( )A . ﻩ B.ﻩC.ﻩD .7.A8.(2018全国III·理)设是双曲线()的左,右焦点,是 坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为22221(0,0)x y a b a b-=>>y =y =y =y =1F 2F 22221(0)x y C a b a b+=>>:A C P A 12PF F △12120F F P ∠=︒C 2312131420x y ++=x y A B P ()2222x y -+=ABP △[]26,[]48,⎡⎣12F F ,22221x y C a b -=:00a b >>,O 2F C P 1PF =Cﻩ ﻩ B.2Cﻩﻩ8.C9.(2018江苏)在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b -=>>的右焦点(,0)F c ,则其离心率的值是 ▲ . 9.210.(2018江苏)在平面直角坐标系xOy 中,A为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ . 10.311.(2018浙江)双曲线221 3=x y -的焦点坐标是( ),0),,0) ﻩﻩB.(−2,0),(2,0), ﻩD .(0,−2),(0,2) 11.B12.(2018浙江)已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP =2PB ,则当m =___________时,点B横坐标的绝对值最大. 12.513.(2018天津·理)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为( )(A)221412x y -= (B) 221124x y -= (C ) 22139x y -= (D) 22193x y -= 13.C14.(2018上海)双曲线﹣y 2=1的渐近线方程为 .14.y =±15.(2018上海)设P 是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为( ) A .2 B .2ﻩ C.2ﻩ D.415.C16.(2018北京·理)(本小题满分14分)已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C有两个不同的交点A ,B ,且直线P A 交y轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.16.【解析】(1)因为抛物线y2=2px 经过点P (1,2), 所以4=2p,解得p=2,所以抛物线的方程为y2=4x.由题意可知直线l 的斜率存在且不为0,设直线l 的方程为y =kx +1(k ≠0). 由241y x y kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得k <0或0<k <1. 又P A,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3. 所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)设A(x1,y 1),B (x 2,y2).由(1)知12224k x x k -+=-,1221x x k =. 直线P A的方程为1122(1)1y y x x --=--. 令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-. 由=QM QO λ,=QN QO μ得=1M y λ-,1N y μ=-. 所以2212121212122224112()111111=2111(1)(1)11M N k x x x x x x k k y y k x k x k x x k k λμ-+---++=+=+=⋅=⋅------. 所以11λμ+为定值.17.(2018全国I·理)(本小题满分12分)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程; (2)设为坐标原点,证明:.17.【解析】(1)由已知得,l 的方程为x =1.由已知可得,点A 的坐标为或.所以AM 的方程为或. (2)当l 与x轴重合时,.当l 与x 轴垂直时,OM 为AB的垂直平分线,所以.当l 与x 轴不重合也不垂直时,设l 的方程为,,则,直线M A,MB 的斜率之和为. 22:12x C y +=F F l C ,A B M (2,0)l x AM O OMA OMB ∠=∠(1,0)F (1,2(1,2-2y x =-2y x =-0OMA OMB ∠=∠=︒OMA OMB ∠=∠(1)(0)y k x k =-≠1221(,),(,)A y x y xB 12x x <<212122MA MB x x y yk k +=+--由得.将代入得. 所以,.则. 从而,故M A,MB 的倾斜角互补,所以. 综上,.18.(2018全国II·理)(本小题满分12分)设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;(2)求过点,且与的准线相切的圆的方程.18.【解析】(1)由题意得,l 的方程为.设,由得.,故. 1122,y k k x y k x k =-=-121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--(1)y k x =-2212x y +=2222(21)4220k x k x k +-+-=21221222422,2121x x x k k k x k -+==++3131322244128423()4021k k k k kk k k k x x x x --++-++==+0MA MB k k +=OMA OMB ∠=∠OMA OMB ∠=∠24C y x =:F F (0)k k >l C A B ||8AB =l A B C (1,0)F (1)(0)y k x k =->1221(,),(,)A y x y x B 2(1),4y k x y x =-⎧⎨=⎩2222(24)0k x k x k -++=216160k ∆=+>122224k x k x ++=所以.由题设知,解得(舍去),.因此l 的方程为. (2)由(1)得A B的中点坐标为,所以AB的垂直平分线方程为,即.设所求圆的圆心坐标为,则解得或 因此所求圆的方程为或.19.(2018全国II I·理)(本小题满分12分)122244||||||(1)(1)x k AB AF BF k x +=+=+++=22448k k+=1k =-1k =1y x =-(3,2)2(3)y x -=--5y x =-+00(,)x y 00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩003,2x y =⎧⎨=⎩0011,6.x y =⎧⎨=-⎩22(3)(2)16x y -+-=22(11)(6)144x y -++=已知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:; (2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.19.【解析】(1)设,则. 两式相减,并由得.由题设知,于是.∪,由题设得,故. (2)由题意得,设,则.由(1)及题设得.又点P 在C 上,所以,从而,. 