三角函数高考题型分类总结
专题17 三角函数概念与诱导公式 (教师版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】知识点一:三角函数基本概念1.角的概念(1)任意角:①高中数学53个题型归纳与方法技巧总结篇专题17三角函数概念与诱导公式定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是{}Z k k S ∈+︒⋅==,αββ360.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.(4)象限角的集合表示方法:2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:rad 180π=︒,rad 1801π=︒,π︒=180rad 1.(3)扇形的弧长公式:r l ⋅=α,扇形的面积公式:22121r lr S ⋅==α.3.任意角的三角函数(1)定义:任意角α的终边与单位圆交于点)(y x P ,时,则y =αsin ,x =αcos ,)0(tan ≠=x xyα.(2)推广:三角函数坐标法定义中,若取点P )(y x P ,是角α终边上异于顶点的任一点,设点P 到原点O 的距离为r ,则r y =αsin ,r x =αcos ,)0(tan ≠=x xyα三角函数的性质如下表:三角函数定义域第一象限符号第二象限符号第三象限符号第四象限符号αsin R ++--αcos R+--+αtan }2|{Z k k ∈+≠,ππαα+-+-记忆口诀:三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦.4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A(1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函数线有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线知识点二:同角三角函数基本关系1.同角三角函数的基本关系(1)平方关系:1cos sin 22=+αα.(2)商数关系:)2(tan cos sin ππααααk +≠=;知识点三:三角函数诱导公式公式一二三四五六角)(2Z k k ∈+απαπ+α-απ-απ-2απ+2正弦αsin αsin -αsin -αsin αcos αcos 余弦αcos αcos -αcos αcos -αsin αsin -正切αtan αtan αtan -αtan -口诀函数名不变,符号看象限函数名改变,符号看象限【记忆口诀】奇变偶不变,符号看象限,说明:(1)先将诱导三角函数式中的角统一写作2n πα⋅±;(2)无论有多大,一律视为锐角,判断2n πα⋅±所处的象限,并判断题设三角函数在该象限的正负;(3)当n 为奇数是,“奇变”,正变余,余变正;当n 为偶数时,“偶不变”函数名保持不变即可.【方法技巧与总结】1.利用1cos sin 22=+αα可以实现角α的正弦、余弦的互化,利用αααtan cos sin =可以实现角α的弦切互化.2.“ααααααcos sin cos sin cos sin -+,,”方程思想知一求二.222(sin cos )sin cos 2sin cos 1sin 2ααααααα+=++=+222(sin cos )sin cos 2sin cos 1sin 2ααααααα-=+-=-22(sin cos )(sin cos )2αααα++-=【题型归纳目录】题型一:终边相同的角的集合的表示与区别题型二:等分角的象限问题题型三:弧长与扇形面积公式的计算题型四:三角函数定义题题型五:象限符号与坐标轴角的三角函数值题型六:同角求值—条件中出现的角和结论中出现的角是相同的题型七:诱导求值与变形【典例例题】题型一:终边相同的角的集合的表示与区别例1.(2022·全国·高三专题练习)与角94π的终边相同的角的表达式中,正确的是()A .245k π+ ,k Z ∈B .93604k π⋅+,k Z ∈C .360315k ⋅- ,k Z ∈D .54k ππ+,k Z ∈【答案】C 【解析】【分析】要写出与94π的终边相同的角,只要在该角上加2π的整数倍即可.【详解】首先角度制与弧度制不能混用,所以选项AB 错误;又与94π的终边相同的角可以写成92()4k k Z ππ+∈,所以C 正确.故选:C .例2.(2022·全国·高三专题练习)若角α的终边在直线y x =-上,则角α的取值集合为()A .2,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z B .32,4k k πααπ⎧⎫=+∈⎨⎬⎩⎭Z C .3,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z D .,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z 【答案】D 【解析】【分析】根据若,αβ终边相同,则2,k k Z βπα=+∈求解.【详解】解:,由图知,角α的取值集合为:()32,2,4421,2,44,4k k Z k k Z k k Z k k Z k k Z ππααπααπππααπααππααπ⎧⎫⎧⎫=+∈⋃=-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫==+-∈⋃=-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫==-∈⎨⎬⎩⎭故选:D.【点睛】本题主要考查终边相同的角,还考查了集合的运算能力,属于基础题.例3.(2022·上海市嘉定区第二中学高一阶段练习)设集合{}{}|45180,|135180,A k k Z k k Z αααα==︒+⋅︒∈⋃=︒+⋅︒∈,集合{}|4590,B k k Z ββ==︒+⋅︒∈,则()A .AB =∅ B .A BC .B AD .A B=【答案】D 【解析】【分析】考虑A 中角的终边的位置,再考虑B 中角的终边的位置,从而可得两个集合的关系.【详解】.45180,k k Z α=︒+⋅︒∈表示终边在直线y x =上的角,135180,k k Z α=︒+⋅︒∈表示终边在直线y x =-上的角,而4590,k k Z β=︒+⋅︒∈表示终边在四条射线上的角,四条射线分别是射线,0;,0;,0;,0y x x y x x y x x y x x =≥=-≤=≤=-≥,它们构成直线y x =、直线y x =-,故A B =.故选:D.【点睛】本题考查终边相同的角,注意180k α⋅︒+的终边与α的终边的关系是重合或互为反向延长线,而90k α⋅︒+的终边与α的终边的关系是重合或互为反向延长线或相互垂直,本题属于中档题.(多选题)例4.(2022·全国·高三专题练习)如果角α与角45γ+︒的终边相同,角β与45γ-︒的终边相同,那么αβ-的可能值为()A .90︒B .360︒C .450︒D .2330︒【答案】AC 【解析】根据终边相同可得角与角之间的关系,从而可得αβ-的代数形式,故可得正确的选项.【详解】因为角α与角45γ+︒的终边相同,故45360k γα ,其中k Z ∈,同理145360k βγ=-︒+⋅︒,其中1k Z ∈,故90360n αβ-=︒+⋅︒,其中n Z ∈,当0n =或1n =时,90αβ-=︒或450αβ-=︒,故AC 正确,令36090360n ︒=︒+⋅︒,此方程无整数解n ;令903060233n =︒+⋅︒︒即569n =,此方程无整数解n ;故BD 错误.故选:AC.(多选题)例5.(2022·全国·高三专题练习)下列条件中,能使α和β的终边关于y 轴对称的是()A .90αβ+=︒B .180αβ+=︒C .()36090k k αβ+=⋅︒+︒∈ZD .()()21180k k αβ+=+⋅︒∈Z 【答案】BD 【解析】【分析】根据α和β的终边关于y 轴对称时()180360k k αβ+=︒+︒∈Z ,逐一判断正误即可.【详解】根据α和β的终边关于y 轴对称时()180360k k αβ+=︒+︒∈Z 可知,选项B 中,180αβ+=︒符合题意;选项D 中,()()21180k k αβ+=+⋅︒∈Z 符合题意;选项AC 中,可取0,90αβ=︒=︒时显然可见α和β的终边不关于y 轴对称.故选:BD.例6.(2022·全国·高三专题练习)写出两个与113π-终边相同的角___________.【答案】3π,53π-(其他正确答案也可)【解析】【分析】利用终边相同的角的定义求解.【详解】设α是与113π-终边相同的角,则112,3k k Z παπ=-∈,令1k =,得53πα=-,令2k =,得3πα=,故答案为:3π,53π-(其他正确答案也可)【方法技巧与总结】(1)终边相同的角的集合的表示与识别可用列举归纳法和双向等差数列的方法解决.(2)注意正角、第一象限角和锐角的联系与区别,正角可以是任一象限角,也可以是坐标轴角;锐角是正角,也是第一象限角,第一象限角不包含坐标轴角.题型二:等分角的象限问题例7.(2022·浙江·高三专题练习)若18045,k k Z α=⋅+∈ ,则α的终边在()A .第一、三象限B .第一、二象限C .第二、四象限D .第三、四象限【答案】A 【解析】【分析】分21,k n n Z =+∈和2,k n n =∈Z 讨论可得角的终边所在的象限.【详解】解:因为18045,k k Z α=⋅+∈ ,所以当21,k n n Z =+∈时,218018045360225,n n n Z α=⋅++=⋅+∈ ,其终边在第三象限;当2,k n n =∈Z 时,21804536045,n n n Z α=⋅+=⋅+∈ ,其终边在第一象限.综上,α的终边在第一、三象限.故选:A.例8.(2022·全国·高三专题练习(理))角α的终边属于第一象限,那么3α的终边不可能属于的象限是()A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【解析】【分析】由题意知,222k k ππαπ<<+,k Z ∈,即可得3α的范围,讨论3k n =、31k n =+、32k n =+()n Z ∈对应3α的终边位置即可.【详解】∵角α的终边在第一象限,∴222k k ππαπ<<+,k Z ∈,则223363k k παππ<<+,k Z ∈,当3()k n n Z =∈时,此时3α的终边落在第一象限,当31()k n n Z =+∈时,此时3α的终边落在第二象限,当32()k n n Z =+∈时,此时3α的终边落在第三象限,综上,角α的终边不可能落在第四象限,故选:D.例9.