(新北师大版)2013-2014学年度下学期八年级数学第三章《图形的平移与旋转》单元检测

合集下载

八年级下册数学北师大版 第三章 图形的平移与旋转综合能力检测卷

八年级下册数学北师大版  第三章 图形的平移与旋转综合能力检测卷

八年级下册数学北师大版第三章图形的平移与旋转综合能力检测卷时间:60分钟满分:120分一、选择题(本大题共10小题,每题3分,共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A B C D2.如图,将△ABC平移后得到△DEF,若∠A=44°,∠EGC=70°,则∠ACB的度数是()A.26°B.44°C.46°D.66°第2题图第3题图第4题图3.如图,将△ABC绕点A按逆时针方向旋转20°得到△ADE,∠BAC=30°,则∠BAE的度数为()A.10°B.20°C.30°D.50°4.如图,△A'B'C'是由△ABC平移得到的,则点C'的坐标为()A.(4,1.5)B.(3.5,1)C.(3.5,1.5)D.(4,1)5.把△ABC各点的横、纵坐标都乘-1后,得到的图形是()A B C D6.如图,将△OAB绕点O逆时针旋转60°得到△OCD,连接BD,AC.若OA=4,∠AOB=35°,则下列结论错误的是() A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=4第6题图第7题图第8题图7.如图,四个图案都可以看作是由一个“基本图案”经过旋转形成的,它们的旋转角相同的是()A.(1)(2)B.(1)(4)C.(2)(3)D.(3)(4)8.如图,将△ABC沿BC方向平移4 cm得到△DEF,若四边形ABFD的周长是28 cm,则△DEF的周长是()A.16 cmB.18 cmC.20 cmD.22 cm9.把一对三角纸板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角纸板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为() A.3√2 B.5 C.4 D.√31第9题图第10题图10.如图,正确描述①到②到③的变换的是()A.①绕点B顺时针旋转135°后向右平移2 cm,再向右平移2 cmB.①绕点B顺时针旋转135°后向右平移4 cm,再向右平移4 cmC.①向右平移2 cm后绕点B顺时针旋转135°,再向右平移2 cmD.①向右平移2 cm后绕点B顺时针旋转135°,再向右平移4 cm二、填空题(本大题共6小题,每题3分,共18分)11.如图,在由边长为1个单位长度的小正方形组成的8×8网格中,将△ABC向右平移3个单位长度后得到△A'B'C'(其中A,B,C的对应点分别为A',B',C'),则∠BA'A的度数是.第11题图第12题图第13题图12.如图,将△ABC绕点B按逆时针方向旋转90°后得到△A'BC',若BC=2,则CC'的长为.13.如图,在平面直角坐标系xOy中,点A的坐标为(0,4),点B在第一象限内,将△OAB沿x轴正方向平移得到△O'A'B',若点A的对应点A'在直线y=√3x上,则点B与对应点B'之间的距离为.14.如图,在网格中,△ABC绕某点顺时针旋转α°(0<α<180)得到△A1B1C1,点A与点A1,点B与点B1,点C与点C1是对应点,则α=.第14题图第15题图15.如图,在△ABC中,AB=AC=4,将△ABC绕点A按顺时针方向旋转30°,得到△ACD,延长AD交BC 的延长线于点E,则DE的长为.16.如图,在平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是.三、解答题(本大题共6小题,共72分)17.(10分)在如图所示的方格中,每个小方格都是边长为1个单位长度的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).(1)建立平面直角坐标系,使点B的坐标为(-4,1),点C的坐标为(-1,1),则点A的坐标为;(2)在(1)的基础上,作出△ABC绕原点O顺时针旋转90°后的△A1B1C1,写出A1,B1,C1的坐标.18.(10分)已知△ABC在平面直角坐标系中,且A(-2,1),B(-3,-2),C(1,-4),将其平移后得到△A1B1C1,若A,B的对应点分别是A1,B1,C的对应点C1的坐标是(3,-1).(1)在如图所示的平面直角坐标系中画出△ABC,△A1B1C1,并写出点A1,B1的坐标;(2)△ABC的面积为.19.(12分)象棋中有很多数学知识,如图,给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P处.(1)写出下一步“马”可能到达的点的坐标;(2)①如果顺次连接(1)中的所有点,则得到的图形是图形;(填写“中心对称”“旋转对称”“轴对称”)②指出(1)中关于点P成中心对称的点.20.(12分)如图,在四边形ABCD中,∠DAB=60°,AB=AD,线段BC绕点B顺时针旋转60°得到线段BE,连接AC,ED.(1)求证:AC=DE;(2)若DC=4,BC=6,∠DCB=30°,求AC的长.21.(14分)已知Rt△ABC中,∠BAC=90°,AB=AC,△CDE的边CE在射线AC上,CE<AC,∠DCE=90°,CD=CA.沿CA方向平移△CDE,使点C移动到点A处,得到△ABF,过点F作FG⊥BC,垂足为点G,连接EG,DG.(1)如图1,当边CE在线段AC上时,求证:GC=GF;(2)如图2,当边CE在线段AC的延长线上时,其余条件不变.求证:△EFG≌△DCG.图1图222.(14分)把两块含45°角的直角三角板按图1所示的方式放置,点D在BC上,连接BE,AD,AD的延长线交BE于点F.(1)如图1,求证:BE=AD,AF⊥BE;(2)将△ABC绕点C顺时针旋转(如图2),AD分别交BE,BC于点F,G,那么(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由.第三章综合能力检测卷题号 1 2 3 4 5 6 7 8 9 10答案 B A D A C D D C B D14.9015.2√3-211.45°12.2√213.4√3316.(4n+1,√3)1.B【解析】A项,是中心对称图形,但不是轴对称图形;B项,既是轴对称图形,又是中心对称图形;C项,是轴对称图形,但不是中心对称图形;D项,既不是轴对称图形,又不是中心对称图形.故选B.2.A【解析】∵将△ABC平移后得到△DEF,∠A=44°,∠EGC=70°,∴∠EDF=∠A=44°,∴∠ACB=∠EGC-∠EDF=26°.故选A.3.D【解析】∵将△ABC绕点A按逆时针方向旋转20°得到△ADE,∠BAC=30°,∴∠BAD=20°,∠DAE=∠BAC=30°,∴∠BAE=∠BAD+∠DAE=50°.故选D.4.A【解析】由点B(-4,-2)及其对应点B'(0,n)知,将△ABC向右平移4个单位长度,由点A(-3,0)及其对应点A'(m,3.5)知,将△ABC向上平移3.5个单位长度,所以点C(0,-2)的对应点C'的坐标为(4,1.5).故选A.5.C【解析】把△ABC各点的横、纵坐标都乘-1,得到的点与△ABC各点关于原点对称,所以得到的图形与△ABC关于原点成中心对称,故C项符合要求.故选C.6.D【解析】∵△OAB绕点O逆时针旋转60°得到△OCD,∴∠AOC=∠BOD=60°,AO=CO=4,BO=DO,∴△AOC和△BOD是等边三角形,∴∠BDO=60°.∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°.A项、B项、C项结论正确,D 项结论错误.故选D.7.D【解析】(1)中的旋转角为360°÷3=120°;(2)中的旋转角为360°÷5=72°;(3)中的旋转角为360°÷4=90°;(4)中的旋转角为360°÷4=90°.所以(3)(4)中的旋转角相同.故选D.8.C【解析】∵△ABC沿BC方向平移4 cm得到△DEF,∴DE=AB,AD=BE=4 cm.∵四边形ABFD的周长是28 cm,即AB+BE+EF+DF+AD=28 cm,∴DE+EF+DF=20 cm,∴△DEF的周长是20 cm.故选C.9.B【解析】∵∠ACB=∠DEC=90°,∠D=30°,∴∠DCB=60°,∴∠ACD=30°,又∵三角纸板DCE绕点C顺时针旋转15°得到△D1CE1,∴∠ACD1=45°.∵AB=6,∴AO=CO=3,又∵DC=7,∴OD1=4.在Rt△AOD1中,AD1=√OA2+OD12=5.故选B.10.D【解析】先把①向右平移2 cm,再绕点B顺时针旋转135°得到②,然后把②向右平移4 cm得到③;或者先把①绕点B顺时针旋转135°,再向右平移2 cm得到②,然后把②向右平移4 cm得到③.故选D.×(180°-90°)=45°. 11. 45°【解析】如图,过点B向直线A'A作垂线,垂足为D,则BD=4,A'D=4,所以∠BA'A=1212.2√2【解析】将△ABC绕点B按逆时针方向旋转90°后得到△A'BC',∴BC'=BC=2,∠CBC'=90°,∴CC'=√2BC=2√2.【解析】设点B与对应点B'之间的距离为a,则△OAB沿x轴正方向平移a个单位长度得到△O'A'B'.∵点A 13.4√33,即点B与对应点B'之间的的坐标为(0,4),∴点A的对应点A'的坐标为(a,4),∵点A'在直线y=√3x上,∴√3a=4,解得a=4√33.距离为4√3314.90 【解析】如图,连接CC1,AA1,作CC1,AA1的垂直平分线交于点E,连接AE,A1E,则点E是旋转中心.∵∠AEA1=90°,∴旋转角α°=90°.15.2 √3-2【解析】根据旋转的性质,得∠CAD=30°=∠CAB,AC=AD=4,∴∠BCA=∠ACD=∠ADC=75°,∴∠ECD=180°-AC=2,AH=2√3,∴HD=AD-AH=4-2∠BCA=30°,∴∠E=∠ADC-∠ECD=45°.如图,过点C作CH⊥AE于点H,在Rt△ACH中,CH=122√3.在Rt△CHE中,∠E=45°,∴EH=CH=2,∴DE=EH-HD=2-(4-2√3)=2√3-2.16.(4n+1,√3)【解析】∵△OA1B1是边长为2的等边三角形,∴点A1的坐标为(1,√3),点B1的坐标为(2,0),∵点A2与点A1关于点B1成中心对称,∴点A2的坐标是(3,-√3),∵点A3与点A2关于点B2(4,0)成中心对称,∴点A3的坐标是(5,√3),∵点A4与点A3关于点B3(6,0)成中心对称,∴点A4的坐标是(7,-√3),依此类推,可得点A n的横坐标是2n-1,点A2n+1的横坐标是2(2n+1)-1=4n+1,∵当n为奇数时,点A n的纵坐标是√3,当n为偶数时,点A n的纵坐标是-√3,∴点A2n+1的坐标是(4n+1,√3).17.【解析】(1)建立平面直角坐标系如图所示.(-3,3)(2)△A1B1C1如图所示.A1(3,3),B1(1,4),C1(1,1).18.【解析】 (1)如图,△ABC ,△A 1B 1C 1即所求.因为点C 的对应点C 1的坐标是(3,-1),所以△ABC 向右平移2个单位长度,再向上平移3个单位长度得到△A 1B 1C 1,所以点A 1的坐标是(0,4),B 1的坐标是(-1,1).(2)7如图,S △ABC =S 四边形AMNC -S △AMB -S △BNC =12×(1+4)×5-12×1×3-12×2×4=7. 19.【解析】 (1)(0,0),(0,2),(1,3),(3,3),(4,2),(4,0). (2)①轴对称②根据中心对称的定义,可得(1)中关于点P 成中心对称的点为(0,0)和(4,2),(0,2)和(4,0).20.【解析】 (1)如图,连接BD.∵∠DAB=60°,AB=AD , ∴△ABD 是等边三角形, ∴AB=DB ,∠ABD=60°.∵线段BC 绕点B 顺时针旋转60°得到线段BE , ∴CB=EB ,∠CBE=60°, ∴∠ABC=∠DBE. 在△ABC 和△DBE 中, {AB =DB,∠ABC =∠DBE,CB =EB,∴△ABC ≌△DBE (SAS ), ∴AC=DE. (2)如图,连接CE.∵CB=EB ,∠CBE=60°,∴△BCE 是等边三角形, ∴∠BCE=60°, 又∵∠DCB=30°,∴∠DCE=90°.在Rt △DCE 中,DC=4,CE=BC=6,∴DE=√62+42=2√13, 由(1)可知,AC=DE=2√13.21.【解析】 (1)在Rt △ABC 中,∠BAC=90°,AB=AC ,∴∠ACB=∠ABC=45°. ∵FG ⊥CG ,∴∠FGC=90°,∴∠GFC=90°-∠ACB=45°,∴∠GFC=∠GCF , ∴GC=GF.(2)由(1)中方法可证得GC=GF.∵∠DCG+∠GCF=90°,∠GCF+∠EFG=90°, ∴∠DCG=∠EFG. 由平移的性质可得CA=EF , 又∵CD=CA ,∴CD=EF. 在△EFG 和△DCG 中,{EF =DC,∠EFG =∠DCG,GF =GC,∴△EFG ≌△DCG. 22.【解析】 (1)由题意知,在△BCE 和△ACD 中,{EC =DC,∠BCE =∠ACD =90°,BC =AC,∴△BCE ≌△ACD (SAS ),∴BE=AD ,∠EBC=∠CAD , 又∵∠CDA+∠CAD=90°,∠BDF=∠CDA ,∴∠BDF+∠DBF=90°,∴∠BFD=90°,即AF ⊥BE. (2)成立.∵∠DCE=∠ACB=90°,∴∠DCE+∠DCB=∠ACB+∠BCD ,∴∠BCE=∠ACD. 在△BCE 和△ACD 中,{EC =DC,∠BCE =∠ACD,BC =AC,∴△BCE ≌△ACD (SAS ),∴BE=AD ,∠EBC=∠DAC , 又∵∠CGA+∠CAG=90°,∠BGF=∠CGA ,∴∠BGF+∠GBF=90°,∴∠BFG=90°,即AF ⊥BE.。