于是.同理. 所以. 故,即成等差数列.设该数列的公差为d ,则.∪ k l 22143x y C +=:A B AB ()()10M m m >,12k <-F C P C FP FA FB ++=0FA FP FB 1221(,),(,)A y x y x B 222212121,14343y x y x +=+=1221y x y k x -=-1122043y x y k x +++⋅=12121,22x y x y m ++==34k m =-302m <<12k <-(1,0)F 33(,)P x y 331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=3321213()1,()20y y x x y x m =-+==-+=-<34m =3(1,)2P -3||2FP =1||(22x FA x ===-2||22xFB =-121||||4()32FA FB x x +=-+=2||||||FP FA FB =+||,||,||FA FP FB 1212||||||||||2FB FA x x d =-=-=将代入∪得. 所以l 的方程为,代入C 的方程,并整理得. 故,代入∪解得或20.(2018天津·理)(本小题满分14分)设椭圆22221x x a b+=(a >b >0)的左焦点为F ,上顶点为B . A的坐标为(,0)b ,且FB AB ⋅=(1)求椭圆的方程;(2)设直线l:(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点) ,求k的值. 20.【解析】(Ⅰ)设椭圆的焦距为2c ,由已知有2259c a =,又由a 2=b 2+c2,可得2a =3b .由已知可得,FB a =,AB =,由FB AB ⋅=ab =6,从而a =3,b =2.所以,椭圆的方程为22194x y +=. (Ⅱ)设点P的坐标为(x 1,y 1),点Q 的坐标为(x2,y 2).由已知有y 1>y 2>0,故12sin PQ AOQ y y ∠=-.又因为2sin y AQ OAB =∠,而∠O AB=π4,故2AQ =.由34m =1k =-74y x =-+2171404x x -+=121212,28x x x x +==||d =52AQ AOQ PQ=∠,可得5y 1=9y 2. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1294y k =+易知直线AB 的方程为x +y–2=0,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221ky k =+.由5y 1=9y 2,可得5(k+1)=2394k +方,整理得25650110k k -+=,解得12k =,或1128k =.所以,k的值为111228或.21.(2018江苏)(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F . (1)求椭圆C 及圆O的方程;(2)设直线l 与圆O相切于第一象限内的点P .∪若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ∪直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程. 21.【解析】(1)因为椭圆C的焦点为12() 3,0,(3,0)F F -,可设椭圆C的方程为22221(0)x y a b a b +=>>.又点1(3,)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩因此,椭圆C 的方程为2214x y +=.因为圆O的直径为12F F ,所以其方程为223x y +=.(2)∪设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=,所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+.由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222200004243640()x y x x x y +-+-=.(*) 因为直线l 与椭圆C有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以001x y ==.因此,点P的坐标为.∪因为三角形OAB,所以1 2AB OP ⋅=AB . 设1122,,()(),A x y B x y ,由(*)得001,2x =,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P的坐标为.综上,直线l的方程为y =+.22.(2018浙江)(本小题15分)如图,已知点P是y轴左侧(不含y 轴)一点,抛物线C:y 2=4x 上存在不同的两点A,B 满 P A,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+24y =1(x<0)上的动点,求∪PAB 面积的取值范围. 22.【解析】(1)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程22014()422y x y y ++=⋅, 即22000280y y y x y -+-=的两个不同的实数根.所以1202y y y +=.因此,PM 垂直于y 轴.(2)由(1)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩所以2221200013||()384PM y y x y x =+-=-,12||y y -=因此PAB △的面积32212001||||(4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈.因此,PAB △面积的取值范围是.23.(2018上海)(本小题16分)设常数t >2.在平面直角坐标系xOy 中,已知点F(2,0),直线l :x=t ,曲线Γ:y 2=8x (0≤x≤t ,y≥0).l 与x 轴交于点A 、与Γ交于点B.P 、Q分别是曲线Γ与线段AB 上的动点. (1)用t 表示点B 到点F 的距离;(2)设t=3,|FQ|=2,线段O Q的中点在直线F P上,求∪AQP 的面积;(3)设t=8,是否存在以FP 、FQ 为邻边的矩形FPE Q,使得点E 在Γ上?若存在,求点P的坐标;若不存在,说明理由.23.【解析】(1)方法一:由题意可知:设B(t ,2t ),则|BF |==t +2,∪|BF |=t+2;方法二:由题意可知:设B(t ,2t),由抛物线的性质可知:|BF|=t+=t+2,∪|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∪|AQ|=,∪Q(3,),设OQ的中点D,D(,),k==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得3x2QF﹣20x+12=0,解得:x=,x=6(舍去),∪∪AQP的面积S=××=;(3)存在,设P(,y),E(,m),则kPF==,kFQ=,直线QF方程为y=(x﹣2),∪yQ=(8﹣2)=,Q(8,),根据+=,则E(+6,),∪()2=8(+6),解得:y2=,∪存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).。