(2022·全国·高三专题练习)θ是第二象限角,则下列选项中一定为负值的是()A .sin2θB .cos2θC .sin 2θD .cos 2θ【答案】C 【解析】表示出第二象限角的范围,求出2θ和2θ所在象限,确定函数值的符号.【详解】因为θ是第二象限角,所以22,2k k k Z ππθππ+<<+∈,则4242,k k k Z ππθππ+<<+∈,所以2θ为第三或第四象限角或终边在y 轴负半轴上,,所以sin 2θ<0.而,422k k k Z πθπππ+<<+∈,2θ是第一象限或第三象限角,正弦余弦值不一定是负数.故选:C .例10.(2022·全国·高三专题练习)已知角α第二象限角,且cos cos22αα=-,则角2α是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】C 【解析】【分析】由α是第二象限角,知2α在第一象限或在第三象限,再由coscos22αα=-,知cos02α≤,由此能判断出2α所在象限.【详解】因为角α第二象限角,所以()90360180360Z k k k α+⋅<<+⋅∈,所以()4518090180Z 2k k k α+⋅<<+⋅∈,当k 是偶数时,设()2Z k n n =∈,则()4536090360Z 2n n n α+⋅<<+⋅∈,此时2α为第一象限角;当k 是奇数时,设()21Z k n n =+∈,则()225360270360Z 2n n n α+⋅<<+⋅∈,此时2α为第三象限角.;综上所述:2α为第一象限角或第三象限角,因为coscos22αα=-,所以cos02α≤,所以2α为第三象限角.故选:C .【方法技巧与总结】先从α的范围出发,利用不等式性质,具体有:(1)双向等差数列法;(2)nα的象限分布图示.题型三:弧长与扇形面积公式的计算例11.(2022·浙江·镇海中学模拟预测)《九章算术》是中国古代的数学名著,其中《方田》章给出了弧田面积的计算公式.如图所示,弧田是由圆弧AB 及其所对弦AB 围成的图形.若弧田的弦AB 长是2,弧所在圆心角的弧度数也是2,则弧田的弧AB 长为_______,弧田的面积为_________.【答案】2sin1;211sin 1tan1-.【解析】【分析】(1)利用弧长公式解决,那么需要算出半径和圆心角;(2)用扇形的面积减去三角形的面积即可.【详解】由题意可知:111,,sin1sin1tan1tan1======AC BC BC AC AO OC ,所以弧AB 长122sin1sin1=⨯=,弧田的面积22111111222sin12tan1sin 1tan1⎛⎫=-=⨯⨯-⨯⨯=- ⎪⎝⎭扇形AOB AOB S S ,故答案为:2sin1;211sin 1tan1-.例12.(2022·全国·高考真题(理))沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图, AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在 AB 上,CD AB ⊥.“会圆术”给出 AB 的弧长的近似值s 的计算公式:2CDs AB OA=+.当2,60OA AOB =∠=︒时,s =()A B C D 【答案】B 【解析】【分析】连接OC ,分别求出,,AB OC CD ,再根据题中公式即可得出答案.【详解】解:如图,连接OC ,因为C 是AB 的中点,所以OC AB ⊥,又CD AB ⊥,所以,,O C D 三点共线,即2OD OA OB ===,又60AOB ∠=︒,所以2AB OA OB ===,则OC =2CD =所以()22222CD s AB OA =+=+=故选:B.例13.(2022·全国·高三专题练习)中国传统扇文化有着极其深厚的底蕴.按如下方法剪裁,扇面形状较为美观.从半径为r 的圆面中剪下扇形OAB ,使剪下扇形OAB,再从扇形OAB 中剪下扇环形ABDC 制作扇面,使扇环形ABDC 的面积与扇形OAB.则一个按上述方法制作的扇环形装饰品(如图)的面积与圆面积的比值为()ABCD2-【答案】D 【解析】【分析】记扇形OAB 的圆心角为α,扇形OAB 的面积为1S ,扇环形ABDC 的面积为2S ,圆的面积为S ,根据扇形面积公式,弧长公式,以及题中条件,即可计算出结果.【详解】记扇形OAB 的圆心角为α,扇形OAB 的面积为1S ,扇环形ABDC 的面积为2S ,圆的面积为S ,由题意可得,2112S r α=,21S S =2S r π=,所以()122124S Srαππ==,因为剪下扇形OAB ,所以22r r r παπ-=(3απ=,所以()()()2113244S S απππ====.故选:D.例14.(2022·浙江·赫威斯育才高中模拟预测)“圆材埋壁”是我国古代的数学著作《九章算术》中的一个问题,现有一个“圆材埋壁”的模型,其截面如图所示,若圆柱形材料的底面半径为1,截面圆圆心为O ,墙壁截面ABCD 为矩形,且1AD =,则扇形OAD 的面积是__________.【答案】6π##16π【解析】【分析】计算AOD ∠,再利用扇形的面积公式求解.【详解】由题意可知,圆O 的半径为1,即1OA OD ==,又1AD =,所以OAD △为正三角形,∴3AOD π∠=,所以扇形OAD 的面积是221112236S r AOD ππ=⨯⨯∠=⨯⨯=.故答案为:6π例15.(2022·全国·模拟预测)炎炎夏日,在古代人们乘凉时习惯用的纸叠扇可看作是从一个圆面中剪下的扇形加工制作而成.如图,扇形纸叠扇完全展开后,扇形ABC 的面积S 为22225cm π,若2BD DA =,则当该纸叠扇的周长C 最小时,BD 的长度为___________cm .【答案】10π【解析】【分析】设扇形ABC 的半径为r cm ,弧长为l cm ,根据扇形ABC 的面积S 为22225cm π,由212252rl π=得到rl ,然后由纸叠扇的周长2C r l =+,利用基本不等式求解.【详解】解:设扇形ABC 的半径为r cm ,弧长为l cm ,则扇形面积12S rl =.由题意得212252rl π=,所以2450rl π=.所以纸叠扇的周长260C r l π=+≥==,当且仅当22,450,r l rl π=⎧⎨=⎩即15r π=,30l π=时,等号成立,所以()15BD DA cm π+=.又2BD DA =,所以()1152BD BD cm π+=,所以()3152BD cm π=,故()10BD cm π=.故答案为:10π例16.(2022·全国·高三专题练习)已知扇形的周长为4cm ,当它的半径为________cm 和圆心角为________弧度时,扇形面积最大,这个最大面积是________cm 2.【答案】121【解析】【详解】24l r +=,则()21142222S lr r r r r ==-=-+,则1,2r l ==时,面积最大为1,此时圆心角2lrα ,所以答案为1;2;1.【方法技巧与总结】(1)熟记弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2(弧度制(0,2]απ∈)(2)掌握简单三角形,特别是直角三角形的解法题型四:三角函数定义题例17.(2022·广东·深圳市光明区高级中学模拟预测)已知角θ的终边过点()1,1A -,则sin()6πθ-=()ABCD【答案】D 【解析】【分析】由任意三角形的定义求出sin ,cos θθ,由两角差的正弦公式代入即可求出sin()6πθ-.【详解】因为角θ的终边过点()1,1A -,由任意三角形的定义知:sin θθ==sin()sin cos cos sin 666πππθθθ-=-=故选:D.例18.(2022·河北衡水·高三阶段练习)已知角α的终边经过点(-,则()tan sin 232πααπ⎛⎫++-= ⎪⎝⎭()A .32B .34-C.D【答案】D 【解析】【分析】利用三角函数的定义、诱导公式、二倍角公式以及弦化切可求得所求代数式的值.【详解】依题意,由三角函数的定义可知tan α=()22sin cos 2sin cos 2tan sin 23sin 22sin sin cos cos 2παπαααααπαπαααα⎛⎫+ ⎪⎛⎫⎝⎭++-=-=-- ⎪+⎛⎫⎝⎭+ ⎪⎝⎭22212sin cos 2tan tan sin cos tan 1ααααααα=--===++故选:D.例19.(2022·湖北武汉·模拟预测)已知角α的始边与x 轴非负半轴重合,终边上一点()sin 3,cos3P ,若02απ≤≤,则α=()A .3B .32π-C .532π-D .32π-【答案】C【分析】根据三角函数的定义求出tan α,结合诱导公式即可得解,注意角所在的象限.【详解】解:因为角α的终边上一点()sin 3,cos3P ,所以cos31tan 0sin 3tan 3α==<,又cos 30,sin 30<>,所以α为第四象限角,所以23,Z 2k k παπ=+-∈,又因02απ≤≤,所以532πα=-.故选:C.例20.(2022·北京·二模)已知角α的终边经过点34,55P ⎛⎫- ⎪⎝⎭,则sin 2α=()A .2425-B .725-C .725D .2425【答案】A 【解析】【分析】根据终边上的点确定角的正余弦值,再由二倍角正弦公式求sin 2α.【详解】由题设43sin ,cos 55αα==-,而4324sin 22sin cos 2()5525ααα==⨯⨯-=-.故选:A【方法技巧与总结】(1)任意角的正弦、余弦、正切的定义;题型五:象限符号与坐标轴角的三角函数值例21.(2022·全国·高三专题练习)如果cos 0θ<,且tan 0θ<,则sin cos cos θθθ-+的化简为_____.【答案】sin θ【解析】【分析】由cos 0θ<,且tan 0θ<,得到θ是第二象限角,由此能化简sin cos cos θθθ-+.解:∵cos 0θ<,且tan 0θ<,∴θ是第二象限角,∴sin cos cos sin cos cos sin θθθθθθθ-+=-+=.故答案为:sin θ.例22.(2022·河北·石家庄二中模拟预测)若角α满足sin cos 0αα⋅<,cos sin 0αα-<,则α在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 【解析】【分析】根据sin cos 0αα⋅<可知α是第二或第四象限角;根据第二或第四象限角正余弦的符号可确定结果.【详解】sin cos 0αα⋅< ,α 是第二或第四象限角;当α是第二象限角时,cos 0α<,sin 0α>,满足cos sin 0αα-<;当α是第四象限角时,cos 0α>,sin 0α<,则cos sin 0αα->,不合题意;综上所述:α是第二象限角.故选:B.例23.(2022·浙江·模拟预测)已知R θ∈,则“cos 0θ>”是“角θ为第一或第四象限角”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要【答案】B 【解析】【分析】利用定义法进行判断.