北师大版八年级数学下册第3章图形平移与旋转单元测试卷解析版

北师大版八年级数学下册第3章图形平移与旋转单元测试卷解析版

北师大版八年级数学下册第3章图形平移与旋转单元测试卷解析版第3章图形的平移与旋转一、选择题(本题共计7小题,每题3分,共计21分,)1.将线段AB平移1cm,得到线段A′B′,则点B到点B′的距离是()A.2cmB..1cmD..在直角坐标系中,点A(2,1)向左平移2个单位长度,再向上平移1个单位长度后的坐标为()A.(0,2)B.(4,2)c.(4,0)D.(0,0)3.如图,在正六边形中,由阴影三角形平移得到的三角形是()A.①②B.②④c.②③D.②⑤4.在平面直角坐标系中,线段AB两端点的坐标分别为A(1,0),B(3,2).将线段AB平移后,A、B的对应点的坐标可以是()A.(1,﹣1),(﹣1,﹣3)B.(1,1),(3,3)c.(﹣1,3),(3,1)D.(3,2),(1,4)5.如图,点A、B、c、D、o都在方格纸的格点上,若△coD是由△AoB绕点o按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°c.90°D.135°6.在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是()A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格c.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格7.如图,将Rt△ABc绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在Bc边上.若Ac=,∠B=60°,则cD的长为()A...D.1二、填空题(本题共计7小题,每题3分,共计21分,)8.从3:20开始,经30分钟,分针旋转了,时针旋转了.9.如图,把△ABc绕点A旋转至△ADE的位置,使点D落在Bc边上,若∠c+∠ADE=110°,则∠BAc=.10.如图,△A1B1c1是△ABc关于点o成中心对称的图形,点A的对称点是点A1,已知Ao =4cm,那么AA1=cm.11.能把平行四边形分成面积相等的两部分的直线有条,它们的共同特点是.12.如图,△ABc沿边Bc所在直线向右平移线段Bc的长后与△EcD重合,则△ABc≌;如果AB=3,Ac=2,Bc=4,则△DEc的周长=.13.某宾馆在重新装修后,准备在大厅主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯道宽2米,其侧面如图所示,则购买地毯至少需要元.14.如图,香港特别行政区区旗中央的紫荆花团由5个相同的花瓣组成.它是由其中的一瓣经过4次旋转得到的,每次旋转的角度是°.三、解答题(本题共计7小题,共计78分,)15.三角形ABc中,A(﹣1,2),B(﹣4,﹣2),c(1,0),把三角形平移后,三角形某一边上的点P(x,y)对应点为P′(x+4,y﹣2),求平移后所得三角形各顶点的坐标.16.如图,用6根一样长的小棒搭成如图所示的图形,试移动Ac、Bc这两根小棒,使6根小棒组成中心对称的图形.(画出图形)17.如图,在平面直角坐标系中,△ABc的三个顶点坐标分别为A(1,3),B(2,5),c(4,2)(每个方格的边长均为1个单位长度)(1)将△ABc平移,使点A移动到点A1,请画出△A1B1c1;(2)作出△ABc关于o点成中心对称的△A2B2c2,并直接写出A2,B2,c2的坐标;(3)△A1B1c1与△A2B2c2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.18.根据图所示,图形2、3、4、5与6分别可以看成是由图形1经过图形的什么变换而得到的?若是轴对称,请指出图形的对称轴;若是平移,请指出平移的方向与平移的距离;若是旋转,请指出旋转的中心和旋转的角度;若是几个变换的结合,请分别加以说明.19.如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.(1)画出将△oAB绕原点旋转180°后所得的△oA1B1,并写出点B1的坐标;(2)将△oAB平移得到△o2A2B2,点A的对应点是A2(2,﹣4),点B的对应点B2在坐标系中画出△o2A2B2;并写出B2的坐标;(3)△oA1B1与△o2A2B2成中心对称吗?若是,请直接写出对称中心点P的坐标.20.如图①,在平面直角坐标系中,点A、B的坐标分别为(﹣1,0)、(3,0),现同时将点A、B向上平移2个单位长度,再向右平移一个单位长度,得到A、B的对应点c、D,连接Ac、BD、cD.(1)写出点c、D的坐标并求出四边形ABDc的面积;(2)在x轴上是否存在一点F,使得△DFc的面积是△DFB面积的2倍?若存在,请求出点F的坐标;若不存在,请说明理由;(3)如图②,点P是直线BD上一个动点,连接Pc、Po,当点P在直线BD上运动时,请直接写出∠oPc与∠PcD、∠PoB的数量关系.21.阅读下面材料,并解决相应的问题:在数学课上,老师给出如下问题,已知线段AB,求作线段AB的垂直平分线.小明的作法如下:(1)分别以A,B为圆心,大于AB长为半径作弧,两弧交于点c;(2)再分别以A,B为圆心,大于AB长为半径作弧,两弧交于点D;(3)作直线cD,直线cD即为所求的垂直平分线.同学们对小明的作法提出质疑,小明给出了这个作法的证明如下:连接Ac,Bc,AD,BD.由作图可知:Ac=Bc,AD=BD.∴点c,点D在线段的垂直平分线上(依据1:).∴直线就是线段的垂直平分线(依据2:).(1)请你将小明证明的依据写在横线上;(2)将小明所作图形放在如图的正方形网格中,点A,B,c,D恰好均在格点上,依次连接A,c,B,D,A各点,得到如图所示的“箭头状”的基本图形,请在网格中添加若干个此基本图形,使其各顶点也均在格点上,且与原图形组成的新图形是中心对称图形.第3章图形的平移与旋转参考答案与试题解析一.选择题(共7小题)1.将线段AB平移1cm,得到线段A′B′,则点B到点B′的距离是()A.2cmB..1cmD.【分析】根据题意,画出图形,由平移的性质直接求得结果.【解答】解:在平移的过程中各点的运动状态是一样的,现在将线段平移1cm,则每一点都平移1cm,即AA′=1cm,∴点A到点A′的距离是1cm.故选:c.2.在直角坐标系中,点A(2,1)向左平移2个单位长度,再向上平移1个单位长度后的坐标为()A.(0,2)B.(4,2)c.(4,0)D.(0,0)【分析】根据坐标与图象变化﹣平移得到点A(2,1)向左平移2个单位长度得到点的横坐标减去2,纵坐标不变得到(0,1),再把(0,1)向上平移1个单位长度得到点的横坐标不变,纵坐标加上1得到(0,2).【解答】解:点A(2,1)向左平移2个单位长度得到(0,1),再把(0,1)向上平移1个单位长度得到(0,2).故选:A.3.如图,在正六边形中,由阴影三角形平移得到的三角形是()A.①②B.②④c.②③D.②⑤【分析】根据平移的性质,对图中三角形进行一一分析,选择正确答案.【解答】解:①改变了方向,不能平移得到;②图形的形状、大小和方向没有改变,由平移得到;③改变了方向,不能平移得到;④图形的形状、大小和方向没有改变,由平移得到;⑤改变了方向,不能平移得到.故选:B.4.在平面直角坐标系中,线段AB两端点的坐标分别为A(1,0),B(3,2).将线段AB平移后,A、B的对应点的坐标可以是()A.(1,﹣1),(﹣1,﹣3)B.(1,1),(3,3)c.(﹣1,3),(3,1)D.(3,2),(1,4)【分析】根据平移中,对应点的对应坐标的差相等分别判断即可得解.【解答】解:根据题意可得:将线段AB平移后,A,B的对应点的坐标与原A、B点的坐标差必须相等.A、A点横坐标差为0,纵坐标差为1,B点横坐标差为4,纵坐标差为5,A、B点对应点的坐标差不相等,故不合题意;B、A点横坐标差为0,纵坐标差为﹣1,B点横坐标差为0,纵坐标差为﹣1,A、B点对应点的坐标差相等,故合题意;c、A点横坐标差为2,纵坐标差为﹣3,B点的横坐标差为0,纵坐标差为1,A、B点对应点的坐标差不相等,故不合题意;D、,A点横坐标差为﹣2,纵坐标差为﹣2,B点横坐标差为2,纵坐标差为﹣2,A、B点对应点的坐标差不相等,故不合题意;故选:B.5.如图,点A、B、c、D、o都在方格纸的格点上,若△coD是由△AoB绕点o按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°c.90°D.135°【分析】△coD是由△AoB绕点o按逆时针方向旋转而得,由图可知,∠Aoc为旋转角,可利用△Aoc的三边关系解答.【解答】解:如图,设小方格的边长为1,得,oc==,Ao==,Ac=4,∵oc2+Ao2=+=16,Ac2=42=16,∴△Aoc 是直角三角形,∴∠Aoc=90°.故选:c.6.在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是()A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格c.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格【分析】根据题意,结合图形,由平移的概念求解.【解答】解:根据平移的概念,图形先向下移动2格,再向左移动1格或先向左移动1格,再向下移动2格.结合选项,只有c符合.故选:c.7.如图,将Rt△ABc绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在Bc边上.若Ac=,∠B=60°,则cD的长为()A...D.1【分析】解直角三角形求出AB,再求出cB,然后根据旋转的性质可得AB=AD,然后判断出△ABD是等边三角形,根据等边三角形的三条边都相等可得BD=AB,然后根据cD=Bc﹣BD计算即可得解.【解答】解:∵∠B=60°,∴∠c=90°﹣60°=30°,∵Ac =,∴AB=Ac•tan30°=×=1,∴Bc=2AB=2,由旋转的性质得,AB=AD,∴△ABD是等边三角形,∴BD=AB=1,∴cD=Bc﹣BD=2﹣1=1.故选:D.二.填空题(共7小题)8.从3:20开始,经30分钟,分针旋转了180°,时针旋转了15°.【分析】根据钟表的分针旋转一周是60分钟,那么要经过30分钟,分针旋转360°×(30÷60);时针12小时转一周,那么要经过30分钟,时针旋转360°×(30÷60)÷12.【解答】解:经30分钟,分针旋转了:360°×(30÷60)=180°;时针旋转了:360°×(30÷60)÷12=15°.故答案为:180°,15°.9.如图,把△ABc绕点A旋转至△ADE的位置,使点D落在Bc 边上,若∠c+∠ADE=110°,则∠BAc=70°.【分析】根据旋转的性质知△ADE≌△ABc,则全等三角形的对应角∠ADE=∠ABc.由△ABc的内角和定理求得∠BAc的度数.【解答】解:∵根据旋转的性质知,△ADE≌△ABc.∴∠ADE=∠ABc,∴∠c+∠ADE=∠c+∠ABc=110°,∴∠BAc=180°﹣(∠c+∠ABc)=180°﹣110°=70°,即∠BAc=70°.故答案是:70°10.如图,△A1B1c1是△ABc关于点o成中心对称的图形,点A的对称点是点A1,已知Ao=4cm,那么AA1=8 cm.【分析】根据中心对称图形的性质即可得到结论.【解答】解:∵△A1B1c1是△ABc关于点o成中心对称的图形,点A的对称点是点A1,Ao=4cm,∴oA1=oA=4cm,∴AA1=oA+oA1=8cm,故答案为:8.11.能把平行四边形分成面积相等的两部分的直线有无数条,它们的共同特点是均经过两条对角线的交点.【分析】经过对称中心的直线将中心对称图形分成面积相等的两部分.【解答】解:因为平行四边形是中心对称图形,所以经过平行四边形的对角线的交点的直线把平行四边形的面积分成两个相等的部分,这样的直线有无数条.故答案为无数,均经过两条对角线的交点.12.如图,△ABc 沿边Bc所在直线向右平移线段Bc的长后与△EcD重合,则△ABc≌△EcD ;如果AB=3,Ac=2,Bc=4,则△DEc的周长=9 .【分析】根据平移变换只改变图形的位置不改变图形的形状与大小解答,再根据全等三角形的周长相等解答.【解答】解:∵△ABc平移后与△EcD 重合,∴△ABc≌△EcD,∵AB=3,Ac=2,Bc=4,∴△ABc的周长为3+2+4=9,∴△DEc的周长=9.故答案为:△EcD,9.13.某宾馆在重新装修后,准备在大厅主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯道宽2米,其侧面如图所示,则购买地毯至少需要480 元.【分析】根据题意,结合图形,先把楼梯的横竖向上向右平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【解答】解:如图,利用平移线段,把楼梯的横竖向上向右平移,构成一个矩形,长宽分别为米,米,即可得地毯的长度为+=8米,地毯的面积为8×2=16平方米,故买地毯至少需要16×30=480元.故答案为:480.14.如图,香港特别行政区区旗中央的紫荆花团由5个相同的花瓣组成.它是由其中的一瓣经过4次旋转得到的,每次旋转的角度是72 °.【分析】根据旋转的性质和周角是360°求解即可.【解答】解:观察图形可知,中心角是由五个相同的角组成,∴旋转角度是360°÷5=72°,∴这四次旋转中,旋转角度最小是72°.故答案为:72°.三.解答题15.三角形ABc中,A(﹣1,2),B(﹣4,﹣2),c(1,0),把三角形平移后,三角形某一边上的点P (x,y)对应点为P′(x+4,y﹣2),求平移后所得三角形各顶点的坐标.【分析】先根据点P与P′的坐标确定出平移规律为向右平移4个单位,向下平移2个单位,再根据此规律解答即可.【解答】解:∵点P(x,y)的对应点为P′(x+4,y﹣2),∴平移变换规律为向右平移4个单位,向下平移2个单位,∵A(﹣1,2),B(﹣4,﹣2),c(1,0),∴平移后A的对应点坐标为(3,0),B的对应点坐标为(0,﹣4),c的对应点坐标为(5,﹣2).16.如图,用6根一样长的小棒搭成如图所示的图形,试移动Ac、Bc这两根小棒,使6根小棒组成中心对称的图形.(画出图形)【分析】根据中心对称图形的概念求解,本题△ABc沿AB翻折可使六根小棒成为中心对称图形.【解答】解:如图所示:.17.如图,在平面直角坐标系中,△ABc的三个顶点坐标分别为A(1,3),B(2,5),c(4,2)(每个方格的边长均为1个单位长度)(1)将△ABc平移,使点A移动到点A1,请画出△A1B1c1;(2)作出△ABc关于o点成中心对称的△A2B2c2,并直接写出A2,B2,c2的坐标;(3)△A1B1c1与△A2B2c2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.【分析】(1)利用点A和A1坐标的关系确定平移的方向与距离,关于利用此平移规律写出B1、c1的坐标,然后描点即可;(2)利用关于点对称的点的坐标特征写出A2,B2,c2的坐标,然后描点即可;(3)连接A1A2,B1B2,c1c2,它们都经过点P,从而可判断△A1B1c1与△A2B2c2关于点P中心对称,再写出P点坐标即可.【解答】解:(1)如图,△A1B1c1为所作;(2)如图,△A2B2c2为所作;点A2,B2,c2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)△A1B1c1与△A2B2c2关于点P中心对称,如图,对称中心的坐标的坐标为(﹣2,﹣1).18.根据图所示,图形2、3、4、5与6分别可以看成是由图形1经过图形的什么变换而得到的?若是轴对称,请指出图形的对称轴;若是平移,请指出平移的方向与平移的距离;若是旋转,请指出旋转的中心和旋转的角度;若是几个变换的结合,请分别加以说明.【分析】根据平移、旋转、轴对称的定义作答.【解答】解:图1绕图1和图2的对应点连线的中点旋转180°得到图2;图1沿直线l1平移AE长度得到图3;图1与图4关于直线l2成轴对称,将图1沿直线l2翻折得到图4,对称轴是直线l2;图1绕点o旋转180°后,再沿直线l2翻折得到图5;图1沿直线l1平移AE长度,再沿直线l2翻折得到图6.19.如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.(1)画出将△oAB绕原点旋转180°后所得的△oA1B1,并写出点B1的坐标;(2)将△oAB平移得到△o2A2B2,点A的对应点是A2(2,﹣4),点B的对应点B2在坐标系中画出△o2A2B2;并写出B2的坐标;(3)△oA1B1与△o2A2B2成中心对称吗?若是,请直接写出对称中心点P的坐标.【分析】(1)将点A、B、c绕原点旋转180°后得到对应点,顺次连接可得;(2)将点A、B、c向左平移2个单位、向下平移4个单位即可得;(3)根据中心对称的定义可得.【解答】解:(1)△oA1B1如图所示;B1(﹣4,﹣2);(2)△oA2B2如图所示;B2(2,﹣2);(3)△oA1B1与△o2A2B2成中心对称,对称中心P的坐标是(﹣1,﹣2).20.如图①,在平面直角坐标系中,点A、B的坐标分别为(﹣1,0)、(3,0),现同时将点A、B向上平移2个单位长度,再向右平移一个单位长度,得到A、B的对应点c、D,连接Ac、BD、cD.(1)写出点c、D的坐标并求出四边形ABDc的面积;(2)在x轴上是否存在一点F,使得△DFc的面积是△DFB面积的2倍?若存在,请求出点F的坐标;若不存在,请说明理由;(3)如图②,点P是直线BD上一个动点,连接Pc、Po,当点P在直线BD上运动时,请直接写出∠oPc与∠PcD、∠PoB的数量关系.【分析】(1)由平移的性质得到点c(0,2),点D(4,2),进而求解;(2)△DFc的面积是△DFB面积的2倍,则×cD×oc=2×BF×oc,即可求解;(3)如图,作PE∥cD,则cD∥PE∥AB,故∠DcP=∠EPc,∠BoP=∠EPo,进而求解.【解答】解:(1)∵点A,B的坐标分别为(﹣1,0),(3,0),将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A,B的对应点c,D,∴点c(0,2),点D(4,2),AB=4,AB∥cD,AB=cD,∴oc=2,四边形ABDc是平行四边形,∴S四边形ABDc=4×2=8;(2)存在,理由:设F坐标为(m,0),∵△DFc的面积是△DFB面积的2倍,∴×cD×oc=2×BF×oc,即4=2。