2016-2018年高考理科圆锥曲线真题(全国卷)

2016~2018高考圆锥曲线(全国卷)1.(2016全国一)已知方程132222=--+n m y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则m 的取值范围是(A )(1-,3) (B )(1-,3) (C )(0,3) (D )(0,3) 2.(2016全国一)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知24=AB ,52=DE ,则C 的焦点到准线的距离为 (A )2 (B )4 (C )6 (D )8 3. (2016全国一)设圆015222=-++x y x 的圆心为A ,直线l 过点)0,1(B 且与x 轴不重合,l 交圆A 于D C ,两点,过B 作AC 的平行线交AD 于点E . (Ⅰ)证明EB EA +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于N M ,两点,过B 且与l 垂直的直线与圆A 交于Q P ,两点,求四边形MPNQ 面积的取值范围.4.(2016全国二)已知是双曲线的左,右焦点,点在上,与轴垂直,,则E 的离心率为( )(A(B )(C (D )25.(2016全国二)已知椭圆的焦点在轴上,是的左顶点,斜率为的直线交于两点,点在上,. (Ⅰ)当时,求的面积; (Ⅱ)当时,求的取值范围.6.(2016全国三)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线12,F F 2222:1x y E a b -=M E 1MF x 211sin 3MF F ∠=32:E 2213x y t +=x A E (0)k k >E ,A M N E MA NA ⊥4,||||t AM AN ==AMN ∆2AM AN =k段PF 交于点M ,与y 轴交于点E . 若直线BM 经过OE 的中点,则C 的离心率为 A.13B. 12C. 23D. 347.(2016全国三)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点. (1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.8.(2017全国一)已知F 为抛物线C :24y x =的交点,过F 作两条互相垂直1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D ,E 两点,AB DE +的最小值为()A .16B .14C .12D .109.(2017全国一)已知双曲线2222:x y C a b-,(0a >,0b >)的右顶点为A ,以A 为圆心,b为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点,若60MAN ∠=︒,则C 的离心率为_______.10.(2017全国一)已知椭圆C :22221x y a b +=()0a b >>,四点()111P ,,()201P ,,31P ⎛- ⎝⎭,41P ⎛ ⎝⎭中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A 、B 两点,若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.11.(2017全国二)若双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A. 2B.C. D.12.(2017全国二)已知F 是抛物线C :28y x = 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N ,若M 为FN 的中点,则FN =_____________.13.(2017全国二)设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ =,证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .14.(2017全国三)已知双曲线22221x y C a b-=:(0a >,0b >)的一条渐近线方程为y =,且与椭圆221123x y +=有公共焦点.则C 的方程为() A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -=15.(2017全国三)已知椭圆2222:1x y C a b+=(0a b >>)的左、右顶点分别为1A ,2A ,且以线段1A 2A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为()A B C D .1316.(2017全国三)已知抛物线2:2C y x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,2),求直线l 与圆M 的方程.17.(2018全国一)设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .819.(2018全国一)已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |= A .32B .3C .D .420.(2018全国一)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.21.(2018全国二)双曲线x 2a 2−y 2b 2=1 (a >0, b >0)的离心率为√3,则其渐近线方程为A. y =±√2xB. y =±√3xC. y =±√22xD. y =±√32x 22.(2018全国二)已知F 1,F 2是椭圆C : x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率为√36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为A. 23B. 12C. 13D. 1423.(2018全国二)设抛物线C : y 2=4x 的焦点为F ,过F 且斜率为k(k >0)的直线与C 交于A ,B 两点,|AB| =8, ,1)求的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.24.(2018全国三)设12,F F 是双曲线C: 22221x y a b-=(a >O ,b >0)的左、右焦点,O是坐标原点,过2F 作C 的一条渐近线的垂线,垂足为P ,若1PF =,则C 的离心率为 ( )A. B. 2 C.25.(2018全国三)已知点M (-1,1)和抛物线C: 24y x =,过C 的焦点且斜率为k 的直线与C 交于A,B 两点,若∠AMB=90。