【详解】充分性:当cos 0θ>时,不妨取cos 1,0θθ==时轴线角不成立.故充分性不满足;必要性:角θ为第一或第四象限角,则cos 0θ>,显然成立.故选:B.例24.(2022·重庆·高三开学考试)若tan 0θ>,则下列三角函数值为正值的是()A .sin θB .cos θC .sin 2θD .cos 2θ【答案】C 【解析】【分析】结合诱导公式、二倍角公式判断出正确选项.【详解】sin tan 0sin cos 0sin 22sin cos 0cos θθθθθθθθ=>⇒⋅>⇒=>,所以C 选项正确.当5π4θ=时,5ππtan 0,sin 0,cos 0,cos 2coscos 022θθθθ><<===,所以ABD 选项错误.故选:C例25.(2022·全国·高三专题练习(理))我们知道,在直角坐标系中,角的终边在第几象限,这个角就是第几象限角.已知点()cos ,tan P αα在第三象限,则角α的终边在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 【解析】【分析】本题首先可以根据题意得出cos 0α<、tan 0α<,然后得出sin 0α>,即可得出结果.【详解】因为点()cos ,tan P αα在第三象限,所以cos 0α<,tan 0α<,则sin 0α>,角α的终边在第二象限,故选:B.例26.(2022·全国·高三专题练习(理))已知sin 0,cos 0αα><,则()A .sin 20α>B .cos20α<C .tan02α>D .sin2α<【答案】C 【解析】【分析】由条件得到角α所在的象限,从而得到2α所在的象限,这样就可以得到答案.【详解】由sin 0,cos 0αα><知,α为第二象限角,所以2α为第一或第三象限角,所以tan02α>.故选:C.例27.(2022·江西南昌·三模(文))若角α的终边不在坐标轴上,且sin 2cos 2αα+=,则tan α=()A .43B .34C .23D .32【答案】A 【解析】【分析】结合易知条件和同角三角函数的平方关系即可求出cos α,从而求出sin α,根据sin tan cos ααα=即可求得结果.【详解】22sin cos 13cos 5sin 2cos 2ααααα⎧+=⇒=⎨+=⎩或cos 1α=,∵α的终边不在坐标轴上,∴3cos 5α=,∴34sin 2255α=-⨯=,∴sin 4tan cos 3ααα==.故选:A .例28.(2022·全国·高三专题练习(理))若α是第二象限角,则下列不等式正确的是()A .()cos 0α->B .tan02α>C .sin 20α>D .()sin 0α->【答案】B 【解析】【分析】根据α是第二象限角,分别求出四个选项中角所在的象限,再判断三角函数的符号,即可求解.【详解】对于A :因为()π2ππ2πZ 2k k k α+<<+∈,所以()ππ2π2πZ 2k k k α--<-<--∈,所以α-是第三象限角,所以()cos 0α-<,故选项A 不正确;对于B :因为()π2ππ2πZ 2k k k α+<<+∈,所以()ππππZ 422k k k α+<<+∈,当()2Z k n n =∈时,()ππ2π2πZ 422n n n α+<<+∈,此时2α是第一象限角,当()21Z k n n =+∈时,()5π3π2π2πZ 422n n n α+<<+∈,此时2α是第三象限角,所以2α是第一或第三象限角,所以tan02α>,故选项B 正确;对于C :因为()π2ππ2πZ 2k k k α+<<+∈,所以()π4π22π4πZ k k k α+<<+∈,所以2α是第三或第四象限角或终边落在y 轴非正半轴,所以sin 20α<,故选项C 不正确;对于D :因为()π2ππ2πZ 2k k k α+<<+∈,所以()ππ2π2πZ 2k k k α--<-<--∈,所以α-是第三象限角,所以()sin 0α-<,故选项D 不正确;故选:B.【方法技巧与总结】正弦函数值在第一、二象限为正,第三、四象限为负;.余弦函数值在第一、四象限为正,第二、三象限为负;.正切函数值在第一、三象限为正,第二、四象限为负.题型六:同角求值—条件中出现的角和结论中出现的角是相同的例29.(2022·安徽·合肥市第八中学模拟预测(文))若tan 2θ=-,则2sin 2cos 1θθ+的值为___________.【答案】23-【解析】【分析】利用二倍角公式和同角三角函数平方关系可构造正余弦齐次式,分子分母同除2cos θ,代入tan θ即可得到结果.【详解】2222sin 22sin cos 2tan 42cos 12cos sin 2tan 243θθθθθθθθ===-=-++++.故答案为:23-.例30.(2022·河北·沧县中学模拟预测)已知tan 3α=,则22sin 22sin cos2cos -=-αααα___________.【答案】43【解析】【分析】根据二倍角公式,结合同角三角函数齐次式关系求解即可.【详解】解:22222222sin 22sin 2sin cos 2sin 2tan 2tan 23234cos2cos sin tan 33---⨯-⨯====----ααααααααααα.故答案为:43例31.(2022·广东惠州·一模)已知tan 2α=,32παπ<<,则cos sin αα-=()A B .C D .【答案】A 【解析】【分析】由sin tan 2cos ααα==及22sin cos 1αα+=解出sin α与cos α即可求解.【详解】因为sin tan 2cos ααα==,且22sin cos 1αα+=,32παπ<<,所以sin α=cos α=,所以cos sin αα⎛-== ⎝⎭.故选:A.例32.(2022·全国·模拟预测)已知0πA <<,1sin cos 5A A +=,则1sin 21cos 2AA-=+()A .132B .118C .4918D .4932【答案】C 【解析】【分析】结合同角的平方关系以及二倍角公式即可求出结果.【详解】由1sin cos 5A A +=及22sin cos 1A A +=,解得4sin 5A =,3cos 5A =-或4cos 5A =,3sin 5A =-.因为sin 0A >,所以4sin 5A =,3cos 5A =-,所以24sin 22sin cos 25A A A ==-,227cos 2cos sin 25A A A =-=-,所以2411sin 2492571cos 218125A A +-==+-,故选:C.例33.(2022·海南·模拟预测)已知角α为第二象限角,tan 3α=-,则cos α=()A.BC.D【答案】A 【解析】【分析】由角所在的象限及同角三角函数的平方关系、商数关系求cos α即可.【详解】因为α是第二象限角,所以sin 0α>,cos 0α<,由sin tan 3cos ααα==-,22sin cos 1αα+=,可得:cos α=故选:A.例34.(2022·全国·高三专题练习)已知(,22ππα∈-,且212sin 5cos 9αα-=,则cos 2=α()A .13B .79-C .34-D .18【答案】B 【解析】【分析】利用同角公式化正弦为余弦,求出cos α的值,再利用二倍角的余弦公式求解即得.【详解】依题意,原等式化为:212(1cos )5cos 9αα--=,整理得:(4cos 3)(3cos 1)0αα+-=,因(,)22ππα∈-,则cos 0α>,解得:1cos 3α=,所以2217cos 22cos 12139αα⎛⎫=-=⨯-=- ⎪⎝⎭.故选:B例35.(2022·全国·高三阶段练习(理))若sin cos 2sin cos θθθθ+=-,则sin (1sin 2)sin cos θθθθ+=+()A .65-B .25-C .65D .25【答案】C 【解析】【分析】由已知得sin 3cos θθ=,从而sin ,cos θθ同号,即sin cos 0>θθ,然后由平方关系求得22cos ,sin θθ,进而求得sin cos θθ,求值式应用二倍角公式和平方关系变形后可得结论.【详解】因为sin cos 2sin cos θθθθ+=-,所以sin 3cos θθ=,所以sin ,cos θθ同号,即sin cos 0>θθ,22222sin cos 9cos cos 10cos 1θθθθθ+=+==,21cos 10θ=,从而29sin 10θ=,229sin cos 100θθ=,所以3sin cos 10θθ=,22sin (1sin 2)sin (sin cos 2sin cos )sin (sin cos )sin cos sin cos θθθθθθθθθθθθθθ+++==+++2936sin sin cos 10105θθθ=+=+=.故选:C .例36.(2022·广东广州·三模)已知sin cos x x +=()0,πx ∈,则cos2x 的值为()A .12B C .12-D .【答案】D 【解析】【分析】将sin cos x x +=2sin x cos x =-12<0,结合sin cos x x +=求出x 的范围,再利用22cos 2sin 21x x +=求解即可.【详解】解:将sin cos x x +=2sin x cos x =-12<0,所以π(,π)2x ∈,又因为sin cos x x +=0,所以π3π(,24x ∈,2x 3π(π,)2∈,又因为sin2x =-12,所以cos2x 故选:D.例37.(2022·湖北武汉·模拟预测)已知1sin cos 5θθ+=-,(0,)θπ∈,则sin cos θθ-=()A .15B .15-C .75D .75-【答案】C 【解析】【分析】利用平方关系,结合同角三角函数关系式,即可求解.【详解】()21sin cos 12sin cos 25θθθθ+=+=,242sin cos 025θθ=-<,()0,θπ∈ ,,2πθπ⎛⎫∴∈ ⎪⎝⎭,sin cos θθ>,()249sin cos 12sin cos 25θθθθ-=-=,所以7sin cos 5θθ-=.故选:C例38.(2022·山西晋中·模拟预测(理))若tan 1θ=-,则()cos 1sin 2sin cos θθθθ--等于()A .12B .2C .1-D .13-【答案】C 【解析】【分析】化简原式为2tan 1tan 1θθ-+即得解.【详解】解:原式()222cos sin 2sin cos cos cos (sin cos )=sin cos sin cos θθθθθθθθθθθθ-⋅+-=--22cos (sin cos )sin cos θθθθθ-=+2tan 12=1tan 12θθ--==-+.故选:C例39.