北师大版八年级数学下册第3章《图形的平移与旋转》单元练习题含答案解析 (18)

北师大版八年级数学下册第3章《图形的平移与旋转》单元练习题含答案解析 (18)

一、选择题1.世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法中正确的是( )A.x是自变量,0.6元/千瓦时是因变量B.y是自变量,x是因变量C.0.6元/千瓦时是自变量,y是因变量D.x是自变量,y是因变量2.一本笔记本4.5元,买x本共付y元,则4.5和y分别是( )A.常量,常量B.变量,变量C.变量,常量D.常量,变量3.一列火车从兰州出发,加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达酒泉车站减速停下,下列图形中,能刻画火车在这段时间内速度随时间变化情况的是( )A.B.C.D.4.小明在6月份的某一天倒了一杯开水,水太烫,他将这杯开水晾在桌上,则这杯水的水温(∘C)与时间(t)之间的关系图象大致是( )A.B.C.D.5.一辆货车从A地开往B地,一辆小汽车从B地开往A地,同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),s与t之间的函数关系如图所示.下列说法中:① A,B两地相距60千米;②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶60千米;⑤出发2小时,小货车离终点还有80千米.其中正确的有( )A.5个B.4个C.3个D.2个6.如图,AB是半圆O的直径,点P从点O出发,沿线段OA−弧AB−线段BO的路径运动一周.设OP为s,运动时间为t,则下列图形能大致地刻画s与t之间关系的是( )A.B.C.D.7.龟兔赛跑,它们从同一地点同时出发,不久兔子就把乌龟远远地甩在后面,于是兔子得意洋洋地躺在一棵大树下睡起觉来,乌龟一直坚持不懈、持之以恒地向终点跑着,兔子一觉醒来,看见乌龟快接近终点了,这才慌忙追赶上去,但最终输给了乌龟.下列图象中能大致反映龟兔行走的路程随时间变化情况的是( )A.B.C.D.8.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y (米)与甲出发的时间x(分钟)之间的关系如图所示,下列说法错误的是( )A.甲的速度是70米/分B.乙的速度是60米/分C.甲距离景点2100米D.乙距离景点420米9.如图所示的图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是( )A.第3min时汽车的速度是40km/hB.第12min时汽车的速度是0km/hC.从第3min到第6min,汽车行驶了120kmD.从第9min到第12min,汽车的速度从60km/h减少到0km/h10.如图1,⊙O过正方形ABCD的顶点A,D,且与边BC相切于点E,分别交AB,DC于点M,N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为( )A.从D点出发,沿弧DA→弧AM→线段MB→线段BCB.从B点出发,沿线段BC→线段CN→弧ND→弧DAC.从C点出发,沿线段CN→弧ND→弧DA→线段ABD.从A点出发,沿弧AM→线段MB→线段BC→线段CN二、填空题11.已知函数f(x)=x,那么f(−2)=.x+112.某品牌汽车每千米的耗油量是0.1L,用s(km)表示行驶的路程,p(L)表示耗油量.在此过程中,变量是,常量是;p关于s的函数表达式是,当s=200km时,函数p的值是L.13.自2020年1月1日延庆区开展创城以来,积极推广垃圾分类,在垃圾分类指导员的帮助下,居民的投放正确率不断提升,分类习惯正在养成.尤其是在5月1日新版《北京市生活垃圾管理条例》实施以来,延庆区城管委为全区从源头上规范垃圾投放,18个街乡镇新配备户用分类垃圾桶20万个,助力推进垃圾分类.下面两张图表是某小区每个月的厨余垃圾量和其他垃圾量.(1)3月份厨余垃圾量比其他垃圾量多吨;(2)月份两类垃圾量(单位:吨)的差距最大.14.已知甲乙两地之间的距离为810米,小明和小天分别从甲乙两地出发,匀速相向而行,已知小明先出发1分钟后,小天再出发,两人在甲乙之间的丙地相遇,此时,小明发现有小学同学也在丙地,于是聊了一会儿,随后以原来速度的4倍返回甲地,小天相遇后继续以原速向甲地前行,到3达甲地后立即原速返回,直至再次与小明相遇.已知在整个过程中,小明、小天两人之间的距离y(米)与小明出发的时间x(分钟)之间的关系如图所示,则在第二次相遇时两人距离乙地米.15.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙继续骑分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚分钟到达B地.16.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有个.17.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的序号是.三、解答题18.人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东西会逐渐遗忘,为提升记忆的效果,需要有计划的按时复习巩固,图中的实线部分是记忆保持量(%)与时间(天)之间的关系图.请根据图回答下列问题:(1) 图中的自变量是,因变量是;(2) 如果不复习,3天后记忆保持量约为;(3) 图中点A表示的意义是;(4) 图中射线BC表示的意义是;(5) 经过第1次复习与不进行复习,3天后记忆保持量相差约为;(6) 10天后,经过第2次复习与从来都没有复习的记忆保持量相差约为.19.从甲城向乙城打长途电话,通话时间不超过3分钟收费2.4元,超过3分钟后每分钟加收1元,写出通话费用y(元)关于通话时间x(分)的函数关系式,如果通话10.5分钟,需要多少话费?(本题中x取整数,不足1分钟按1分钟计算)20.回答下列问题:(1) 某礼堂共有25排座位,第一排有20个座位,后面每一排都比前一排多1个座位,写出每排的座位数m与这排的排数n的函数关系式并写出自变量n的取值范围.本题中,在其他条件不变的情况下请探究下列问题:(2) 当后面每一排都比前一排多2个座位时,则每排的座位数m与这排的排数n的函数关系式是,其中1≤n≤25,且n是正整数;(3) 当后面每一排都比前一排多3个座位、4个座位时,则每排的座位数m与这排的排数n的函数关系式分别是,,其中1≤n≤25,且n是正整数;(4) 某礼堂共有p排座位,第一排有a个座位,后面每一排都比前一排多b个座位,试写出每排的座位数m与这排的排数n的函数关系式,并写出自变量n的取值范围.21.某中学九年级甲、乙两班商定举行一次远足活动,A,B两地相距10千米,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地.两班同时出发,相向而行.设步行时间为x小时,甲、乙两班离A地的距离分别为y1,y2千米,y1,y2与x的函数关系图象如图所示.根据图象解答下列问题.(1) 直接写出,y1,y2与x的函数关系式;(2) 求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A地多少千米?(3) 甲、乙两班首次相距4千米时所用时间是多少小时?22.在某次大型的活动中,用无人机进行航拍,在操控无人机时根据现场状况调节高度,已知无人机在上升和下降过程中速度相同.设无人机的飞行高度ℎ(m)与操控无人机的时间t(min)之间的关系如图中的实线所示,根据图象回答下列问题:(1) 图中的自变量是,因变量是;(2) 无人机在75m高的上空停留的时间是min;(3) 在上升或下降过程中,无人机的速度为m/min;(4) 图中a表示的数是;b表示的数是;(5) 求第14min时无人机的飞行高度是多少米?23.A,B两地相距60km,甲、乙二人分别骑自行车和摩托车沿相同路线匀速行驶,由A地到达B地,他们行进中的路程s(km)与甲出发后的时间t(h)之间的函数图象如图所示.(1) 乙比甲晚出发几小时?比甲早到几小时?(2) 分别写出甲走的路程s1(km)、乙走的路程s2(km)与时间t(h)之间的函数解析式.(3) 乙在甲出发后几小时追上了甲,追上甲的地点离A地多远?24.如图1,四边形ABCD为矩形,曲线L经过点D.点Q是四边形ABCD内一定点,点P是线段AB上一动点,作PM⊥AB交曲线L于点M,连接QM.小东同学发现:在点P由A运动到B的过程中,对于x1=AP的每一个确定的值,θ=∠QMP都有唯一确定的值与其对应,x1与θ的对应关系如下表所示:x1=AP012345θ=∠QMPα85∘130∘180∘145∘130∘小芸同学在读书时,发现了另外一个函数:对于自变量x2在−2≤x2≤2范围内的每一个值,都有唯一确定的角度θ与之对应,x2与θ的对应关系如图2所示:根据以上材料,回答问题:(1) 表格中α的值为.(2) 如果令表格中x1所对应的θ的值与图2中x2所对应的θ的值相等,可以在两个变量x1与x2之间建立函数关系.①在这个函数关系中,自变量是,因变量是;(分别填入x1和x2)②请在网格中建立平面直角坐标系,并画出这个函数的图象;③根据画出的函数图象,当AP=3.5时,x2的值约为.25.已知甲,乙两名自行车骑手均从P地出发,骑车前往距P地60千米的Q地,当乙骑手出发了 1.5小时,此时甲,乙两名骑手相距6千米,因甲骑手接到紧急任务,故甲到达Q地后立即又原路返回P地,甲,乙两名骑手距P地的路程y(千米)与时间x(时)的函数图象如图所示.(其中折线O−A−B−C−D(实线)表示甲,折线O−E−F−G(虚线)表示乙)(1) 甲骑手在路上停留小时,甲从Q地返回P地时的骑车速度为千米/时;(2) 求乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式及自变量x的取值范围;(3) 在乙骑手出发后,且在甲,乙两人相遇前,求时间x(时)的值为多少时,甲,乙两骑手相距8千米.答案一、选择题1. 【答案】D【知识点】常量、变量2. 【答案】D【知识点】常量、变量3. 【答案】B【知识点】用函数图象表示实际问题中的函数关系4. 【答案】C【解析】∵水很烫,则其温度超过外界温度,∴水的温度会随时间而降低,直到水温与外界温度相同.【知识点】图像法5. 【答案】C【知识点】用函数图象表示实际问题中的函数关系6. 【答案】C【知识点】图像法7. 【答案】C【知识点】用函数图象表示实际问题中的函数关系8. 【答案】D【解析】开始甲,乙两人相距660米,由图可知,前24分钟甲,乙两人相相距的路程在逐渐缩小.24分钟时,乙到达景点,此时甲、乙两人相距420米之后甲又走了6分钟与乙相遇,−70(米/分)甲总共走了30分钟,∴甲的速度=4206∴甲距景点30×70=2100米,由前24分钟甲、乙两人相距660来缩小到420米,得(甲的速度−乙的速度)×24=660−420,得乙的速度=60米/分,乙总共走了24分钟,∴乙距景点60×24=1440米.【知识点】用函数图象表示实际问题中的函数关系9. 【答案】C【知识点】用函数图象表示实际问题中的函数关系10. 【答案】D【知识点】图像法二、填空题11. 【答案】2=2.【解析】当x=−2时,f(−2)=−2−2+1【知识点】函数的概念12. 【答案】s,p;0.1L/km;p=0.1s;20【知识点】解析式法13. 【答案】1;5【解析】(1)5−4=1(吨);(2)2月的差距约是:6.2−5.6=0.6(吨);3月分的差距是:5−4=1(吨);4月份的差距约是:4.3−2.3=2(吨);5月份的差距约是:3.8−1.3=2.5(吨);6月份的差距是:3−1=2(吨);7月份的差距约是:2.2−1.2=1(吨).【知识点】用函数图象表示实际问题中的函数关系14. 【答案】738【解析】设小明、小天速度分别为V1,V2米/分钟.A到B阶段:V1×1=810−750,∴V1=60米/分钟.B到C阶段:(V1+V2)(3.7−1)=750−345,∴V2=90米/分钟.第一次相遇在丙地,即B到D阶段,(V1+V2)(t D−1)=750,∴t D=6,∴甲地到丙地距离为V1t D=60×6=360米,=4分钟,小天从丙地到甲地用时:360V2D到E阶段小明停留在丙地,F点状态是小天到达甲地,小明速度为43V1=80米/分钟,43V1[4−(7.2−6)]=80×2.8=224米,小天到达甲地,小明、小天相距360−224=136米,F到G阶段,小天从甲地返回与小明相遇,136V2+43V1=13690+80=0.8分钟,第二次相遇地点距离甲地:0.8V2=72米,810−72=738米,故第二次相遇地两人距离乙地738米.【知识点】用函数图象表示实际问题中的函数关系15. 【答案】12【解析】由图及题意易乙的速度为300米/分,甲原速度为250米/分.当x=25后,甲提速为400米/分;当x=86时,甲到达B地,此时乙距B地为250(25−5)+400(86−25)−300×86=3600.【知识点】用函数图象表示实际问题中的函数关系16. 【答案】1【解析】在两人出发后0.5小时之前,甲的速度小于乙的速度;0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,乙的路程为15千米,甲的路程为12千米,甲的行程比乙少3千米,故③错误;乙到达终点所用的时间较少,因此乙比甲先到达终点,故④错误.【知识点】用函数图象表示实际问题中的函数关系17. 【答案】①②③【知识点】用函数图象表示实际问题中的函数关系三、解答题18. 【答案】(1) 时间;记忆的保持量(2) 40%(3) 经过第1次复习,第10天时的记忆保持量约为55%(4) 经过第5次复习,记忆保持量为100%(或经过第5次复习,能保持长久记忆;或经过第5次复习,不会再遗忘;⋯⋯)(5) 28%(所有百分数均为近似数,只要相差不大,均可视为正确)(6) 46%(所有百分数均为近似数,只要相差不大,均可视为正确)【知识点】用函数图象表示实际问题中的函数关系、函数的概念19. 【答案】当0<x≤3时,y=2.4;当x>3时,y=2.4+(x−3)=x−0.6,把x=11代入y=x−0.6得:y=11−0.6=10.4.答:如果通话10.5分钟,需要10.4元话费.【知识点】解析式法、分段函数20. 【答案】(1) m=19+n,1≤n≤25,且n是正整数.(2) m=2n+18(3) m=3n+17;m=4n+16(4) m=bn+a−b(1≤n≤p,且n是正整数).【知识点】解析式法21. 【答案】(1) y1=4x,y2=−5x+10.(2) 由图象可知甲班速度为4 km/h,乙班速度为5 km/h,设甲、乙两班学生出发后,x小时相遇,则4x+5x=10,解得x=109.当x=109时,y2=−5×109+10=409,∴相遇时乙班离A地为409千米.(3) 甲、乙两班首次相距4千米,即两班走的路程之和为6 km,故4x+5x=6,解得x=23.∴甲、乙两班首次相距4千米时所用时间是23小时.【解析】(1) 根据图象可以得到甲班 2.5小时走了10千米,则每小时走4千米,则函数关系式是:y1=4x;乙班从B地出发匀速步行到A地,2小时走了10千米,则每小时走5千米,则函数关系式是:y2=−5x+10.【知识点】用函数图象表示实际问题中的函数关系22. 【答案】(1) 时间(或t);飞行高度(或ℎ)(2) 5(3) 25(4) 2;15(5) 75−2×25=25(m).答:第14min时无人机的飞行高度是25m.【解析】(2) 无人机在75m高的上空停留的时间是12−7=5(min).(3) 在上升或下降过程中,无人机的速度75−507−6=25(m/min).(4) 图中a表示的数是5025=2min;b表示的数是12+7525=15(min).【知识点】用函数图象表示实际问题中的函数关系23. 【答案】(1) 乙比甲晚出发1小时;比甲早到2小时.(2) s1=15t(0≤t≤4);s2=60t−60(1≤t≤2).(3) 当s1=s2,乙追上了甲,即15t=60t−60,解得t=43,当t=43时,s1=15×43=20,所以乙在甲出发后43小时追上了甲,追上甲的地点离A地20千米.【知识点】用函数图象表示实际问题中的函数关系、行程问题24. 【答案】(1) 50∘(2) ①x1;x2;②③−1.87.【知识点】函数的概念、图像法、列表法25. 【答案】(1) 1;30(2) 乙出发 1.5 小时,甲走了 20×(2.5−1)=30(千米),甲乙相距 6 千米, ∴ 乙走了:30−6=24(千米), 设 EF 的解析式为 y =k 1+b 1,把 (1,0),(2.5,24) 代入得:{k 1+b 1=0,2.5k 1+b 1=24,解得 {k 1=16,b 1=−16,∴y =16x −16,令 y =60,则 16x −16=60,解得 x =4.75, ∴x 的取值范围为:1≤x ≤4.75.(3) 设 BC 的解析式为 y =kx +b , 由 B (2,20),C (4,60) 得 {2k +b =20,4k +b =60,解得 {k =20,b =−20,∴BC 的解析式为 y =20x −20,当 0≤x ≤2 时,20−(16x −16)=8,解得 x =74; 当 2<x ≤4 时,(20x −20)+(16x −16)=8,解得 x =3;当4≤x≤630时,(x−4)+(16x−16)=60−8,解得x=9423.综上所述,当x=74或3或9423时,甲、乙两骑手相距8千米.【解析】(1) 由图象可知,甲骑手在路上停留1小时,甲从Q地返回P地时的骑车速度为:60÷(6−4)=30(千米/时).【知识点】行程问题、用函数图象表示实际问题中的函数关系。