2016-2018年高考理科圆锥曲线真题(全国卷)

2016~2018高考圆锥曲线(全国卷)1.(2016全国一)已知方程132222=--+n m y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则m 的取值范围是(A )(1-,3)(B )(1-,3)(C )(0,3)(D )(0,3)2.(两点.已知=AB (A )23.(l 交圆A 于C ,(Ⅱ)Q P ,两4.(2016轴垂直,2sin MF ∠(A 5.(2016全国二)已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.6.(2016全国三)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A.13B.12C.23D.347.(2016全国三)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B(1)若F (2)若△8.(2017A 、B 两点,直线l A .169.(2017A ,圆A与双曲线10.(20171⎛ ⎝⎭中(1)求C (2)l 过定点.11.(所截得的弦长为2,则C 的离心率为()A.2 12.(2017全国二)已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N ,若M 为FN 的中点,则FN =_____________.13.(2017全国二)设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =. (1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ =,证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .14.(221123x y +=A 15.(2为直径的A 16.(AB 为直(1(217.(交于M ,N 两点,则FM FN ⋅=B .619.(2018全国一)已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |=A .32B .3C .D .420.(2018全国一)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.21.(C.22.(,是椭圆的左,右焦点,是的左顶点,点且斜率为的直线上,为等腰三角形,,则的离心率为 B. D.23.(的焦点为,过且斜率为的直线与交于,两点,.(1且与的准线相切的圆的方程.24.(2F 作C 25.(2018全国三)已知点M (-1,1)和抛物线C:24y x =,过C 的焦点且斜率为k 的直线与C 交于A,B 两点,若∠AMB=90。

2014-2018年全国一卷圆锥曲线高考题汇编含答案 (1)

圆锥曲线部分高考试题汇编(椭圆部分)1、(2016全国Ⅰ卷)(20)(本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.2、(2015全国Ⅰ卷)(14)一个圆经过椭圆221164x y +=错误!未找到引用源。

的三个顶点,且圆心在x 轴上,则该圆的标准方程为 。

3、(2014全国Ⅰ卷)20.(本小题满分12分)已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为32,F 是椭圆的焦点,直线AF 23,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 4、(2016山东卷)(21)(本小题满分14分)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>> 3,抛物线E :22x y =的焦点F 是C 的一个顶点. (I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M. (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG 的面积为1S ,PDM 的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.5、(2015山东卷)(20) (本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>12,F F ,以1F 为圆心,以3为半径的圆与以2F 为圆心,以1为半径的圆相交,交点在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144x y E a b+=,P 为椭圆C 上的任意一点,过点P 的直线y kx m =+交椭圆E 于A,B 两点,射线PO 交椭圆E 于点Q. (ⅰ)求||||OQ OP 的值;(ⅱ)求ABQ ∆面积最大值. 1、(2016全国Ⅰ卷)(5)已知方程x 2m 2+n –y 23m 2–n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A )(–1,3) (B )(–1,3) (C )(0,3) (D )(0,3)2、(2015全国Ⅰ卷)(5)已知M (x 0,y 0)是双曲线C :2212x y -=上的一点,F 1、F 2是C 上的两个焦点,若1MF •2MF <0,则y 0的取值范围是( )(A )(-3,3) (B )(-6,6)(C )() (D )() 3、(2014全国Ⅰ卷)4. 已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )A .B .3CD .3m4、(2016山东卷)(13)已知双曲线E 1:22221x y a b-=(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______ .5、(2015山东卷)(15)平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 .6、(2014山东卷)(10)已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C与2C 2C 的渐近线方程为( )(A )0x ±= (B 0y ±= (C )20x y ±= (D )20x y ±=圆锥曲线部分高考试题汇编(抛物线部分)1、(2016全国Ⅰ卷)(10)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=|DE|=C 的焦点到准线的距离为( )(A )2 (B )4 (C )6 (D )8 2、(2015全国Ⅰ卷)(20)(本小题满分12分)在直角坐标系xoy 中,曲线C :y =24x 与直线y kx a =+(a >0)交与M ,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由。