(2022·湖北·模拟预测)已知()cos 3cos 02πααπ⎛⎫++-= ⎪⎝⎭,则3sin sin sin 2ααπα-=⎛⎫+ ⎪⎝⎭()A .35B .35C .310D .310-【答案】D 【解析】【分析】根据题意求出tan α,再将原式化简为:32sin sin tan tan 1sin 2αααπαα-=+⎛⎫+ ⎪⎝⎭,求解即可.【详解】因为()cos 3cos 02πααπ⎛⎫++-= ⎪⎝⎭,所以sin 3cos 0αα--=,所以tan 3α=-()232sin 1sin sin sin tan 3sin cos cos tan 110sin 2αααααααπααα--====-+⎛⎫+ ⎪⎝⎭.故选:D.【方法技巧与总结】(1)若已知角的象限条件,先确定所求三角函数的符号,再利用三角形三角函数定义求未知三角函数值.(2)若无象限条件,一般“弦化切”.题型七:诱导求值与变形例40.(2022·贵州·贵阳一中高三阶段练习(理))若π1sin 63α⎛⎫-= ⎪⎝⎭,则2πcos 23α⎛⎫+= ⎪⎝⎭()A .13B .13-C .79D .79-【答案】D 【解析】【分析】由三角函数的二倍角的余弦公式,结合诱导公式,即可求得答案.【详解】由题意得:2222πππππ27cos 22cos 12cos 12sin 113326699αααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=---=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选:D .例41.(2022·贵州·贵阳一中模拟预测(文))若1sin ,63a π⎛⎫+= ⎪⎝⎭则2cos 3a π⎛⎫+= ⎪⎝⎭()A .13B .13-C .79D .79-【答案】B 【解析】【分析】利用诱导公式计算可得;【详解】解:因为1sin 63a π⎛⎫+= ⎪⎝⎭,所以21cos cos sin 32663ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=++=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选:B.例42.(2022·青海·海东市教育研究室一模(理))()tan 165-︒=()A .2-B .2-+C .2D .2【答案】C 【解析】【分析】先利用诱导公式可得()tan 165tan15-︒=︒,在运用正切两角差公式()tan15tan 4530︒=︒-︒计算.【详解】()()()tan 165tan 18015tan15tan 4530-︒=-︒+︒=︒=︒-︒1tan 45tan 3021tan 45tan 30︒-︒===+︒︒故选:C .例43.(2022·安徽·合肥市第八中学模拟预测(文))已知2cos sin 022a ππα⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,则()tan -=πα()A .2B .—2C .12D .12-【答案】C 【解析】【分析】根据诱导公式五、六可得2sin cos 0αα+=,由同角三角函数的关系可得1tan 2α=-,结合诱导公式二计算即可.【详解】由已知得2sin cos 0αα+=,12sin cos tan 2ααα∴=-∴=-,,∴1tan()tan 2παα-=-=.故选:C【方法技巧与总结】(1)诱导公式用于角的变换,凡遇到与2π整数倍角的和差问题可用诱导公式,用诱导公式可以把任意角的三角函数化成锐角三角函数.(2)通过2,,2πππ±±±等诱导变形把所给三角函数化成所需三角函数.(3)2,,2παβππ±=±±±等可利用诱导公式把,αβ的三角函数化【过关测试】一、单选题1.(2022·宁夏·银川一中模拟预测(理))中国古代数学的瑰宝《九章算术》中记载了一种称为“曲池”的几何体,该几何体是上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分)现有一个如图所示的曲池,1AA 垂直于底面,13AA =,底面扇环所对的圆心角为2π,弧AD 长度是弧BC 长度的3倍,2CD =,则该曲池的体积为()A .92πB .5πC .112πD .6π【答案】D 【解析】【分析】利用柱体体积公式求体积.【详解】不妨设弧AD 所在圆的半径为R ,弧BC 所在圆的半径为r ,由弧AD 长度为弧BC 长度的3倍可知3R r =,22CD R r r =-==,所以1r =,3R =.故该曲池的体积22()364V R r ππ=⨯-⨯=.故选:D.2.(2022·海南中学高三阶段练习)二十四节气是中华民族上古农耕文明的产物,是中国农历中表示李节变迁的24个特定节令.如图,每个节气对应地球在黄道上运动15︒所到达的一个位置.根据描述,从立冬到立春对应地球在黄道上运动所对圆心角的弧度数为()A .π3-B .π2C .5π12D .π3【答案】B【解析】【分析】根据条件得到运行度数为6×15°,化为弧度即可得解.【详解】根据题意,立春是立冬后的第六个节气,故从立冬到立春相应于地球在黄道上逆时针运行了61590︒⨯=︒,所以从立冬到立春对应地球在黄道上运动所对圆心角的弧度数为π2.故选:B3.(2022·河北·模拟预测)已知圆锥的母线长为2,其侧面展开图是圆心角等于23π的扇形,则该圆锥的体积为()A B .1627πC D .1681π【答案】C 【解析】【分析】设圆锥的底面半径为r ,高为h ,则由题意可得2223r ππ=⨯,从而可求出半径r ,再求出h ,进而可求出其体积【详解】设圆锥的底面半径为r ,高为h ,则由题意可得2223r ππ=⨯,解得23r =,所以h ===所以圆锥的体积为22112333V r h ππ⎛⎫==⨯=⎪⎝⎭故选:C4.(2022·福建省福州格致中学模拟预测)已知角θ的大小如图所示,则1sin 2cos 2θθ+=()A .5-B .5C .15-D .15【答案】A 【解析】【分析】由图中的信息可知tan 54πθ⎛⎫+=- ⎪⎝⎭,化简1sin 2cos 2θθ+即可.【详解】由图可知,tan 54πθ⎛⎫+=- ⎪⎝⎭,()()()22222cos sin 1sin 2sin cos 2sin cos cos sin cos 2cos sin cos sin cos sin cos sin θθθθθθθθθθθθθθθθθθ+++++===--+-tantan 1tan 4tan 51tan 41tan tan 4πθθπθπθθ++⎛⎫===+=- ⎪-⎝⎭-;故选:A.5.(2022·江西·临川一中模拟预测(文))tan195︒=()A.2-B.2-+C .2D .2【答案】C 【解析】【分析】利用诱导公式及两角差的正切公式计算可得;【详解】解:()()tan195tan 18015tan15tan 4530︒=︒+︒=︒=︒-︒tan 45tan 301tan 45tan 30︒-︒=+︒︒12==故选:C6.(2022·江苏·南京市天印高级中学模拟预测)若21sin2512sin αα+=-,则tan α=()A .23-B .32-C .23D .32【答案】C 【解析】【分析】通过“1”的替换,齐次化,然后得到关于tan α的方程,解方程即可【详解】22221sin 2(cos sin )cos sin 1tan 512sin cos sin cos sin 1tan αααααααααααα++++====----,解得2tan 3α=故选:C7.(2022·四川成都·模拟预测(文))已知向量(3cos 2,sin )a αα= ,(2,cos 5sin )b αα=+ ,π0,2α⎛⎫∈ ⎪⎝⎭,若a b ⊥ ,则tan α=()A .2B .-2C .3D .34【答案】C 【解析】【分析】由a b ⊥可得向量的数量积等于0,化简可得6cos 2sin (cos 5sin )0αααα++=,结合二倍角公式以及同角的三角函数关系式化为226tan tan n 10ta ααα-++=,可求得答案.【详解】由题意a b ⊥可得0a b ⋅= ,即6cos 2sin (cos 5sin )0αααα++=,即2226(cos sin )sin cos 5sin 0ααααα-++=,故22226cos sin sin c sin os 0cos αααααα-++=,即226tan tan n 10ta ααα-++=,由于π0,2α⎛⎫∈ ⎪⎝⎭,故tan 3,tan 2αα==-(舍去),故选:C8.(2022·黑龙江·哈九中模拟预测(文))数学家华罗庚倡导的“0.618优选法”在各领域都应用广泛,0.618就是黄金分割比m =2sin18︒).A .4B 1+C .2D 1【答案】A 【解析】【分析】根据2sin18m ︒=,结合三角函数的基本关系式,诱导公式和倍角公式,即可求解.【详解】根据题意,可得2sin182cos72m =︒=︒,4sin144cos54︒==︒()4sin 90544cos544cos54cos54︒+︒︒===︒︒.故选:A .二、多选题9.(2022·全国·高三专题练习)下列说法正确的有()A .经过30分钟,钟表的分针转过π弧度B .1801radπ︒=C .若sin 0θ>,cos 0θ<,则θ为第二象限角D .若θ为第二象限角,则2θ为第一或第三象限角【答案】CD 【解析】【分析】对于A ,利用正负角的定义判断;对于B ,利用角度与弧度的互化公式判断;对于C ,由sin 0θ>求出θ的范围,由cos 0θ<求出θ的范围,然后求交集即可;对于D ,由θ是第二象限角,可得222k k ππθππ+<<+,k Z ∈,然后求2θ的范围可得答案【详解】对于A ,经过30分钟,钟表的分针转过π-弧度,不是π弧度,所以A 错;对于B ,1︒化成弧度是rad 180π,所以B 错误;对于C ,由sin 0θ>,可得θ为第一、第二及y 轴正半轴上的角;由cos 0θ<,可得θ为第二、第三及x 轴负半轴上的角.取交集可得θ是第二象限角,故C 正确;对于D :若θ是第二象限角,所以222k k ππθππ+<<+,则()422k k k Z πθπππ+<<+∈,当2()k n n Z 时,则22()422n n n Z πθπππ+<<+∈,所以2θ为第一象限的角,当21()k n n Z =+∈时,5322()422n n n Z πθπππ+<<+∈,所以2θ为第三象限的角,综上,2θ为第一或第三象限角,故选项D 正确.故选:CD.10.(2022·全国·高三专题练习)中国传统折扇文化有着极其深厚的底蕴,一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形(如图)的面积为1S ,圆心角为1α,圆面中剩余部分的面积为2S ,圆心角为2α,当1S 与2S0.618≈(黄金分割比)时,折扇看上去较为美观,那么()A .1127.5α=︒B .1137.5α=︒C.21)απ=D.12αα=【答案】BCD 【解析】【分析】利用扇形的面积公式以及角度制与弧度制的互化即可求解.【详解】设扇形的半径为R,由211122221212R S S R αααα===,故D 正确;由122ααπ+=,。