北师大版八年级下册数学第三章 图形的平移与旋转含答案(学生专用)

北师大版八年级下册数学第三章 图形的平移与旋转含答案(学生专用)

北师大版八年级下册数学第三章图形的平移与旋转含答案一、单选题(共15题,共计45分)1、如图下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2、线段AB经过平移得到线段CD,若CD=5cm,则AB等于()A.3cmB.4cmC.5cmD.6cm3、如图,将周长为5的△ABC沿BC方向平移了1个单位长度得到△DEF,连接AD,则四边形ABFD的周长为()A.5B.6C.7D.84、下列车标,可看作图案的某一部分经过平移所形成的是 ( )A. B. C. D.5、下列是四个汽车标志图案,其中可看作由“基本图案”经过平移得到的是()A. B. C. D.6、下列说法错误的是()A.矩形的对角线相等B.正方形的对称轴有四条C.平行四边形既是中心对称图形又是轴对称图形D.菱形的对角线互相垂直且平分7、经过平移或旋转不可能将甲图案变成乙图案的是()A. B. C. D.8、下列电视台的台标,是中心对称图形的是()A. B. C. D.9、将下列图案通过平移后可以得到的图案是()A. B. C. D.10、观察下列图形,是中心对称图形的是()A. B. C. D.11、下列图形既是轴对称图形,又是中心对称图形的是()A. B. C. D.12、下列电视台的台标,是中心对称图形的是()A. B. C. D.13、下列图形中,是中心对称图形的是( )A. B. C. D.14、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.15、如图,在△ABC中,∠ABC=90°,将△ABC沿AB方向平移AD的长度得到△DEF,已EF=8,BE=3,CG=3,则图中阴影部分的面积是()A.12.5B.19.5C.32D.45.5二、填空题(共10题,共计30分)16、如图,三角形DEF是三角形ABC沿射线BC平移的得到的,BE=2,DE与AC 交于点G,且满足DG=2GE.若三角形CEG的面积为1,CE=1,则点G到AD的距离为________.17、如图,与都是直角三角形,,点在上,.如果经顺时针旋转后能与重合,那么旋转中心是点________,旋转了________度.18、如图,往竖直放置的在A处山短软管连接的粗细均匀细管组成的“U形装置中注入一定量的水,水面高度为9cm,现将右边细管绕A处顺时针方向旋转60°到AB位置,则AB中水柱的长度为________cm.19、如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转到△A′B′C,使得点A′恰好落在AB上,则旋转角度为________.20、如图,将△ABC沿射线AC平移得到△DEF,若AF=17,DC=7,则AD=________21、如图,已知∠AOB=45°,将射线OA绕点O逆时针旋转α°(0 α 360),得到射线OA′.若OA′⊥OB,则α的值是________.22、钟表的时针匀速旋转一周需12小时,则时针经过3小时后,时针所转过的角度为________,如果时针从12时开始,绕中心旋转了120°,则它所指向的具体数字是________.23、“梅花朵朵迎春来”,下面四个图形是由小梅花摆成的一组有规律的图案,按图中规律,第n个图形中小梅花的个数是________.24、在图中,是由基本图案多边形ABCDE旋转而成的,它的旋转角为________.25、如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转________次,每次旋转________度形成的.三、解答题(共5题,共计25分)26、如图所示,△ABC平移后得到了△DEF,D在AB上,若∠A=26°,∠E=74°,求∠1,∠2,∠F,∠C的度数.27、如图,已知A(-2,-3),B(-3,-1),C(-1,-2)是平面直角坐标系中三点.(1)请你画出ABC关于原点O对称的A1B1C1;(2)请写出点A关于y轴对称的点A2的坐标.若将点A2向上平移h个单位,使其落在A1B1C1内部,指出h的取值范围.28、找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.29、在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1, AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1.②请直接写出AC1与BD1的位置关系.(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=kBD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1=kBD1.请直接写出k的值和AC12+(kDD1)2的值.30、在下面的正方形网格中,每个小正方形的边长为1.(1)直接写出图①共有多少条对称轴;(2)图②中的阴影图案可以看成是由某个基本图形绕着一个点依次旋转一定的角度后得到的.请在图中标出这个点;(3)利用图③的方格,设计一个新图案,要求与图①②的图案都不相同,但面积相同,且能沿某条直线分割后两旁的图形完全相同.(在图④中把你画的图案涂成阴影并画出分割线)参考答案一、单选题(共15题,共计45分)1、D2、C3、C4、B5、B6、C7、C8、D9、A10、D11、D12、D13、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

北师大版八年级数学下册 第三章 :图形的平移与旋转 达标检测卷(含详细解答)

北师大版八年级数学下册 第三章 :图形的平移与旋转 达标检测卷(含详细解答)