2013-2018年圆锥曲线高考题汇总-附答案

2013-2018年圆锥曲线高考题汇总角度问题1、(18文)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:ABM ABN =∠∠.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2).所以直线BM 的方程为y =112x +或112y x =--. (2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0. 由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4. 直线BM ,BN 的斜率之和为1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222y x k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k ++-++++===. 所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM +∠ABN .综上,∠ABM =∠ABN .2、(18理)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0). (1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:OMA OMB ∠=∠.解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A 的坐标为(1,2或(1,)2-.所以AM 的方程为y x =y =-(2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x MA ,MB 的斜率之和为212122MA MB x x y y k k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x k k k -+++=--. 将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=. 所以,21221222422,2121x x x k k k x k -+==++. 则3131322244128423()4021k k k k k k k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠.综上,OMA OMB ∠=∠.3、(15理卷一)在直角坐标系xOy 中,曲线C:y= 与直线l:y=kx+a(a>0)交于M,N 两点.(Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P,使得当k 变动时,总有∠OPM=∠OPN?说明理由.解析 (Ⅰ)由题设可得M(2 ,a),N(-2 ,a)或M(-2 ,a),N(2 ,a).又y'= ,故y= 在x=2 处的导数值为 ,C 在点(2 ,a)处的切线方程为y-a= (x-2 ),即 x-y-a=0.y= 在x=-2 处的导数值为- ,C 在点(-2 ,a)处的切线方程为y-a=- (x+2 ),即 x+y+a=0. 故所求切线方程为 x-y-a=0和 x+y+a=0.(5分)(Ⅱ)存在符合题意的点,证明如下:设P(0,b)为符合题意的点,M(x 1,y 1),N(x 2,y 2),直线PM,PN 的斜率分别为k 1,k 2.将y=kx+a 代入C 的方程得x 2-4kx-4a=0.故x 1+x 2=4k,x 1x 2=-4a.从而k 1+k 2= - + - = = .当b=-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补,故∠OPM=∠OPN,所以点P(0,-a)符合题意.(12分)定点问题1、(17理卷2)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1),P 4(1中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m km k m k k --+⋅+-⋅=++. 解得12m k +=-. 当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)2、(17理卷二)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1) 求点P 的轨迹方程;设点Q 在直线x =-3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【解析】(1)设(,)P x y ,(,)M x y '',(,0)N x '即0x x x x y y '=⎧'-=⎧⎪⎪⇒⎨⎨'='=⎪⎩⎪⎩代入椭圆方程2212x y ''+=,得到222x y += ∴点P 的轨迹方程222x y +=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页(共8页)学科教师辅导教案学员姓名年级高二辅导科目数学

授课老师课时数2h第次课授课日期及时段2018年月日:—:

1.(2017新课标全国卷I,理10)已知F为抛物线C:24yx

的交点,过F作两条互相垂直

1l,2l,直线1l与

交于A、B两点,直线2l与C交于D,E两点,ABDE的最小值为()A.16B.14C.12D.10

2.(2016新课标全国卷I,理5)已知方程13222

2

nm

ynmx表示双曲线,且该双曲线两焦点间的距离为4,

则n取值范围是()(A))3,1((B))3,1((C))3,0((D))3,0(

3.(2016新课标全国卷I,理10)以抛物线C的顶点为圆心的圆交C于BA,两点,交C的准线于ED,两点,已知24AB,52DE,则C的焦点到准线的距离为(A)2(B)4(C)6(D)8

4.(2015新课标全国卷I,理5)已知M(00,xy)是双曲线C:2212xy上的一点,12,FF是C上的两个

焦点,若120MFMF,则0

y的取值范围是()

(A)(-33,33)(B)(-36,36)(C)(223,223)(D)(233,233)

5.(2015新课标全国卷II,理11)已知A,B为双曲线E的左,右顶点,点M在E上,∆ABM为等腰三角形,且顶角为120°,则E的离心率为()A.5B.2C.3D.2

直线和圆锥曲线高考题分析第2页(共8页)

6.(2014新课标全国卷I,理5)已知F是双曲线C:223(0)xmymm

的一个焦点,则点F到C的一

条渐近线的距离为()A.3B.3C.3mD.3m7.(2014新课标全国卷I,理10)已知抛物线C:28yx

的焦点为F,准线为l,P是l上一点,Q是直线

PF与C的一个焦点,若4FPFQ



,则||QF=()