高中数学高考三角函数重点题型解析及常见试题、答案+数列常见题型总结

高中数学高考三角函数重点题型解析及常见试题、答案+数列常见题型总结高考三角函数重点题型解析及常见试题(附参考答案)三角函数的主要考点是:三角函数的概念和性质(单调性,周期性,奇偶性,最值),三角函数的图象,三角恒等变换(主要是求值),三角函数模型的应用,正余弦定理及其应用,平面向量的基本问题及其应用.题型1 三角函数的最值:最值是三角函数最为重要的内容之一,其主要方法是利用正余弦函数的有界性,通过三角换元或者是其它的三角恒等变换转化问题.例 1 若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =++的最大值是( )A .1-BC .12-+ D .12+分析:三角形的最小内角是不大于3π的,而()2sin cos 12sin cos x x x x +=+,换元解决.解析:由03x π<≤,令sin cos ),4t x x x π=+=+而74412x πππ<+≤,得1t <≤.又212sin cos t x x =+,得21sin cos 2t x x -=,得2211(1)122t y t t -=+=+-,有2111022y -+<≤=.选择答案D . 点评:涉及到sin cos x x ±与sin cos x x 的问题时,通常用换元解决.解法二:1sin cos sin cos sin 242y x x x x x x π⎛⎫=++=++ ⎪⎝⎭,当4x π=时,max 12y =,选D 。
例2.已知函数2()2sin cos 2cos f x a x x b x =+.,且(0)8,()126f f π==.(1)求实数a ,b 的值;(2)求函数)(x f 的最大值及取得最大值时x 的值.分析:待定系数求a ,b ;然后用倍角公式和降幂公式转化问题. 解析:函数)(x f 可化为()sin 2cos 2f x a x b x b =++.(1)由(0)8f = ,()126f π=可得(0)28f b ==,3()12622f a b π=+= ,所以4b =,a =(2)()24cos 248sin(2)46f x x x x π=++=++,故当2262x k πππ+=+即()6x k k Z ππ=+∈时,函数()f x 取得最大值为12.点评:结论()sin cos a b θθθϕ+=+是三角函数中的一个重要公式,它在解决三角函数的图象、单调性、最值、周期以及化简求值恒等式的证明中有着广泛应用,是实现转化的工具,是联系三角函数问题间的一条纽带,是三角函数部分高考命题的重点内容.题型 2 三角函数的图象:三角函数图象从“形”上反应了三角函数的性质,一直是高考所重点考查的问题之一.例3.(2009年福建省理科数学高考样卷第8题)为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位分析:先统一函数名称,在根据平移的法则解决. 解析:函数π55cos 2sin 2sin 2sin 2332612y x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=++=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故要将函数sin 2y x =的图象向左平移5π12个长度单位,选择答案A . 例4 (2008高考江西文10)函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是分析:分段去绝对值后,结合选择支分析判断. 解析:函数2tan ,tan sin tan sin tan sin 2sin ,tan sin x x x y x x x x x x x <⎧=+--=⎨≥⎩当时当时.结合选择支ABCD-和一些特殊点,选择答案D . 点评:本题综合考察三角函数的图象和性质,当不注意正切函数的定义域或是函数分段不准确时,就会解错这个题目.题型3 用三角恒等变换求值:其主要方法是通过和与差的,二倍角的三角变换公式解决.例5 (2008高考山东卷理5)已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭则7πsin 6α⎛⎫+ ⎪⎝⎭的值是A. BC .45-D .45分析:所求的7πsin sin()66παα⎛⎫+=+ ⎪⎝⎭,将已知条件分拆整合后解决. 解析: C.34cos sin sin cos sin 6522565ππααααα⎛⎫⎛⎫-+=⇔+=⇔+= ⎪ ⎪⎝⎭⎝⎭,所以74sin sin 665ππαα⎛⎫⎛⎫+=-+=- ⎪ ⎪⎝⎭⎝⎭. 点评:本题考查两角和与差的正余弦、诱导公式等三角函数的知识,考查分拆与整合的数学思想和运算能力.解题的关键是对πcos sin 6αα⎛⎫-+= ⎪⎝⎭ 例6(2008高考浙江理8)若cos 2sin αα+=则tan α= A .21B .2C .21-D .2- 分析:可以结合已知和求解多方位地寻找解题的思路.()αϕ+=sin ϕϕ==,即1tan 2ϕ=,再由()sin 1αϕ+=-知道()22k k παϕπ+=-∈Z ,所以22k παπϕ=--,所以sin cos 2tan tan 2tan 222sin cos 2k πϕππϕαπϕϕπϕϕ⎛⎫-- ⎪⎛⎫⎛⎫⎝⎭=--=--=== ⎪ ⎪⎛⎫⎝⎭⎝⎭-- ⎪⎝⎭.方法二:将已知式两端平方得()2222222cos 4cos sin 4sin 55sin cos sin 4sin cos 4cos 0tan 4tan 40tan 2ααααααααααααα++==+⇒-+=⇒-+=⇒=方法三:令sin 2cos t αα-=,和已知式平方相加得255t =+,故0t =, 即sin 2cos 0αα-=,故tan 2α=.方法四:我们可以认为点()cos ,sin M αα在直线2x y +=而点M 又在单位圆221x y +=上,解方程组可得5x y ⎧=⎪⎪⎨⎪=-⎪⎩,从而tan 2y x α==.这个解法和用方程组22cos 2sin sin cos 1αααα⎧+=⎪⎨+=⎪⎩求解实质上是一致的.方法五:α只能是第三象限角,排除C .D .,这时直接从选择支入手验证,由于12计算麻烦,我们假定tan 2α=,不难由同角三角函数关系求出sin ,cos 55αα=-=-,检验符合已知条件,故选B . 点评:本题考查利用三角恒等变换求值的能力,试题的根源是考生所常见的“已知()1sin cos ,0,5βββπ+=∈,求tan β的值(人教A 版必修4第三章复习题B 组最后一题第一问)”之类的题目 ,背景是熟悉的,但要解决这个问题还需要考生具有相当的知识迁移能力.题型4 正余弦定理的实际应用:这类问题通常是有实际背景的应用问题,主要表现在航海和测量上,解决的主要方法是利用正余弦定理建立数学模型. 例7.(2008高考湖南理19)在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A .某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45且与点A相距B ,经过40分钟又测得该船已行驶到点A 北偏东45θ+ (其中sin 26θ=,090θ<<)且与点A相距海里的位置C .(1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.分析:根据方位角画出图形,如图.第一问实际上就是求BC 的长,在ABC ∆中用余弦定理即可解决;第二问本质上求是求点E 到直线BC 的距离,即可以用平面解析几何的方法,也可以通过解三角形解决. 解析:(1)如图,402AB =2, 1013AC =26,sin 26BAC θθ∠==由于090θ<<,所以226526cos 1()2626θ=-= 由余弦定理得222cos 10 5.BC AB AC AB AC θ+-=1051553=/小时). (2)方法一 : 如上面的图所示,以A 为原点建立平面直角坐标系, 设点,B C 的坐标分别是()()1122,,,B x y C x y ,BC 与x 轴的交点为D . 由题设有, 112402x y AB ===, 2cos 1013cos(45)30x AC CAD θ=∠=-=, 2sin 1013sin(45)20.y AC CAD θ=∠=-=所以过点,B C 的直线l 的斜率20210k ==,直线l 的方程为240y x =-. 又点()0,55E -到直线l 的距离35714d ==<+,所以船会进入警戒水域.解法二: 如图所示,设直线AE 与BC 的延长线相交于点Q .在ABC ∆中,由余弦定理得,222cos 2AB BC AC ABC AB BC +-∠=⋅=2222402105⨯⨯=31010.从而2910sin 1cos 110ABC ABC ∠=-∠=-= 在ABQ ∆中,由正弦定理得,102sin 1040sin(45)2210AB ABC AQ ABC ∠===-∠⨯. 由于5540AE AQ =>=,所以点Q 位于点A 和点E 之间,且15EQ AE AQ =-=. 过点E 作EP BC ⊥于点P ,则EP 为点E 到直线BC 的距离. 在QPE ∆Rt 中,5sin sin sin(45)15357.5PE QE PQE QE AQC QE ABC =∠=⋅∠=⋅-∠=⨯=<所以船会进入警戒水域.点评:本题以教材上所常用的航海问题为背景,考查利用正余弦定理解决实际问题的能力,解决问题的关键是根据坐标方位画出正确的解题图. 本题容易出现两个方面的错误,一是对方位角的认识模糊,画图错误;二是由于运算相对繁琐,在运算上出错. 题型5 三角函数与平面向量的结合:三角函数与平面向量的关系最为密切,这二者的结合有的是利用平面向量去解决三角函数问题,有的是利用三角函数去解决平面向量问题,更多的时候是平面向量只起衬托作用,三角函数的基本问题才是考查的重点.例8(2009年杭州市第一次高考科目教学质量检测理科第18题)已知向量)1,(sin ),2cos ,cos 2(x b x x a ωωω==,(0>ω),令b a x f ⋅=)(,且)(x f 的周期为π.(1) 求4f π⎛⎫⎪⎝⎭的值;(2)写出()f x 在]2,2[ππ-上的单调递增区间. 分析:根据平面向量数量积的计算公式将函数()f x 的解析式求出来,再根据)(x f 的周期为π就可以具体确定这个函数的解析式,下面只要根据三角函数的有关知识解决即可. 