北师大版八年级数学下册第三章达标检测卷(考试时间:120分钟满分:120分)班级:________ 姓名:________ 分数:________第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.(崆峒区期末)把如左图所示的海豚吉祥物进行平移,能得到的图形是()A B C D2.观察下列四个图形,中心对称图形是()A B C D3.把△ABC沿BC方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′B′C′的面积大小变化情况是()A.增大 B.减小 C.不变 D.不确定4.图中的两个三角形是经过什么变换得到的()A.旋转 B.旋转与平移C.旋转与轴对称 D.平移与轴对称第4题图第5题图5.如图,四边形OABC绕点O逆时针旋转得到四边形ODEF,∠AOC=50°,∠COD =60°,那么四边形OABC旋转的角度是()A.10° B.40° C.50° D.110°6.(河南期中)在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都减去3,则所得图形与原图形的关系:将原图形()A.向上平移3个单位长度B.向下平移3个单位长度C.向左平移3个单位长度D.向右平移3个单位长度7.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30° B.40° C.50° D.60°第7题图第8题图8.如图,在△ABC中,∠ACB=90°,∠A=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,使点D刚好落在斜边AB上,则n的大小为()A.30 B.45 C.60 D.759.如图,EF∥BC,ED∥AC,FD∥AB,D,E,F为三边中点,图中可以通过平移互相得到的三角形有()A.2 对 B .3 对 C .4 对 D.5对10.在平面直角坐标系中,点A(-1,m)在直线y =2x +3上,连接OA ,将线段OA 绕点O 顺时针旋转90°,点A 的对应点B 恰好落在直线y =-x +b 上,则b的值为( )A .-2B .1C .32D .2 第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分)11.(邵阳期末)如图,将Rt △ABC 绕直角顶点A 按顺时针方向旋转180°得△AB 1C 1,则旋转后BC 的对应线段为 .第11题图12.平面直角坐标系中,点P 的坐标是(2,-1),则点P 关于原点对称的点的坐标是 .13.在平面直角坐标系中,点O 为坐标原点,现有一点A(2,5),将点A 向下平移5个单位长度,可以得到对应点的坐标A ′ .14.五角星图形绕它的中心旋转,要与它本身完全重合,旋转角至少为 .15.如图是由两个正三角形和两个等腰三角形组成的图案,图中两个阴影部分的三角形可以通过:①平移;②旋转;③轴对称中的哪些方式得到.在横线上写上答案的序号: .第15题图16.如图,将△ABC沿BC方向平移2 cm得到△DEF.如果四边形ABFD的周长是20 cm,则△ABC周长是 cm.第16题图第17题图17.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是 .18.★如图,已知直线MN∥PQ,把∠C=30°的直角三角板ABC的直角顶点A放在直线MN上,将直角三角板ABC在平面内绕点A任意转动,若转动的过程中,直线BC与直线PQ的夹角为60°,则∠NAC的度数为.三、解答题(共66分)19.(6分)将已知△ABC的顶点A,B,C在格点上,按下列要求在网格中画图.(1)将△ABC绕点C逆时针旋转90°得到△A1B1C;(2)画△ABC关于点O的中心对称图形△A2B2C2.20.(8分)(南城县期中)如图,在△ABC中,∠BAC=15°,将△ABC绕点A按逆时针方向旋转90°,到△ADE的位置,然后将△ADE以AD为轴翻折到△ADF的位置,连接CF,判断△ACF的形状,并说明理由.21.(8分)如图,等边△ABC与等边△A1B1C1关于某点成中心对称,已知A,A1,B 三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点C,C1的坐标.22.(8分)在平面直角坐标系中,点M的坐标为(a,-2a).(1)当a=-1时,点M在坐标系的第象限;(直接填写答案)(2)将点M向左平移2个单位长度,再向上平移1个单位长度后得到点N,当点N 在第三象限时,求a的取值范围.23.(10分)如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3b,4a-b)与点Q(2a-9,2b-9)也是通过上述变换得到的对应点,求a,b的值.24.(12分)(鼓楼区期末)如图,在Rt△ABC中,∠C=90°,∠CAB=35°,BC=7.线段AD由线段AC绕点A按逆时针方向旋转125°得到,△EFG由△ABC沿CB 方向平移得到,且直线EF过点 D.(1)求∠DAE的大小;(2)求DE的长.25.(14分)如图,O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得到△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?参考答案第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.(崆峒区期末)把如左图所示的海豚吉祥物进行平移,能得到的图形是(C)A B C D2.观察下列四个图形,中心对称图形是(C)A B C D3.把△ABC沿BC方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′B′C′的面积大小变化情况是(C)A.增大 B.减小 C.不变 D.不确定4.图中的两个三角形是经过什么变换得到的(D)A.旋转 B.旋转与平移C.旋转与轴对称 D.平移与轴对称第4题图第5题图5.如图,四边形OABC绕点O逆时针旋转得到四边形ODEF,∠AOC=50°,∠COD =60°,那么四边形OABC旋转的角度是(D)A.10° B.40° C.50° D.110°6.(河南期中)在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都减去3,则所得图形与原图形的关系:将原图形(C)A.向上平移3个单位长度B.向下平移3个单位长度C.向左平移3个单位长度D.向右平移3个单位长度7.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ的延长线相交于点 D.如果∠D=40°,则∠BAC的度数为(B)A.30° B.40° C.50° D.60°第7题图第8题图8.如图,在△ABC中,∠ACB=90°,∠A=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,使点D刚好落在斜边AB上,则n的大小为(C)A.30 B.45 C.60 D.759.如图,EF∥BC,ED∥AC,FD∥AB,D,E,F为三边中点,图中可以通过平移互相得到的三角形有 (B )A.2 对 B .3 对 C .4 对 D.5对10.在平面直角坐标系中,点A(-1,m)在直线y =2x +3上,连接OA ,将线段OA 绕点O 顺时针旋转90°,点A 的对应点B 恰好落在直线y =-x +b 上,则b 的值为 (D ) A .-2 B .1 C .32D .2第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分)11.(邵阳期末)如图,将Rt △ABC 绕直角顶点A 按顺时针方向旋转180°得△AB 1C 1,则旋转后BC 的对应线段为B 1C 1.第11题图12.平面直角坐标系中,点P 的坐标是(2,-1),则点P 关于原点对称的点的坐标是(-2,1).13.在平面直角坐标系中,点O 为坐标原点,现有一点A(2,5),将点A 向下平移5个单位长度,可以得到对应点的坐标A ′(2,0).14.五角星图形绕它的中心旋转,要与它本身完全重合,旋转角至少为72度. 15.如图是由两个正三角形和两个等腰三角形组成的图案,图中两个阴影部分的三角形可以通过:①平移;②旋转;③轴对称中的哪些方式得到.在横线上写上答案的序号:②③.第15题图16.如图,将△ABC沿BC方向平移2 cm得到△DEF.如果四边形ABFD的周长是20 cm,则△ABC周长是16cm.第16题图第17题图17.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是2 2 .18.★如图,已知直线MN∥PQ,把∠C=30°的直角三角板ABC的直角顶点A放在直线MN上,将直角三角板ABC在平面内绕点A任意转动,若转动的过程中,直线BC与直线PQ的夹角为60°,则∠NAC的度数为30°或90°或150°.选择、填空题答题卡一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 得分答案 C C C D D C B C B D二、填空题(每小题3分,共24分)得分:________11.__B1C1__ 12.__(-2,1)__13.__(2,0)__ 14.__72度__15.__②③__ 16.__16__17.__2 2 __ 18.__30°或90°或150°__三、解答题(共66分)19.(6分)已知△ABC的顶点A,B,C在格点上,按下列要求在网格中画图.(1)将△ABC绕点C逆时针旋转90°得到△A1B1C;(2)画△ABC关于点O的中心对称图形△A2B2C2.解:(1)如图,△A1B1C即为所求.(2)如图,△A2B2C2即为所求.20.(8分)(南城县期中)如图,在△ABC中,∠BAC=15°,将△ABC绕点A按逆时针方向旋转90°,到△ADE的位置,然后将△ADE以AD为轴翻折到△ADF的位置,连接CF,判断△ACF的形状,并说明理由.解:由旋转的性质可知:∠BAC=∠DAE=15°,AC=AE,∠CAE=90°,由翻折的性质可知:∠FAD=∠EAD=15°,AF=AE.∴AC=AF,∠CAF=60°,∴△ACF为等边三角形.21.(8分)如图,等边△ABC与等边△A1B1C1关于某点成中心对称,已知A,A1,B 三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点C,C1的坐标.解:(1)点A1和点B为对应点,∴对称中心为A1B的中点,∴对称中心的坐标为(0,2.5).(2)在△ABC中,AB=2,C到AB的距离为 3 .即点C到y轴的距离为 3 ,∴点C的坐标为(- 3 ,3),点C1的坐标为( 3 ,2).22.(8分)在平面直角坐标系中,点M的坐标为(a,-2a).(1)当a =-1时,点M 在坐标系的第象限;(直接填写答案)(2)将点M 向左平移2个单位长度,再向上平移1个单位长度后得到点N ,当点N 在第三象限时,求a 的取值范围.解:(1)当a =-1时,点M 的坐标为(-1,2), 所以M 在第二象限,所以应填“二”.(2)将点M 向左平移2个单位长度,再向上平移1个单位长度后得到点N ,点M 的坐标为(a ,-2a),所以N 点的坐标为 (a -2,-2a +1). 因为N 点在第三象限,所以⎩⎪⎨⎪⎧a -2<0,-2a +1<0,解得12<a<2,所以a 的取值范围为12 <a<2.23.(10分)如图,三角形DEF 是三角形ABC 经过某种变换得到的图形,点A 与点D ,点B 与点E ,点C 与点F 分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A 与点D ,点B 与点E ,点C 与点F 的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a +3b ,4a -b)与点Q(2a -9,2b -9)也是通过上述变换得到的对应点,求a ,b 的值.解:(1)点A 的坐标为(2,3),点D 的坐标为(-2,-3),点B 的坐标为(1,2),点E 的坐标为(-1,-2),点C 的坐标为(3,1),点F 的坐标为(-3,-1),对应点的横、纵坐标分别互为相反数.(2)由(1),得⎩⎪⎨⎪⎧a +3b +2a -9=0,4a -b +2b -9=0, 解得⎩⎪⎨⎪⎧a =2,b =1,答:a 的值为2,b 的值为1.24.(12分)(鼓楼区期末)如图,在Rt △ABC 中,∠C =90°,∠CAB =35°,BC =7.线段AD 由线段AC 绕点A 按逆时针方向旋转125°得到,△EFG 由△ABC 沿CB 方向平移得到,且直线EF 过点 D. (1)求∠DAE 的大小; (2)求DE 的长.解:(1)∵△EFG 是 由△ABC 沿CB 方向 平移得到,∴AE∥CF,∴∠EAC+∠C=180°.∵∠C=90°,∴∠EAC=90°.又线段AD是由线段AC绕点A按逆时针方向旋转125°得到,即∠DAC=125°,∴∠DAE=35°.(2)∵△EFG是由△ABC沿CB方向平移得到,∴AE∥CF,EF∥AB,∴∠AED=∠F=∠ABC.又∵∠DAE=∠BAC=35°,AD=AC,∴△ADE≌△ACB(AAS),∴DE=BC=7.25.(14分)如图,O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得到△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得到△ADC,∴CO=CD,∠OCD=60°,∴△COD 是等边三角形.(2)解:当α=150°时,△AOD 是直角三角形. 理由:∵△BOC ≌△ADC , ∴∠ADC =∠BOC =150°, ∵△COD 是等边三角形, ∴∠ODC =60°,∴∠ADO =∠ADC -∠ODC =90°, 则△AOD 是直角三角形.(3)解:①要使OA =AD ,需∠AOD =∠ADO , ∵∠AOD =360°-110°-60°-α=190°-α, ∠ADO =α-60°, ∴190°-α=α-60°, ∴α=125°;②要使OA =OD ,需∠OAD =∠ADO. ∵∠OAD =180°-(∠AOD +∠ADO) =180°-(190°-α+α-60°) =50°,∴α-60°=50°, ∴α=110°;③要使OD =AD.需∠OAD =∠AOD.∵∠AOD =360°-110°-60°-α=190°-α, ∠OAD =180°-(α-60°)2 =120°-α2,∴190°-α=120°-α2 ,解得α=140°.综上所述,当α的度数为125°,110°或140°时, △AOD 是等腰三角形.。

北师大版八年级下数学 第三章 图形的平移与旋转 单元检测(PDF 含答案解析)

北师大版八年级下数学 第三章 图形的平移与旋转 单元检测(PDF 含答案解析)