A.72B.52C.3D.2

8.(2013·新课标Ⅰ高考理)已知双曲线C:x2a2-y2

b2

=1(a>0,b>0)的离心率为52,则C的渐近线方程为

()A.y=±14xB.y=±13xC.y=±12xD.y=±x

9.(2013·新课标Ⅰ高考理)已知椭圆E:x2a2+y2

b2

=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B

两点.若AB的中点坐标为(1,-1),则E的方程为()A.x245+y236=1B.x236+y227=1C.x227+y218=1D.x218+y2

9=1

10.(2013·新课标Ⅱ高考理)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5.若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8xB.y2=2x或y2

=8x

C.y2=4x或y2=16xD.y2=2x或y2

=16x

11.(2013·新课标Ⅱ高考理)已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是()

A.(0,1)B.1-22,12C.1-22,13D.13,12

12.(2012·新课标高考理)设F1,F2是椭圆E:

x2a2+y2

b2

=1(a>b>0)的左、右焦点,P为直线x=3a2上一点,

△F2PF1

是底角为30°的等腰三角形,则E的离心率为()

A.12B.23C.34D.45第3页(共8页)

13.(2012·新课标高考理)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2

=16x的准线交于

A,B两点,|AB|=43,则C的实轴长为()A.2B.22C.4D.8

14.(2011·新课标高考)设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为()A.2B.3C.2D.3

15、(2017新课标全国卷I,理)已知双曲线2222:xy

C

ab,(0a,0b)的右顶点为A,以A为圆心,b为

半直径作圆A,圆A与双曲线线C的一条渐近线交于M,N两点,若60MAN,则C的离心率为_______.

16、(2015新课标全国卷I,理14)一个圆经过椭圆221164

xy

的三个顶点,且圆心在x轴的正半轴上,

则该圆的标准方程为.

17.(2011·新课标高考)在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心

率为22.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为____.

18、(2018新课标全国卷I,理8)设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为

2

3的直线与C交

于M,N两点,则FMFN=()

A.5B.6C.7D.819、(2018新课标全国卷I,理11)已知双曲线C:221

3

xy,O为坐标原点,F为C的右焦点,过F的直

线与C的两条渐近线的交点分别为M、N.若△OMN为直角三角形,则|MN|=()A.32B.3C.23D.4

20、(2018新课标全国卷II,理12)已知1F,2F是椭圆

22

221(0)xy

Cab

ab:的左,右焦点,A是C的左

顶点,点P在过A且斜率为36的直线上,12PFF△为等腰三角形,12

120FFP,则C的离心率为()

A.23B.12C.13D.14第4页(共8页)

21、(2018新课标全国卷III,理11)设12FF,是双曲线

22

221xy

C

ab:(00ab,)的左、右焦点,O是

坐标原点.过2

F作C的一条渐近线的垂线,垂足为P.若

16PFOP,则C的离心率为()

A.5B.2C.3D.2

22、(2018新课标全国卷III,理16)已知点11M,和抛物线24Cyx:,过C的焦点且斜率为k的直线

与C交于A,B两点.若90AMB∠,则k__

23、(2017新课标全国卷I,理)已知椭圆C:22221xy

ab0ab,四点111P,,

201P,

,3312P,,

431

2P







,中恰有三点在椭圆C上.

(1)求C的方程;(2)设直线l不经过2P点且与C相交于A、B两点,若直线2PA与直线2

PB的斜率的和

为1,证明:l过定点.

24.(2016·新课标高考)设圆015222xyx的圆心为A,直线l过点)0,1(B且与x轴不重合,l

交圆A于DC,两点,过B作AC的平行线交AD于点E.(Ⅰ)证明EBEA为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线1C,直线l交1

C于NM,两点,过B且与l垂直的直线与圆A交于QP,两

点,求四边形MPNQ面积的取值范围.第5页(共8页)

25、(2015新课标全国卷I,理20)在直角坐标系xOy中,曲线C:y=24x与直线l:y=kx+a(a>0)交于M,N两点.(1)当k=0时,分别求C在点M和N处的切线方程;(2)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.

26、(2014新课标全国卷I,理20)已知点A(0,-2),椭圆E:22221(0)xy

ab

ab的离心率为32,

F是椭圆的焦点,直线AF的斜率为

23

3,O为坐标原点.

(I)求E的方程;(Ⅱ)设过点A的直线l与E相交于,PQ两点,当OPQ的面积最大时,求l的方程.

相关文档
最新文档