解析:(1)x x x b a x f ωωω2cos sin cos 2)(+=⋅=x x ωω2cos 2sin +=)42sin(2πω+=x ,∵)(x f 的周期为π. ∴1=ω, )42sin(2)(π+=x x f ,12cos 2sin )4(=π+π=π∴f .(2) 由于)42sin(2)(π+=x x f ,当πππππk x k 224222+≤+≤+-(Z k ∈)时,()f x 单增,即ππππk x k +≤≤+-883(Z k ∈),∵∈x ]2,2[ππ- ∴()f x 在]2,2[ππ-上的单调递增区间为]8,83[ππ-.点评:本题以平面向量的数量积的坐标运算为入口,但本质上是考查的三角函数的性质,这是近年来高考命题的一个热点. 例9 (2009江苏泰州期末15题)已知向量()3sin ,cos a αα=,()2sin ,5sin 4cos b ααα=-,3,22παπ⎛⎫∈⎪⎝⎭,且a b ⊥.(1)求tan α的值; (2)求cos 23απ⎛⎫+⎪⎝⎭的值. 分析:根据两个平面向量垂直的条件将问题转化为一个三角函数的等式,通过这个等式探究第一问的答案,第一问解决后,借助于这个结果解决第二问. 解析:(1)∵a b ⊥,∴0a b ⋅=.而()3sin ,cos a αα=,()2sin ,5sin 4cos b ααα=-,故226sin 5sin cos 4cos 0a b αααα⋅=+-=,由于cos 0α≠,∴26tan 5tan 40αα+-=, 解得4tan 3α=-,或1tan 2α=.∵3π 2π2α⎛⎫∈ ⎪⎝⎭,,tan 0α<, 故1tan 2α=(舍去).∴4tan 3α=-. (2)∵3π 2π2α⎛⎫∈ ⎪⎝⎭,,∴3ππ24α∈(,). 由4tan 3α=-,求得1tan 22α=-,tan 22α=(舍去).∴sincos 22αα=cos 23απ⎛⎫+= ⎪⎝⎭ππcos cos sin sin 2323αα-=12= . 点评:本题以向量的垂直为依托,实质上考查的是三角恒等变换.在解题要注意角的范围对解题结果的影响.题型6 三角形中的三角恒等变换:这是一类重要的恒等变换,其中心点是三角形的内角和是π,有的时候还可以和正余弦定理相结合,利用这两个定理实现边与角的互化,然后在利用三角变换的公式进行恒等变换,是近年来高考的一个热点题型.例10.(安徽省皖南八校2009届高三第二次联考理科数学17题)三角形的三内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量(,),(,)m c a b a n a b c =--=+,若//m n ,(1)求角B 的大小;(2)求sin sin A C +的取值范围. 分析:根据两个平面向量平行的条件将向量的平行关系转化为三角形边的关系,结合余弦定理解决第一问,第一问解决后,第二问中的角,A C 就不是独立关系了,可以用其中的一个表达另一个,就把所要解决的问题归结为一个角的三角函数问题. 解析:(1)//,()()()m n c c a b a a b ∴---+,222222,1a c b c ac b a ac +-∴-=-∴=. 由余弦定理,得1cos ,23B B π==.(2)2,3A B C A C ππ++=∴+=,222sin sin sin sin()sin sin cos cos sin 333A C A A A A A πππ∴+=+-=+-3sin )26A A A π=+=+ 250,3666A A ππππ<<∴<+<1sin()1,sin sin 26A A C π∴<+≤<+≤点评:本题从平面向量的平行关系入手,实质考查的是余弦定理和三角形中的三角恒等变换,解决三角形中的三角恒等变换要注意三角形内角和定理和角的范围对结果的影响.题型7 用平面向量解决平面图形中的问题:由于平面向量既有数的特征(能进行类似数的运算)又具有形的特征,因此利用平面向量去解决平面图形中的问题就是必然的了,这在近年的高考中经常出现.考试大纲明确指出用会用平面向量解决平面几何问题.例11. 如图,已知点G 是ABO ∆的重心,点P 在OA 上,点Q 在OB 上,且PQ 过ABO ∆ 的重心G ,OP mOA =,OQ nOB =,试证明11m n+为常数,并求出这个常数.分析:根据两向量共线的充要条件和平面向量基本定理,把题目中需要的向量用基向量表达出来,本题的本质是点,,P G Q 共线,利用这个关系寻找,m n 所满足的方程. 解析:令OA a =,OB b =,则OP ma =,OQ nb =,设AB 的中点为M , 显然1().2OM a b =+,因为G 是ABC ∆的重心,所以21()33OG OM a b ==⋅+.由P 、G 、Q 三点共线,有PG 、GQ 共线,所以,有且只有一个实数λ,使 PG GQ λ=,而111()()333PG OG OP a b ma m a b =-=+-=-+, 111()()333GQ OQ OG nb a b a n b =-=-+=-+-,所以1111()[()]3333m a b a n b λ-+=-+-.又因为a 、b 不共线,由平面向量基本定理得⎪⎪⎩⎪⎪⎨⎧-=-=-)31(313131n m λλ,消去λ,整理得3mn m n =+,故311=+nm .结论得证.这个常数是3. 【点评】平面向量是高中数学的重要工具,它有着广泛的应用,用它解决平面几何问题是一个重要方面,其基本思路是根据采用基向量或坐标把所要解决的有关的问题表达出来,再根据平面向量的有关知识加以处理.课标区已把几何证明选讲列入选考范围,应引起同学们的注意.题型8 用导数研究三角函数问题:导数是我们在中学里引进的一个研究函数的重要工具,利用导数探讨三角函数问题有它极大的优越性,特别是单调性和最值. 例12. 已知函数22()cos 2sin cos sin f x x t x x x =+-,若函数()f x 在区间(,]126ππ上是增函数,求实数t 的取值范围. 分析:函数的()f x 导数在(,]126ππ大于等于零恒成立.解析:函数()f x 在区间(,]126ππ上是增函数,则等价于不等式()0f x '≥在区间(,]126ππ上恒成立,即()2sin 22cos 20f x x t x '=-+≥在区间(,]126ππ上恒成立, 从而tan 2t x ≥在区间(,]126ππ上恒成立, 而函数tan 2y x =在区间(,]126ππ上为增函数,所以函数tan 2y x =在区间(,]126ππ上的最大值为max tan(2)6y π=⨯=,所以t ≥为所求.点评:用导数研究函数问题是导数的重要应用之一,是解决高中数学问题的一种重要的思想意识.本题如将()f x 化为()sin 2cos 2)f x t x x x ϕ=+=+的形式,则ϕ与t 有关,讨论起来极不方便,而借助于导数问题就很容易解决.题型9 三角函数性质的综合应用:将三角函数和其它的知识点相结合而产生一些综合性的试题,解决这类问题往往要综合运用我们的数学知识和数学思想,全方位的多方向进行思考.例13. 设二次函数2()(,)f x x bx c b c R =++∈,已知不论α,β为何实数,恒有(sin )0f α≥和(2cos )0f β+≤.(1)求证:1b c +=- ; (2)求证:3c ≥;(3)若函数(sin )f α的最大值为8,求b ,c 的值.分析:由三角函数的有界性可以得出()10f =,再结合有界性探求.解析:(1)因为1sin 1α-≤≤且(sin )0f α≥恒成立,所以(1)0f ≥,又因为12cos 3β≤+≤且(2cos )0f β+≤恒成立,所以(1)0f ≤, 从而知(1)0f =,10b c ++=,即1b c +=-.(2)由12cos 3β≤+≤且(2cos )0f β+≤恒成立得(3)0f ≤, 即 930b c ++≤,将1b c =--代如得9330c c --+≤,即3c ≥. (3)22211(sin )sin(1)sin (sin )()22c c f c c c αααα++=+--+=-+-, 因为122c+≥,所以当sin 1α=-时max [(sin )]8f α=, 由1810b c b c -+=⎧⎨++=⎩ , 解得 4b =-,3c =.点评:本题的关键是1b c +=-,由(sin )0(2cos )0f f αβ≥⎧⎨+≤⎩ 利用正余弦函数的有界性得出()()1010f f ≥⎧⎪⎨≤⎪⎩,从而(1)0f =,使问题解决,这里正余弦函数的有界性在起了重要作用. 【专题训练与高考预测】 一、选择题1.若[0,2)απ∈,sin cos αα=-,则α的取值范围是( )A .[0,]2πB .[,]2ππ C .3[,]2ππ D .3[,2)2ππ 2.设α是锐角,且lg(1cos )m α-=,1lg 1cos n α=+,则lgsin α=( ) A .m n - B .11()2m n - C .2m n - D .11()2n m-3.若00||2sin15,||4cos15a b ==,a 与b 的夹角为30。
三角函数题型总结

三角函数题型总结三角函数是数学中的重要分支之一,它在几何学、物理学、工程学和其他领域中都有广泛的应用。
在学习三角函数时,掌握各种题型的解题方法对于提高数学水平非常关键。
本文将针对三角函数的常见题型进行总结,希望对学习三角函数的同学们有所帮助。
一、基本概念题型1. 三角函数的定义三角函数包括正弦函数、余弦函数、正切函数等,它们都是以一个角为自变量的函数。
在求解三角函数的题目时,首先需要熟悉各个三角函数的定义,并且要能够准确地在单位圆上确定角对应的三角函数值。
2. 角度与弧度的转换在三角函数的运算中,经常需要将角度转换为弧度,或者将弧度转换为角度。
学生需要掌握角度与弧度的相互转换的方法,以确保在计算时能够准确无误。
3. 角度的周期性在学习三角函数中,需要注意到三角函数的周期性。
例如正弦函数和余弦函数的周期均为360度或2π。
了解角度的周期性可以帮助学生简化计算过程,提高解题效率。
二、简单的三角函数方程题型1. 解三角函数方程解三角函数方程是三角函数题目中的常见类型,例如sinx=0、cosx=1/2等。
解这类方程的关键是要找到解的范围,并且要考虑周期性对解的影响。
三、复杂的三角函数公式题型1. 三角函数的和差化积三角函数的和差化积是求解三角函数的公式题型中的重要部分。
学生需要学会如何将sin(a±b)、cos(a±b)等形式的式子转化为较为简单的形式,以便于进行后续的计算。
2. 三角函数的积化和差三角函数的积化和差也是三角函数公式题型中的常见形式,例如sinasinb=1/2[cos(a-b)-cos(a+b)]、cosacosb=1/2[cos(a-b)+cos(a+b)]等。
在求解这类题目时,需要运用三角函数的性质和恒等式进行化简,然后再进行计算。
3. 三角函数的倍角公式与半角公式三角函数的倍角公式与半角公式在三角函数的公式题型中也是非常重要的一部分。