第三章图形的平移与旋转满分:100分,限时:60分钟一、选择题1.(2017山东泰安中考)如图3-5-1所示的图案中,中心对称图形是()图3-5-1A.①②B.②③C.②④D.③④2.将△ABC各顶点的纵坐标均加-3,连接这三点所成的三角形是由△ABC()A.向上平移3个单位得到的B.向下平移3个单位得到的C.向左平移3个单位得到的D.向右平移3个单位得到的3.下列各组图形中,可以通过平移变换由一个图形得到另一个图形的是()4.如图3-5-2所示,关于△ABC与△A'B'C'的说法不正确的是()图3-5-2A.将△ABC先向右平移4格,再向上平移1格后得到△A'B'C'B.将△ABC先向上平移1格,再向右平移4格后得到△A'B'C'C.将△A'B'C'先向下平移1格,再向左平移4格后得到△ABCD.将△A'B'C'向左平移5格后就可以得到△ABC5.如图3-5-3,∠A=80°,O是AB上一点,直线OD与AB所夹的∠AOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转()图3-5-3A.8°B.10°C.12°D.18°6.如图3-5-4,将四边形ABOC绕点O顺时针旋转得到四边形DFOE,则下列角不是旋转角的为()图3-5-4A.∠BOFB.∠AODC.∠COED.∠AOF7.(2017甘肃兰州九中期中)一个图形无论经过平移变换,还是经过旋转变换,下列说法:①对应线段平行;②对应线段相等;③图形的形状和大小都没有发生变化;④对应角相等,正确的是()A.①②③B.②③④C.①②④D.①③④8.(2016四川雅安月考,12)如图3-5-5,在△ABC中,∠C=90°,AC=BC=5,现将△ABC沿着CB 的方向平移到△A'B'C'的位置,若平移的距离为2,则图中的阴影部分的面积为()图3-5-5A.4.5B.8C.9D.109.如图3-5-6,将Rt△ABC绕点A按顺时针方向旋转一定的角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AC=3,∠B=60°,则CD的长为()图3-5-6A.0.5B.1.5C.2D.110.如图3-5-7,△AOB为等腰三角形,顶点A的坐标为(2,5),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A'O'B,点A的对应点A'在x轴上,则点O'的坐标为()图3-5-7343二、填空题11.如图3-5-8,已知△ABD沿BD方向平移到了△FCE的位置,若BE=12,CD=5,则平移的距离是.图3-5-812.(2018四川雅安中学期中)已知线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标为.13.正三角形绕其中心至少旋转才能与原三角形重合.14.(2018四川成都西蜀实验学校月考)如图3-5-9所示,△ABC中,∠B=70°,∠BAC=30°,将△ABC绕点C顺时针旋转得到△EDC,当点B的对应点D恰好落在AC上时,则∠CAE=.图3-5-915.如图3-5-10,有两个边长为2且互相重叠的正方形纸片,各自沿对角线折成等腰直角三角形纸片后,将其中一个等腰直角三角形纸片沿直线AC向右平移,若重叠部分(△A'PC)的面积是1,则A'A=.图3-5-1016.如图3-5-11,在等边△ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为.图3-5-1112cm,将△ABC绕5cm,BC=17.如图3-5-12,在Rt△ABC中,∠ACB=90°,AC=点B顺时针旋转60°,得到△EBD,连接DC交AB于点F,则△ACF和△BDF的周长之和为cm.图3-5-1218.如图3-5-13,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A 顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②BE+DC=DE;③BE2+DC2=DE2,其中正确的是.20.(12分)(2018山东济南二十七中期中)如图3-5-15,在平面直角坐标系中,△ABC 的三个顶点的坐标分别是A(-3,2),B(-1,4),C(0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C;(2)平移△ABC,若点A 的对应点A 2的坐标为(-5,-2),画出平移后的△A 2B 2C 2;(3)若将△A 2B 2C 2绕某一点旋转可以得到△A 1B 1C,请直接写出旋转中心的坐标.图3-5-1521.(12分)(2018江西吉安樟山中学期中)已知OP 平分∠AOB,∠DCE 的顶点C 在射线OP 上,射线CD 交射线OA 于点F,射线CE 交射线OB 于点G.(1)如图3-5-16①,若CD⊥OA,CE⊥OB,请直接写出线段CF 与CG 的数量关系:;(2)如图3-5-16②,若∠AOB=120°,∠DCE=∠AOC,试判断线段CF 与CG 的数量关系并说明理由.图3-5-16三、解答题19.(8分)如图3-5-14所示的方格纸中有一副正方形纸板制成的七巧板.图3-5-14(1)号小块是中心对称图形但不是轴对称图形;(2)选取其中三个小块拼成一个既是轴对称图形又是中心对称图形的图案,画在方格纸中.(注意:在所画出的图形中标上号码)图3-5-1322.(14分)(2017江西吉安六校联考)如图3-5-17,点O是△ABC内的点,AB=AC,∠BAC=90°,∠BOC=120°,将△AOB绕点A按逆时针方向旋转90°,得到△ADC,连接OD.(1)判断△AOD的形状,并说明理由;(2)求出∠DCO的度数;(3)设∠AOB=α,则当α为多少度时,△COD为等腰三角形(直接写结果)?图3-5-17第三章图形的平移与旋转满分:100分,限时:60分钟一、选择题1.如图3-5-1所示的图案中,中心对称图形是()图3-5-1A.①②B.②③C.②④D.③④1.答案D中心对称图形绕某一点旋转180°之后与原来的图形重合.2.将△ABC各顶点的纵坐标均加-3,连接这三点所成的三角形是由△ABC()A.向上平移3个单位得到的B.向下平移3个单位得到的C.向左平移3个单位得到的D.向右平移3个单位得到的2.答案B纵坐标都加-3,相当于纵坐标都减3,可以看作△ABC向下平移3个单位得到的.3.下列各组图形中,可以通过平移变换由一个图形得到另一个图形的是()3.答案A平移变换不改变图形的形状和大小,故排除B,平移变换对应点所连线段平行且相等,故排除C、D,故选A.4.如图3-5-2所示,关于△ABC与△A'B'C'的说法不正确的是()图3-5-2A.将△ABC先向右平移4格,再向上平移1格后得到△A'B'C'B.将△ABC先向上平移1格,再向右平移4格后得到△A'B'C'C.将△A'B'C'先向下平移1格,再向左平移4格后得到△ABCD.将△A'B'C'向左平移5格后就可以得到△ABC4.答案D将△A'B'C'向左平移5格后不能与△ABC重合.5.如图3-5-3,∠A=80°,O是AB上一点,直线OD与AB所夹的∠AOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转()图3-5-3A.8°B.10°C.12°D.18°5.答案D如图,当OD 绕点O 旋转至OD'时,OD'∥AC,则∠A+∠AOD'=180°,∴∠AOD'=180°-∠A=100°,∴∠DOD'=∠AOD'-∠AOD=100°-82°=18°,故选D.6.如图3-5-4,将四边形ABOC 绕点O 顺时针旋转得到四边形DFOE,则下列角不是旋转角的为()图3-5-4A.∠BOFB.∠AODC.∠COED.∠AOF6.答案D根据旋转角的定义,对应点与旋转中心的连线构成的夹角是旋转角,故选D.7.(2017甘肃兰州九中期中)一个图形无论经过平移变换,还是经过旋转变换,下列说法:①对应线段平行;②对应线段相等;③图形的形状和大小都没有发生变化;④对应角相等,正确的是()A.①②③B.②③④C.①②④D.①③④7.答案B 仅①不正确.8.如图3-5-5,在△ABC 中,∠C=90°,AC=BC=5,现将△ABC 沿着CB的方向平移到△A'B'C'的位置,若平移的距离为2,则图中的阴影部分的面积为()图3-5-5A.4.5B.8C.9D.108.答案B由已知得CC'=2,BC=5,∴BC'=BC-CC'=3.设BA 交A'C'于点D.∵AC=BC,∠C=90°,∴DC'=BC'=3.∴S △A'B'C'=S △ABC =12×52=252,S △BC'D =12×32=92,∴S 阴影=S △A'B'C'-S △BC'D =252-92=8.9.如图3-5-6,将Rt△ABC绕点A按顺时针方向旋转一定的角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AC=3,∠B=60°,则CD的长为()图3-5-6A.0.5B.1.5C.2D.19.答案D∵∠BAC=90°,∠B=60°,∴∠C=30°,∴BC=2AB,由AC2+AB2=BC2,AC=3得AB=1,BC=2.由旋转的性质得AB=AD,又∵∠B=60°,∴△ABD是等边三角形,∴BD=AB=1.∴CD=BC-BD=1.10.如图3-5-7,△AOB为等腰三角形,顶点A的坐标为(2,5),底边OB 在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A'O'B,点A的对应点A'在x轴上,则点O'的坐标为()图3-5-734310.答案C如图,过A作OB边的垂线AC,垂足为C,过O'作BA'边的垂线O'D,垂足为D,因为A的坐标为(2,5),所以C点坐标为(2,0),所以OC=2,AC=5,在Rt△OAC中,根据勾股定理得OA=3,因为△AOB为等腰三角形,所以AB=3,C为OB的中点,所以B点坐标为(4,0),故BO'=BO=4.在Rt△O'BD和Rt△O'A'D中,O'B2-BD2=O'A'2-A'D2.设BD=x,则有42-x2=32-(3-x)2,解得x=8,所以BD=83,所以O'D= ' 2-B 2=OD=OB+BD=4+83=203,故O'点的坐标为C.二、填空题11.如图3-5-8,已知△ABD沿BD方向平移到了△FCE的位置,若BE=12,CD=5,则平移的距离是.图3-5-811.答案72解析由平移的性质得BC=DE,又∵BE=BC+CD+DE=12,∴2BC=12-5=7,∴BC=72,∴平移的距离为72.12.(2018四川雅安中学期中)已知线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标为.12.答案(1,2)解析由点A(-1,4)的对应点为C(4,7)可知平移过程中,横坐标加5,纵坐标加3,所以点B(-4,-1)的对应点D的坐标为(1,2).13.正三角形绕其中心至少旋转才能与原三角形重合.13.答案120°解析正n36014.(2018四川成都西蜀实验学校月考)如图3-5-9所示,△ABC中,∠B=70°,∠BAC=30°,将△ABC绕点C顺时针旋转得到△EDC,当点B的对应点D恰好落在AC上时,则∠CAE=.图3-5-914.答案50°解析在△ABC中,∠B=70°,∠BAC=30°,∴∠ACB=180°-∠B-∠BAC=80°,由旋转的性质得∠BCD=∠ACE=80°,AC=EC,∴∠CAE=180°-80°2=50°.15.如图3-5-10,有两个边长为2且互相重叠的正方形纸片,各自沿对角线折成等腰直角三角形纸片后,将其中一个等腰直角三角形纸片沿直线AC向右平移,若重叠部分(△A'PC)的面积是1,则A'A=.图3-5-1015.答案22-2解析在Rt△ABC中,AC= 2+B 2=22+22=22,由题意易知△A'PC为等腰直角三角形,∴S=12A'P·PC=1,∴A'P=PC=2.△A'PC在Rt△A'PC中,A'C= ' 2+P 2=2,∴A'A=22-2.16.如图3-5-11,在等边△ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为.图3-5-1116.答案2解析由旋转及△ABC为等边三角形得CE=BD=13BC=13AB=2.17.如图3-5-12,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△EBD,连接DC交AB于点F,则△ACF和△BDF的周长之和为cm.图3-5-1217.答案42解析先由勾股定理求出AB=13cm.由题意可知∠DBC=60°,BD=BC=12cm,AB=BE=13cm.易知△BCD是等边三角形,所以CD=BC=BD=12cm.△ACF和△BDF的周长之和=(AC+AF+CF)+(BF+DF+BD)=AC+AB+CD+BD=5+13+12+12=42cm. 18.如图3-5-13,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A 顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②BE+DC=DE;③BE2+DC2=DE2,其中正确的是.图3-5-1318.答案①③解析如图,∵∠BAC=90°,∠DAE=45°,∴∠1+∠2=45°,由旋转得∠2=∠3,AD=AF,∴∠FAE=∠1+∠3=45°=∠DAE,又∵AE=AE,∴△AED≌△AEF,①正确.∵AB=AC,∠BAC=90°,∴∠ABC+∠C=90°,由旋转的性质知∠4=∠C,∴∠EBF=∠4+∠ABC=90°,在Rt△EBF中,BE2+BF2=EF2,由△AED≌△AEF,得EF=ED,由旋转的性质得BF=DC,∴BE2+DC2=DE2,故③正确,综上得①③正确.三、解答题19.(8分)如图3-5-14所示的方格纸中有一副正方形纸板制成的七巧板.图3-5-14(1)号小块是中心对称图形但不是轴对称图形;(2)选取其中三个小块拼成一个既是轴对称图形又是中心对称图形的图案,画在方格纸中. (注意:在所画出的图形中标上号码)19.解析(1)6.(2)例如:提示:拼法很多,只要画出一种符合要求的即可.20.(12分)(2018山东济南二十七中期中)如图3-5-15,在平面直角坐标系中,△ABC 的三个顶点的坐标分别是A(-3,2),B(-1,4),C(0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C;(2)平移△ABC,若点A 的对应点A 2的坐标为(-5,-2),画出平移后的△A 2B 2C 2;(3)若将△A 2B 2C 2绕某一点旋转可以得到△A 1B 1C,请直接写出旋转中心的坐标.图3-5-1520.解析(1)如图.(2)如图.(3)旋转中心坐标为(-1,0).21.(12分)(2018江西吉安樟山中学期中)已知OP 平分∠AOB,∠DCE 的顶点C 在射线OP 上,射线CD 交射线OA 于点F,射线CE 交射线OB 于点G.(1)如图3-5-16①,若CD⊥OA,CE⊥OB,请直接写出线段CF 与CG 的数量关系:;(2)如图3-5-16②,若∠AOB=120°,∠DCE=∠AOC,试判断线段CF 与CG 的数量关系并说明理由.图3-5-1621.解析(1)CF=CG.(2)CF=CG.理由如下:过点C作CM⊥OA,CN⊥OB,垂足分别为M、N,∵OP平分∠AOB,∴CM=CN.∵∠AOB=120°,∠CMO=∠CNO=90°,∴∠MCN=60°,∴∠MCN=∠DCE=60°,∴∠MCN-∠FCN=∠DCE-∠FCN,即∠MCF=∠NCG,又∵∠CMO=∠CNO=90°,CM=CN,∴△CMF≌△CNG,∴CF=CG.22.(14分)(2017江西吉安六校联考)如图3-5-17,点O是△ABC内的点,AB=AC,∠BAC=90°,∠BOC=120°,将△AOB绕点A按逆时针方向旋转90°,得到△ADC,连接OD.(1)判断△AOD的形状,并说明理由;(2)求出∠DCO的度数;(3)设∠AOB=α,则当α为多少度时,△COD为等腰三角形(直接写结果)?图3-5-1722.解析(1)△AOD是等腰直角三角形.理由如下:由旋转的性质得OA=DA,∠DAO=90°,∴△AOD是等腰直角三角形.(2)∵∠BOC=120°,∴∠AOB+∠AOC=360°-120°=240°.由旋转的性质得∠AOB=∠ADC.∴∠AOC+∠ADC=240°.又∵四边形AOCD的内角和为360°,∠DAO=90°,∴∠DCO=360°-240°-90°=30°.(3)当α为75°或120°或165°时,△COD为等腰三角形.提示:由已知得∠COD=360°-∠AOD-∠AOB-∠COB=360°-45°-α-120°=195°-α,∠CDO=∠ADC-∠ADO=α-45°.由(2)知∠OCD=30°.①若∠COD=∠CDO,则195°-α=α-45°,解得α=120°.②若∠COD=∠OCD,则195°-α=30°,解得α=165°.③若∠CDO=∠OCD,则α-45°=30°,解得α=75°.综上,当α为75°或120°或165°时,△COD为等腰三角形.。