学生需要掌握sin2x、cos2x、tan2x等的表示方法,以及它们与角度x的关系,这样可以在计算中更加方便和简化。
((完整版))高中数学三角函数知识点总结和常见题类型归纳,推荐文档

高中数学三角函数常见习题类型及解法高考试题中出现的三角函数问题,难度相对较低,重点突出。
该类试题集中在第15题的位置,共分为两种考察形式:解三角形和三角函数变换。
因此,在复习过程中既要注重三角知识的基础性,突出三角函数的图象、周期性、单调性、奇偶性、对称性等性质,以及化简、求函数值和最值等重点内容的复习;又要注重三角知识的工具性,突出三角与代数、几何的综合联系,以及三角知识的应用意识。
一、知识整合1.熟练掌握三角变换公式,理解每个公式的含义以及常规使用方法等;熟悉三角变换常用的方法——化弦法,降幂法,角的变换法等;并能灵活应用这些方法进行三角函数的求值、化简;掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题。
2.熟练掌握正弦函数、余弦函数、正切函数的性质,并能用它研究复合函数的性质;熟练掌握正弦函数、余弦函数、正切函数的图象特点,会用五点作图法画出函数y=Asin( x+ )的图象;理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化。
3.熟练掌握三角形中的正弦定理和余弦定理,明确两个定理的应用条件。
能够依托题目给的不同已知条件,灵活运用两个定理解决实际问题。
二、高考考点分析近些年北京高考中本部分所占分值大约是13-18分,主要以解答题的形式出现,少数时候会有填空题。
主要考察内容按难度分,我认为有以下两个层次:第一层次:通过对诱导公式和倍角公式等公式的灵活运用,解决有关三角函数基本性质的问题,如判断符号、求值、求周期、判断奇偶性等;通过正弦定理和余弦定理的灵活运用,解决有关三角形的简单问题,如求角、边长等。
第二层次:充分利用三角函数作为一种特殊函数的图象及周期性、奇偶性、单调性、有界性等特殊性质,解决较复杂的函数问题,如:求复合函数值域。
三、方法技巧(1)常数的代换:特别是:1=cos2θ+sin2θ。
(2)项的分拆与角的配凑。
(3)降幂扩角法和升幂半角法。
高三复习:三角函数-知识点、题型方法归纳

高三复习:三角函数-知识点、题型方法
归纳
一、知识点概述
1. 三角函数的定义和性质
- 正弦函数、余弦函数、正切函数的定义及其在数轴上的周期性;
- 三角函数的基本性质和关系:正弦函数与余弦函数的关系,正切函数与正弦函数、余弦函数的关系。
2. 三角函数的图像与性质
- 正弦函数、余弦函数的图像、特征和性质;
- 正切函数的图像、特征和性质。
3. 三角函数的基本变换
- 函数y = A · sin(Bx + C) + D的图像、特征和性质;
- 函数y = A · cos(Bx + C) + D的图像、特征和性质;
- 函数y = A · tan(Bx + C) + D的图像、特征和性质。
二、题型方法归纳
1. 计算题
- 利用三角函数的定义和性质,求解给定角的正弦、余弦、正切值;
- 利用三角函数的图像和性质,求解特定函数值。
2. 解方程和不等式
- 利用三角函数的定义和性质,解三角方程和三角不等式。
3. 图像分析题
- 分析三角函数的图像特征,如振幅、周期、对称轴等;
- 利用函数的基本变换,画出特定三角函数图像。
4. 证明题
- 利用三角函数的基本性质和关系,进行数学推导和证明。
三、总结
三角函数是高中数学的重要内容,通过复和掌握三角函数的知识点和题型方法,可以帮助学生提高解题能力和应用能力。
在复过程中,建议注重基本概念的理解、公式的记忆和方法的灵活运用,以及多做相关题目进行巩固和实践。
以上是三角函数复习的知识点和题型方法归纳,希望对你的高三复习有所帮助。
祝你学业进步,取得好成绩!。
高三高考文科数学《三角函数》题型归纳与汇总

高三高考文科数学《三角函数》题型归纳与汇总高考文科数学题型分类汇总:三角函数篇本文旨在汇总高考文科数学中的三角函数题型,包括定义法求三角函数值、诱导公式的使用、三角函数的定义域或值域、三角函数的单调区间、三角函数的周期性、三角函数的图象变换和三角函数的恒等变换。
题型一:定义法求三角函数值这类题目要求根据三角函数的定义,求出给定角度的正弦、余弦、正切等函数值。
这类题目的难点在于熟练掌握三角函数的定义,以及对角度的准确度量。
题型二:诱导公式的使用诱导公式是指通过对已知的三角函数进行代数变形,得到新的三角函数值的公式。
这类题目需要熟练掌握各种诱导公式,以及灵活应用。
题型三:三角函数的定义域或值域这类题目要求确定三角函数的定义域或值域。
需要掌握各种三角函数的性质和图象,以及对函数的定义域和值域的概念和计算方法。
题型四:三角函数的单调区间这类题目要求确定三角函数的单调区间,即函数在哪些区间上单调递增或单调递减。
需要掌握各种三角函数的性质和图象,以及对函数单调性的判定方法。
题型五:三角函数的周期性这类题目要求确定三角函数的周期。
需要掌握各种三角函数的性质和图象,以及对函数周期的计算方法。
题型六:三角函数的图象变换这类题目要求根据给定的变换规律,确定三角函数图象的变化。
需要掌握各种三角函数的性质和图象,以及对图象变换的计算方法。
题型七:三角函数的恒等变换这类题目要求根据已知的三角函数恒等式,进行变形和推导。
需要掌握各种三角函数的恒等式,以及灵活应用。
2)已知角α的终边经过一点P,则可利用点P在单位圆上的性质,结合三角函数的定义求解.在求解过程中,需注意对角终边位置进行讨论,避免忽略或重复计算.例2已知sinα=0.8,且α∈[0,π2],则cosα=.答案】0.6解析】∵sinα=0.8,∴cosα=±√1-sin²α=±0.6XXXα∈[0,π2],∴cosα>0,故cosα=0.6易错点】忘记对cosα的正负进行讨论思维点拨】在求解三角函数值时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.同时,需根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型二诱导公式的使用例3已知tanα=√3,且α∈(0,π2),则sin2α=.答案】34解析】∵ta nα=√3,∴α=π/30<α<π/2,∴0<2α<πsin2α=sin(π-2α)=sinπcos2α-cosπsin2α=-sin2α2sin2α=0,∴sin2α=0sin2α=3/4易错点】忘记利用诱导公式将sin2α转化为sin(π-2α)思维点拨】在解决三角函数的复合问题时,可利用诱导公式将一个三角函数转化为其他三角函数的形式,从而简化计算.同时,需注意根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型三三角函数的定义域或值域例4已知f(x)=2sinx+cosx,则f(x)的值域为.答案】[−√5,√5]解析】∵f(x)=2sinx+cosx=√5(sin(x+α)+sin(α-x)),其中tanα=-121≤sin(x+α)≤1,-1≤sin(α-x)≤15≤f(x)≤√5f(x)的值域为[−√5,√5]易错点】忘记利用三角函数的性质将f(x)转化为含有同一三角函数的形式思维点拨】在确定三角函数的定义域或值域时,可利用三角函数的性质将其转化为含有同一三角函数的形式,从而方便计算.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其定义域或值域.题型四三角函数的单调区间例5已知f(x)=sin2x,则f(x)在区间[0,π]上的单调递增区间为.答案】[0,π/4]∪[3π/4,π]解析】∵f'(x)=2cos2x=2(2cos²x-1)=4cos²x-2f'(x)>0的充要条件为cosx12f(x)在[0,π/4]∪[3π/4,π]上单调递增易错点】忘记将f'(x)化简为含有同一三角函数的形式,或对于三角函数的单调性判断不熟练思维点拨】在求解三角函数的单调区间时,需先求出其导数,并将其化简为含有同一三角函数的形式.然后,利用三角函数的单调性进行判断,得出函数的单调区间.题型五三角函数的周期性例6已知f(x)=sin(2x+π),则f(x)的周期为.答案】π解析】∵sin(2x+π)=sin2xcosπ+cos2xsinπ=-sin2xf(x)的周期为π易错点】忘记利用三角函数的周期性质思维点拨】在求解三角函数的周期时,需利用三角函数的周期性质,即f(x+T)=f(x),其中T为函数的周期.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其周期.题型六三角函数的图象变换例7已知f(x)=sinx,g(x)=sin(x-π4),则g(x)的图象相对于f(x)的图象向左平移了.答案】π4解析】∵g(x)=sin(x-π4)=sinxcosπ4-cosxsinπ4g(x)的图象相对于f(x)的图象向左平移π4易错点】忘记利用三角函数的图象变换公式,或对于三角函数的图象不熟悉思维点拨】在求解三角函数的图象变换时,需利用三角函数的图象变换公式,即y=f(x±a)的图象相对于y=f(x)的图象向左(右)平移a个单位.同时,需对于各种三角函数的图象有一定的了解,以便准确判断图象的变化情况.题型七三角函数的恒等变换例8已知cosα=12,且α∈(0,π2),则sin2α的值为.答案】34解析】∵cosα=12,∴sinα=√3/2sin2α=2sinαcosα=√3/2×1/2=3/4易错点】忘记利用三角函数的恒等变换公式思维点拨】在求解三角函数的恒等变换时,需熟练掌握三角函数的基本恒等式和常用恒等式,从而简化计算.同时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.已知角α的终边所在的直线方程,可以通过设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义来解决相关问题。
高考数学中的三角函数例题分类讲解
高考数学中的三角函数例题分类讲解高考数学中的三角函数是考试中比较重要的知识点之一,也是考生普遍比较困惑的内容。
本文将针对高考数学中的三角函数例题进行分类讲解,并且通过实例展示每种类型的题目的解题思路。
一、求三角函数值的例题求三角函数值是高考中比较基础的一种考查形式,考生只需要根据所给的角度大小,应用三角函数公式求解即可。
常见的求三角函数值的例题有以下几种形式:1. 已知角度$x$,求$\sin{x}$,$\cos{x}$及$tan{x}$的值。
例题:已知角度$x=37^{\circ}$,求$\sin{x}$,$\cos{x}$和$tan{x}$的值。
解题思路:根据三角函数定义以及常识可知,$37^{\circ}$角位于第一象限,其余角函数值为$\sin{x}=\frac{\sqrt{3}}{2}$,$\cos{x}=\frac{1}{2}$,$tan{x}=\frac{\sqrt{3}}{3}$。
值得注意的是,此处的结果是最简结果,因此在做题过程中应注意分母的约分。