北师大版八年级数学下册第3章《图形的平移与旋转》单元练习题含答案解析 (15)

一、选择题1.明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化.在这个过程中,因变量是( )A.明明B.电话费C.时间D.爷爷2.下列图象中,y是x的函数的是( )A.B.C.D.3.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度4.如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法中正确的个数为( )(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A.1个B.2个C.3个D.4个5.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.如下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是( )A.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多B.以低于80km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少C.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油D.以80km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升6.甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是( )A.甲车的平均速度为60km/h B.乙车的平均速度为100km/hC.乙车比甲车先到B城D.乙车比甲车先出发1h7.星期六,小亮从家里骑自行车到同学家去玩,然后返回如图是他离家的路程y(km)与时间x(min)的图象,根据图象信息,下列说法不一定正确的是( )A.小亮到同学家的路程是3kmB.小亮在同学家逗留的时间是1hC.小亮去时走上坡路,回家时走下坡路D.小亮回家时用的时间比去时用的时间少8.如图,等边三角形ABC中,AB=4,有一动点P从点A出发,以每秒一个单位长度的速度沿着折线A−B−C运动至点C,若点P的运动时间记作t秒,△APC的面积记作S,则S与t的函数关系应满足如下图象中的( )A.B.C.D.9.早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明,两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途的时间为x,两人之间的距离为y,则下列图象能大致反映y与x之间关系的是( )A.B.C.D.10.一辆汽车和一辆摩托车分别从A,B两地去同一城市,它们离A地的路程随时间变化的图象如图所示.则下列结论:(1)摩托车比汽车晚到1h;(2)A,B两地的路程为20km;(3)摩托车的速度为45km/h,汽车的速度为60km/h;(4)汽车出发1小时后与摩托车相遇,此时距B地40千米;(5)相遇前摩托车的速度比汽车的速度快.其中正确结论的个数是( )A.2个B.3个C.4个D.5个二、填空题11.小明从家出发到公园,在公园锻炼一段时间后按原路返回;小明从家出发的同时,小明爸爸从公园按小明的路线返回家中.如图是两人离家的距离y(米)与小明出发的时间x(分)之间的图象,则下列结论中正确的是.(写序号即可)①小明从家出发去公园时的速度为150米/分,小明爸爸从公园返回家中的速度为30米/分;分钟后与爸爸第一次相遇;②小明出发253③小明与爸爸第二次相遇时,离家的距离是900米;④小明按原路返回时的速度为60米/分.12.一天学生小明早上从家去学校,已知小明家离学校路程为2280米(小明每次走的路程),小明从家匀速步行了10.5分钟后,爸爸发现小明的一科作业忘带,爸爸立刻拿起小明忘带的作业匀速跑步追赶小明,追上小明后爸爸立即将作业交给小明,小明继续以原速向学校行走(假定爸爸将作业交给小明的时间忽略不计),爸爸将作业带给小明后,原地接了2分钟的电话后,立即以更快的速度匀速返回家中.小明和爸爸两人相距的路程y(米)与小明出发的时间x(分钟)之间的关系如图所示,则爸爸到达家时,小明与学校相距的路程是米.13.王师傅从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用时间与路程的关系如图所示;下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致.请根据图象所提供的信息,解答下列问题:(1)王师傅从家门口到单位需要分钟;(2)王师傅从单位到家门口需要分钟.14.甲乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息,已知甲先出发2秒,在跑步过程中,甲乙两人间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,请求出甲乙两人相距8米时,甲出发秒.15.将关系式3x+4y=12改写成y=f(x)的形式:.16.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松,途中,她在便利店挑选一瓶矿泉水.耽误了一段时间后继续骑行,愉快地到了公园,图中描述了小丽路上的情景,下列说法中错误的是( )A.小丽在便利店时间为15分钟B.公园离小丽家的距离为2000米C.小丽从家到达公园共用时间20分钟D.小丽从家到便利店的平均速度为100米/分钟17.某校组织学生到距学校6km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下:当里程数在3km以下(含3km)时,收费8元,超过3km,每增加1km加收1.80元,则当x≥3时,车费y(元)与出租车行驶里程数x(km)之间的关系式为.三、解答题18.某水果批发市场的香蕉的价格如表所示,若小明购买x千克(x大于40)香蕉付了y元,请写出y关于x的函数解析式.购买香蕉的量不超过20千克20千克以上但不超过40千克40千克以上每千克价格6元5元4元19.一根弹簧原长12cm,它的挂重不超过16kg,并且每挂重1kg就伸长12cm.(1) 写出挂重后弹簧长度y(cm)关于挂重x(kg)的函数关系式;(2) 求出自变量x的取值范围.20.如图①所示,甲、乙两车从A地出发,沿相同路线前往同一目的地,途中经过B地.甲车先出发,当甲车到达B地时,乙车开始出发.当乙车到达B地时,甲车与B地相距503km.设甲、乙两车与B地之间的距离为y1(km),y2(km),乙车行驶的时间为x(h),y1,y2与x的函数关系如图②所示.(1) A,B两地之间的距离为km;(2) 当x为何值时,甲、乙两车相距5km?21.如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1) 填空:a=km,AB两地的距离为km;(2) 求线段PM,MN所表示的y与x之间的函数表达式;(3) 求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?22.某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度ℎ(米)与操控无人机的时间t (分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1) 图中的自变量是,因变量是.(2) 无人机在75米高的上空停留的时间是分钟.(3) 在上升或下降过程中,无人机的速度为米/分.(4) 图中a表示的数是,b表示的数是.(5) 图中点A表示.23.如图,A,B,C为⊙O上的定点,连接AB,AC,M为AB上的一个动点,连接CM,将射线MC绕点M顺时针旋转90∘,交⊙O于点D,连接BD,若AB=6cm,AC=2cm,记A,M两点间的距离为x cm,B,D两点间的距离为y cm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东探究的过程,请补充完整:(1) 通过取点,画图,测量,得到了x与y的几组值,如下表:x/cm00.250.47123456y/cm 1.430.660 1.31 2.59 2.76 1.660(2) 在平面直角坐标系中xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3) 结合画出的函数图象,解决问题:当BD=AC时,AM的长度约为cm.24.探究函数y=∣2x−2∣+x+12的图象和性质,洋洋同学根据学习函数的经验,对函数y=∣2x−2∣+x+12的图象和性质进行探究,下面是洋洋的探究过程,请补充完成:(1) 化简函数解析式:当x≥1时,y=.当x<1时,y=.(2) 根据(1)的结果,请在所给坐标系中画出函数y=∣2x−2∣+x+12的图象:(直尺画图,不用列表)(3) 观察函数图象,请写出该函数的一条性质:.25.如图1,在等腰直角△ABC中,∠A=90∘,AB=AC=3,在边AB上取一点D(点D不与点A,B重合),在边AC上取一点E,使AE=AD,连接DE.把△ADE绕点A逆时针方向旋转α(0∘<α<360∘),如图2.(1) 请你在图2中,连接CE和BD,判断线段CE和BD的数量关系,并说明理由;(2) 请你在图3中,画出当α=45∘时的图形,连接CE和BE,求出此时△CBE的面积;(3) 若AD=1,点M是CD的中点,在△ADE绕点A逆时针方向旋转的过程中,线段AM的最小值是.答案一、选择题1. 【答案】B【知识点】常量、变量2. 【答案】B【解析】A,C,D选项中对于x的每一个确定的值,y可能会有两个值与其对应,不符合函数的定义;只有B选项对于x的每一个确定的值,y有唯一的值与之对应,符合函数的定义.【知识点】函数的概念3. 【答案】C【解析】A.根据图象可得,乙前4秒的速度不变,为12米/秒,则行驶的路程为12×4=48米,故A正确;B.根据图象得:在0到8秒内甲的速度是一条过原点的直线,即甲的速度从0均匀增加到32米/秒,=4米/秒,故B正确;则每秒增加328C.由于甲的图象是过原点的直线,斜率为4,∴可得v=4t(v,t分别表示速度、时间),将v=12m/s代入v=4t得t=3s,则t=3s前,甲的速度小于乙的速度,∴两车到第3秒时行驶的路程不相等,故C错误;D.在4至8秒内甲的速度图象一直在乙的上方,∴甲的速度都大于乙的速度,故D正确.由于该题选择错误的,故选C.【知识点】用函数图象表示实际问题中的函数关系4. 【答案】C【知识点】用函数图象表示实际问题中的函数关系5. 【答案】D【知识点】用函数图象表示实际问题中的函数关系6. 【答案】D【解析】由图象知:=60(km/h),故此选项正确;A.甲车的平均速度为30010−5B.乙车的平均速度为3009−6=100(km/h),故此选项正确;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故此选项正确;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.【知识点】用函数图象表示实际问题中的函数关系7. 【答案】C【知识点】用函数图象表示实际问题中的函数关系8. 【答案】A【解析】等边三角形ABC中,AB=4,则△ABC的高ℎ=2√3,当点P在AB上运动时,S=12×AP×ℎ=12×x×2√3=√3x,图象为一次函数,x=4时,S=4√3;当点P在BC上运动时,同理可得:S=12×(8−x)×2√3,同样为一次函数.【知识点】用函数图象表示实际问题中的函数关系9. 【答案】D【解析】由题意可得,小明从家出发到妈妈发现小明的作业本落在家里这段时间,y随x的增大而增大,小明的妈妈开始给小明送作业到追上小明这段时间,y随x的增大而减小,小明妈妈追上小明到各自继续行走这段时间,y随x的增大不变,小明和妈妈分别去学校、回家的这段时间,y随x的增大而增大,故选D.【知识点】用函数图象表示实际问题中的函数关系10. 【答案】B【解析】分析图象可知:(1)4−3=1,摩托车比汽车晚到1h,正确;(2)因为汽车和摩托车分别从A,B两地去同一城市,从y轴上可看出A,B两地的路程为20km,正确;(3)摩托车的速度为(180−20)÷4=40km/h,汽车的速度为180÷3=60km/h,故(3)错误;(4)根据汽车出发1小时后行驶60km,摩托车1小时后行驶40km,加上20km,则两车行驶的距离相等,此时距B地40千米;故正确;(5)根据图形可得出两车是匀速行驶,相遇前摩托车的速度比汽车的速度快,错误.故正确的有3个.【知识点】用函数图象表示实际问题中的函数关系二、填空题11. 【答案】①②④【解析】v小明1=150010=150米/分,v 爸=150050=30米/分,故①正确.(150+30)⋅t=1500,t1=253,故②正确.第二次相遇t=30,离家距离30×(50−30)=600(米),故③错误.v小明2=60040−30=60米/分,故④正确.【知识点】用函数图象表示实际问题中的函数关系12. 【答案】270【解析】由题意知,图形的纵坐标表示为两人相距的路程,横坐标表示为小明的出发时间,从0∼10.5分钟时,小明自己走,爸爸还没有出发,∴小明的速度v1=630÷10.5=60米/分钟,从10.5∼21分钟时,爸爸开始从家出发,并在时间t=21分钟时追上小明,∴此时小明的路程为:60×21=1260米,∴爸爸的速度为v2=1260÷(21−10.5)=120米/分钟,设爸爸返回时的速度为v,根据题意得,4v+60×6=920,∴v=140米/分钟,∴等爸爸送完作业返回家时所用时间为21×60÷140=9分钟,∴等爸爸到家小明总用时:21+9+2=32,∴此时小明与学校相距的距离为:2280−32×60=360米.【知识点】用函数图象表示实际问题中的函数关系13. 【答案】7;13.4【知识点】用函数图象表示实际问题中的函数关系14. 【答案】2,16,123【解析】由图象,得甲的速度为:8÷2=4米/秒,乙的速度为:500÷100=5米/秒,乙走完全程时甲乙相距的路程为:b=500−4(100+2)=92米,乙追上甲的时间为:a=8÷(5−4)=8秒,乙出发后甲走完全程所用的时间为:c=500÷4−2=123秒.当甲出发2秒时;甲在乙前面8米;在跑步途中,乙在甲前面8米,5t−4t=2×4+8,解得t=16,即甲出发16秒时,乙在甲前面8米;当乙到达终点,甲还在跑时,(500−8)÷4=123秒,即甲出发123秒时,甲乙相距8米.综上所述,甲乙两人相距8米,甲出发2秒、16秒或123秒.【知识点】用函数图象表示实际问题中的函数关系x15. 【答案】y=3−34【知识点】解析式法16. 【答案】A【知识点】用函数图象表示实际问题中的函数关系17. 【答案】y=1.8x+2.6(x≥3)【解析】由题意得,所付车费为:y=1.8(x−3)+8=1.8x+2.6(x≥3).故:y=1.8x+2.6(x≥3).【知识点】解析式法三、解答题18. 【答案】y=4x.【知识点】解析式法19. 【答案】x,(1) y=12+12(2) 0≤x≤16.【知识点】实际问题中的自变量的取值范围、解析式法20. 【答案】(1) 20(2) 乙车的速度为:20÷16=120(km/h),甲车的速度为:503÷16=100(km/h),甲比乙早出发的时间为:20÷100=0.2(h),相遇前:(20+100x)−120x=5,解得x=0.75;相遇后:120x−(20+100x)=5,解得x=1.25;答:当x为0.75或1.25时,甲、乙两车相距5km.【解析】(1) A,B两地之间的距离为20km.【知识点】用函数图象表示实际问题中的函数关系21. 【答案】(1) 240;390(2) 由图象可得,A与C之间的距离为150km,汽车的速度1502.5=60km/h,PM所表示的函数关系式为:y1=150−60x,MN所表示的函数关系式为:y2=60x−150.(3) 由y1=60得150−60x=60,解得:x=1.5,由y2=60得60x−150=60,解得:x=3.5,由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米.【解析】(1) 由题意和图象可得,a=1502.5×4=240km,A,B两地相距:150+240=390km.【知识点】行程问题、用函数图象表示实际问题中的函数关系22. 【答案】(1) t;ℎ(2) 5(3) 25(4) 2;15(5) 在第6分钟时,无人机的飞行高度为50米【解析】(1) 横轴是时间,纵轴是高度,所以自变量是时间(或t),因变量是高度(或ℎ).(2) 无人机在75米高的上空停留的时间是12−7=5分钟.(3) 在上升或下降过程中,无人机的速度75−507−6=25米/分.(4) 图中 a 表示的数是 5025=2, b 表示的数是 12+7525=15.【知识点】自变量与函数值、用函数图象表示实际问题中的函数关系23. 【答案】(1) 2.41(2) 如图所示. (3) 1.38 或 4.62 【知识点】列表法、图像法24. 【答案】(1) y =32x −12;y =−12x +32 (2)(3) 由图象可知,当 x >1 时,y 随 x 的增大而增大 【解析】 (1) 化简函数 y =∣2x−2∣+x+12,当 x ≥1 时,y =2x−2+x+12=32x −12.当 x <1 时,y =−(2x−2)+x+12=−2x+2+x+12=−12x +32.【知识点】根据函数图像确定函数性质、解析式法、图像法25. 【答案】(1) CE =BD ;理由:连接 CE 和 BD ,如图 2 所示,由题意可知,△ABC 和 △ADE 都是等腰直角三角形, ∵∠EAD =∠CAB =90∘, ∴∠EAC =∠DAB , 又 ∵AE =AD ,AC =AB , ∴△AEC ≌△ADB (SAS ), ∴CE =BD .(2) 当 α=45∘ 时,连接 CE 和 BE ,如图所示,延长 AD 交 BC 于 F , ∵α=45∘,△ABC 和 △ADE 都是等腰直角三角形, ∴∠BAF =∠CAF =∠EAC =45∘, ∴AF =BF =CF ,∠EAB =135∘, ∴∠EAB +∠ABC =135∘+45∘=180∘,∴AE∥BC,∵BC=√32+32=3√2,∴AF=12BC=3√22,∴S△CBE=12BC⋅AF=12×3√2×3√22=92.(3) 1【解析】(3) 如图4,当点M不在AC上时,取AC中点G,连接GM,∵M是CDʹ的中点,∴GM=12ADʹ=12AD=12,当点M在AC上时,由M是CDʹ的中点可得GM=12,∴在△ADE绕点A逆时针方向旋转的过程中,点M在以G为圆心,12长为半径的圆上,∴当点M与点E重合时AM取最小值,此时AM=AE=1.【知识点】三角形的中位线、直角三角形斜边的中线、等腰直角三角形、旋转及其性质、边角边。

北师大版八年级数学下册第三章图形的平移与旋转单元复习试题(附答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】第三章复习一、选择题(每小题3分,共30分)1、下列图形经过平移后恰好可以与原图形组合成一个长方形的是( ) A 、三角形 B 、正方形 C 、梯形 D 、都有可能2、在图形平移的过程中,下列说法中错误的是( )A 、图形上任意点移动的方向相同B 、图形上任意点移动的距离相同C 、图形上可能存在不动的点D 、图形上任意两点连线的长度不变 3、有关图形旋转的说法中错误的是( ) A 、图形上每一点到旋转中心的距离相等 B 、图形上每一点移动的角度相同 C 、图形上可能存在不动点D 4、如右图所示,观察图形,下列结论正确的是( ) A 、它是轴对称图形,但不是旋转对称图形; B 、它是轴对称图形,又是旋转对称图形; C 、它是旋转对称图形,但不是轴对称图形; D 、它既不是旋转对称图形,又不是轴对称图形。

5、下列图形中,既是轴对称图形,又是旋转对称图形的是( ) A 、等腰三角形 B 、平行四边形 C 、等边三角形 D 、三角形6、等边三角形的旋转中心是什么?旋转多少度能与原来的图形重合( ) A 、三条中线的交点,60° B 、三条高线的交点,120° C 、三条角平分线的交点,60° D 、三条中线的交点,180°7、如图1,△BOD 的位置经过怎样的运动和△AOC 重合( ) A 、翻折 B 、平移 C 、旋转90° D 、旋转180°8、钟表上12时15分钟时,时针与分针的夹角为( ) A 、90° B 、82.5° C 、67.5° D 、60° 二、填空题(每小题4分,共32分)9、经过平移, 和 平行且相等, 相等。

10、如图2,△ABC 中,∠ACB=90°,AB=13,AC=12,将△ABC 沿射线BC 的方向平移一段距离后得到△DCE ,那么CD= ;BD= 。

【汇总】北师大版八年级下册数学第三章 图形的平移与旋转含答案

北师大版八年级下册数学第三章图形的平移与旋转含答案一、单选题(共15题,共计45分)1、下列各网格中的图形是用其图形中的一部分平移得到的是()A. B. C. D.2、下列图形中,是轴对称图形但不是中心对称图形的是()A. B. C. D.3、下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.4、如图,不是中心对称图形的是()A. B. C. D.5、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.6、下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.7、下列说法中,正确的是()A.相等的角是对顶角B.两条直线被第三条直线所截,内错角相等C.同旁内角相等,两直线平行D.平移、轴对称变换、旋转都不改变图形的形状和大小8、下面的图案是由一个图形经过多次轴对称变换得到的,在这些对称轴中,共有平行线()A.1组B.2组C.3组D.4组9、如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则( )A.乙比甲先到B.甲和乙同时到 B.C.甲比乙先到D.无法确定10、下列汽车标识中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.11、下列四个图形中,即是轴对称图形又是中心对称图形的是()A. B. C. D.12、下列运动属于平移的是()A.荡秋千B.地球绕着太阳转C.风筝在空中随风飘动D.急刹车时,汽车在地面上的滑动13、要在一块长方形的空地上修建一个花坛,要求花坛图案为轴对称图形,图中的设计符合要求的有()A.4个B.3个C.2个D.1个14、在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A、B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM的延长线与x 轴交于点N(n,0),如图3,当m= 时,n的值为()A. B. C. D.15、下列说法正确的是()A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.在成中心对称的两个图形中,连结对称点的线段都被对称中心平分C.在平面直角坐标系中,一点向右平移2个单位,纵坐标加2D.在平移和旋转图形中,对应角相等,对应线段相等且平行二、填空题(共10题,共计30分)16、如图,这个图形是由“基本图案”ABCDE绕着点________ 顺时针依次旋转________ 次得到的,则每次旋转的角度为________ .17、如图,将三角形ABC沿直线BC向右平移得到三角形A′B′C′,已知BC′=10,C B′=2,则BB′的长为________.18、在平面直角坐标系中,有一条线段,已知点和,平移线段得到线段,若点的对应点的坐标为,则线段平移经过的区域(四边形)的面积为________.19、如图,在△ABC中,∠ACB=120°,将它绕着点C旋转30°后得到△DEC,则∠ACE=________.20、时钟的时针在不停地旋转,从下午3时到下午6时(同一天),时针旋转的角度是________21、如图,将绕点按顺时针方向旋转至,使点落在的延长线上.已知,则________度;如图,已知正方形的边长为分别是边上的点,且,将绕点逆时针旋转,得到.若,则的长为________ .22、如图,竖直放置的一个铝合金窗框由矩形和弧形两部分组成,AB=m,AD= 2m,弧CD所对的圆心角为∠COD=120°.现将窗框绕点B顺时针旋转横放在水平的地面上,这一过程中,窗框上的点到地面的最大高度为________m.23、如图,将△AOB绕点按逆时针方向旋转后得到,若,则的度数是________.24、如图,将矩形ABCD绕点A旋转至矩形AB'C'D'位置,此时AC'的中点恰好与D点重合,AB'交CD于点E.若DE=1,则AC的长为________.25、如图,一处长方形展览大厅内,修建了宽为米的通道,其余部分摆放展品,则可供摆放展品的面积为________平方米.三、解答题(共5题,共计25分)26、如图,将△ABC绕点C顺时针旋转90°后得△DEC,若BC∥DE,求∠B的度数.27、在一个3m×4m的矩形地块上,欲开辟出一部分作花坛,要使花坛的面积为矩形面积的一半,且使整个图案绕它的中心旋转180°后能与自身重合,请给出你的设计方案.28、由16个边长相等的小正方形组成的图形如图所示,请你用一条割线(可以是折线)将它分割成两个图形,使之关于某一点成中心对称,要求给出两种不同的方法.29、己知:在中,,,,将绕点顺时针旋转得到,且满足,求的长.30、如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有多少个?请分别在下图中涂出来,并画出这个轴对称图形的对称轴.参考答案一、单选题(共15题,共计45分)1、C2、A3、B5、B6、A7、D8、D9、B10、B11、D12、D13、A14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、29、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 4 页
B
A
FDEC

第三章《图形的平移与旋转》单元检测
一、选择题
1、下列现象是数学中的平移的是( )
A、冰化成水 B、电梯由一楼升到二楼
C、导弹击中目标后爆炸 D、卫星绕地球运动
2、观察下列图形,既是轴对称图形,又是中心对称图形的是 ( )

3、将长度为5cm
的线段向上平移10cm所得线段长度是( )
A、10cm B、5cm C、0cm D、无法确定
4、下列运动是属于旋转的是( )
A、滾动过程中篮球的滚动 B、钟表的钟摆的摆动
C、气球升空的运动 D、一个图形沿某直线对折过程
5、.下列图形中,是由(1)仅通过平移得到的是( )

6、下列说法正确的是( )
A、平移不改变图形的形状和大小,而旋转则改变图形的形状和大小
B、平移和旋转的共同点是改变图形的位置
C、图形可以向某方向平移一定距离,也可以向某方向旋转一定距离
D、由平移得到的图形也一定可由旋转得到

7、将图形 按顺时针方向旋转900后的图形是( )

A B C D
8、如图,在正方形ABCD中,E为DC边上的点,连结BE,将△BCE绕点C顺时
针方向旋转900得到△DCF,连结EF,若∠BEC=600,则∠EFD的
度数为( )
A、100 B、150 C、200 D、250
二、填空题
第 2 页 共 4 页

1、图形的平移、旋转、轴对称中,其相同的性质是_________.
2、经过平移,对应点所连的线段______________.
3、经过旋转,对应点到旋转中心的距离___________.
4、9点30分,时钟的时针和分针的夹角是______.
5、等边三角形绕着它的三边中线的交点旋转至少______度,能够与本身重合.
6、边长为4 cm的正方形ABCD绕它的顶点A旋转180°,顶点B所经过的路线
长为______cm.
7、甲图向上平移2个单位得到乙图,乙图向左平移2个单位得到丙图,丙图向
下平移2个单位得到丁图,那么丁图向______平移______个单位可以得到甲图.
8、△ABC和△DCE是等边三角形,则在此图中,
△ACE绕着 点 旋转 度可得到△ 。

三、解答题 (第8题图)
1、经过平移,△ABC的边AB移到了EF,作出平移后的三角形.

2、如图所示,在边长为1的网格中作出 △ABC 绕点A按逆时针方向旋转90º,
再向下平移2格后的图形△A¹B¹C¹

3、请你指出△BDA通过怎样的移动得到△CAE.
4、将RtΔABC沿斜边AB向右平移5cm,得到RtΔDEF.

A
C D E B




A

B
C

E
F
第 3 页 共 4 页
B A C D E F
x
y
A

B
C

O
5 2 4 6 -5

-2

已知AB=10cm,BC=8cm,求图中阴影部分三角形的周长

5、如图,已知∠EAD=32°,△ADE绕着点A旋转50°后能与△ABC重合,求∠
BAE的度数。

6、如图,在平面直角坐标系xoy中,(15)A,, (10)B,,(43)C,.
①求出ABC△的面积.
②作出
ABC△
向下平移1个单位,再向

左平移2个单位后的图形△A2B2C2.

作出△ABC以A为旋转中心逆时针旋

转900后的图形△A3B3C
3

7、四边形ABCD是正方形,△ADF旋转一四定角度后得到△ABE,如图所示,如
果AF=4,AB=7,求(1)指出旋转中心和旋转角度(2)求DE的长度(3)BE与
DF的位置关系如何?

8、在如图的方格中,每个小正方形的边长都为1,△ABC的顶点均在格点上。在

C F
A D B E
第 4 页 共 4 页
建立平面直角坐标系后,点B的坐标为(-1,2)。
(1)把△ABC向下平移8个单位后得到对应的△111CBA,画出△111CBA,
并写出1A坐标。
(2)以原点O为对称中心,画出与△

111
CBA
关于原点O对称的△2A2B2C,并写出

点2B的坐标。

9、阅读下列材料:如图②,把△ABC沿BC方向平移线,可以变到△ECD的位置;
如图③,以BC为轴把△ABC翻折180°,可以变到△DBC的位置;如图④,以点
A为中心,把△ABC旋转180°,可以变到△AED
的位置,像这样其中一个三角形

是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不
改变形状大小的图形变换,叫做三角形的全等变换.

图① 图② 图③ 图④
请回答下列问题:
(1)在图①中,可以通过平移、翻折、旋转中的哪一种方法,使△ABE变
到△ADF的位置?
(2)指出图①中线段BE与DF之间的关系.

x
y
C

A B
O

相关文档
最新文档