2. 已知$\sin{x}=\frac{1}{2}$,求$\cos{x}$和$tan{x}$的值。
例题:已知$\sin{x}=\frac{1}{2}$,求$\cos{x}$和$tan{x}$的值。
解题思路:根据三角函数公式可知,当$\sin{x}=\frac{1}{2}$时,$x=30^{\circ}$或$x=150^{\circ}$。
因此,$\cos{x}$的值分别为$\frac{\sqrt{3}}{2}$和$-\frac{\sqrt{3}}{2}$,$tan{x}$的值分别为$\frac{\sqrt{3}}{3}$和$-\frac{\sqrt{3}}{3}$。
3. 已知$\tan{x}=-\sqrt{3}$,求$\sin{x}$和$\cos{x}$的值。
例题:已知$\tan{x}=-\sqrt{3}$,求$\sin{x}$和$\cos{x}$的值。
高三三角函数的性质归纳总结
三角函数的图像与性质一、题型全归纳题型一 三角函数的定义域和值域【题型要点】1.三角函数定义域的求法(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); 形如y =a sin x +b cos x +c ,可通过引入辅助角φ⎝⎛⎭⎪⎫cos φ=a a 2+b 2,sin φ=b a 2+b 2,将其转化为y =a 2+b 2sin(x +φ)+c .(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); 令t =sin x 或t =cos x ,进而将三角函数转化为关于t 的函数.形如y =a sin 2x +b sin x +c ,可设t =sin x ,将其转化为二次函数y =at 2+bt +c (t ∈[-1,1]);(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).形如y =a sin x cos x +b (sin x ±cos x )+c ,可设t =sin x ±cos x ,则t 2=1±2sin x cosx ,即sin x cos x =±12(t 2-1),将其转化为二次函数y =±12a (t 2-1)+bt +c (t ∈[-2,2]).1.(2017·成都调研)函数y =2sin ⎝⎛⎭⎫π6x -π3(0≤x ≤9)的最大值与最小值之和为( )A.2- 3 B.0 C.-1D.-1-32.函数y =-2sin x -1,x ∈⎣⎡⎭⎫76π,136π的值域是( )A.[-3,1] B.[-2,1] C.(-3,1] D.(-2,1] 3.(2016·全国Ⅱ卷)函数f (x )=cos 2x +6cos ⎝⎛⎭⎫π2-x 的最大值为( )A.4 B.5C.6D.74.(2017·高考全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________. 5.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6的最大值为( )A.65B.1C.35D.155.函数y =sin x -cos x +sin x cos x 的值域为________..6.已知函数f (x )=(sin x +cos x )2+cos 2x .求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最7.函数y =tan ⎝ ⎛⎭⎪⎫x 2+π4,x ∈⎝ ⎛⎭⎪⎫0,π6的值域是________..8当x ∈⎣⎢⎡⎦⎥⎤π6,7π6时,函数y =3-sin x -2cos 2x 的值域为________.9. .已知函数f (x )=3cos (2x -π4)在[0,π2]上的最大值为M ,最小值为m ,则M+m 等于( ).A.0B.3+3√22C.3-3√22D.3210. 函数y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2的值域是( )A.⎣⎡⎦⎤-32,12 B.⎣⎡⎦⎤-12,32 C.⎣⎡⎦⎤32,1 D.⎣⎡⎦⎤12,1 11. 设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=________. 12.当函数取得最大值时,的值是.13. 已知,则函数的值域是_________________ 14.(2020·长沙质检)函数y =sin x -cos x +sin x cos x 的值域为________. 15..求函数y =-tan 2x +4tan x +1,x ∈⎣⎡⎦⎤-π4,π4的值域. 题型二 三角函数的单调性类型一 求三角函数的单调区间【题型要点已知三角函数解析式求单调区间求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,可借助诱导公式将ω化为正数,防止把单调性弄错.(1)形如y =A sin(ωx +φ)的函数的单调性问题,一般是将ωx +φ看成一个整体,再结合图象利用y =sin x 的单调性求解;(2)如果函数中自变量的系数为负值,要根据诱导公式把自变量系数化为正值,再确定其单调性.1.函数f (x )=4sin ⎝⎛⎭⎫π3-2x 的递减区间是 2函数f (x )=sin ⎝⎛⎭⎫-2x +π3的递减区间为 . 3.函数f (x )=tan ⎝⎛⎭⎫2x +π3的递增区间是 . 4.y =|cos x |的一个单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-π2,π2 B .[0,π]C.⎣⎢⎡⎦⎥⎤π,3π2 D.⎣⎢⎡⎦⎥⎤3π2,2π5.函数y =cos ⎝ ⎛⎭⎪⎫π4-2x 的单调递减区间为________.()R x x x y ∈-=sin 3cos 2x tan _______x R ∈sin cos sin cos y x x x x =++6.2019·全国卷Ⅱ)下列函数中,以π2为周期且在区间⎪⎭⎫⎝⎛2,4ππ上单调递增的是( )A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |7..已知π3为函数f (x )=sin(2x +φ)⎪⎭⎫ ⎝⎛<<20πϕ的零点,则函数f (x )的单调递增区间是( )A.()Z k k k ∈⎥⎦⎤⎢⎣⎡+-122,1252ππππ B.()Z k k k ∈⎥⎦⎤⎢⎣⎡++1272,122ππππ C.()Z k k k ∈⎥⎦⎤⎢⎣⎡+-12,125ππππ D.()Z k k k ∈⎥⎦⎤⎢⎣⎡++127,12ππππ 类型二 根据单调性求参数【题型要点】已知三角函数的单调区间求参数的取值范围的三种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解;(2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解;(3)周期法:由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解.【易错提醒】要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,若ω<0,那么一定先借助诱导公式将ω化为正数.同时切莫漏掉考虑函数自身的定义域.1.若f (x )=cos x -sin x 在[0,a ]是减函数,则a 的最大值是( )A.π4B .π2 C.3π4D .π2.若f (x )=2sin ωx (ω>0)在区间[-π2,2π3]上是增函数,则ω的取值范围是________.3.已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)上单调递减,则ω的取值范围是________.4.. 已知ω>0,函数f (x )=12cos ωx -32sin(π-ωx )在⎝ ⎛⎭⎪⎫π3,π2上单调递增,则ω的取值范围是( )A.[2,6]B.(2,6)C.⎣⎢⎡⎦⎥⎤2,103D.⎝ ⎛⎭⎪⎫2,103 5..(2012新课标)已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是A .]45,21[B .]43,21[C .]21,0(D .]2,0(6.若函数f (x )=sin ωx (ω>0)在区间⎥⎦⎤⎢⎣⎡2,3ππ上单调递减,则ω的取值范围是________类型一 三角函数的周期性【题型要点】(1)公式法:函数y =A sin(ωx +φ)或y =A cos(ωx +φ)的最小正周期T =2π|ω|,y =A tan(ωx +φ)的最小正周期T =π|ω|;(2)图象法:利用三角函数图象的特征求周期. (3)函数y =|sin x |,y =|cos x |,y =|tan x |的周期为π,函数y =sin|x |,不是周期函数,y =tan |x |不是周期函数.2.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.1.(2020·南开区模拟)函数f (x )=tan x 1+tan 2x的最小正周期为( )A.π4 B.π2 C .π D .2π2.(2020·云南保山模拟)在函数:①y =cos|2x |,①y =|cos x |,①y =cos ⎪⎭⎫⎝⎛+62πx ,①y =tan ⎪⎭⎫ ⎝⎛-42πx 中,最小正周期为π的所有函数的序号为( )A .①①①B .①①①C .①①D .①①3.(2017·全国Ⅱ卷)函数f (x )=sin ⎝⎛⎭⎫2x +π3的最小正周期为( )A.4π B.2π C.πD.π24.函数f (x )=3sin ⎝⎛⎭⎫x 2-π4,x ∈R 的最小正周期为( )A.π2B .πC .2πD .4π 5.函数f (x )=sin ⎝⎛⎭⎫ωx +π6的最小正周期为π5,其中ω>0,则ω等于( )A .5 B .10 C .15 D .20 6.函数y =3tan(ωx +π6)的最小正周期是π2,则ω=____.类型二 三角函数的奇偶性1.奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.2.函数具有奇偶性的充要条件函数y =A sin(ωx +φ)(x ①R )是奇函数①φ=k π(k ①Z );函数y =A sin(ωx +φ)(x ①R )是偶函数①φ=k π+π2(k ①Z );函数y =A cos(ωx +φ)(x ①R )是奇函数①φ=k π+π2(k ①Z );函数y =A cos(ωx +φ)(x ①R )是偶函数①φ=k π(k ①Z ). 【例3】已知函数f (x )=3sin(2x -π3+φ),φ①(0,π).1若f (x )为偶函数,则φ=________; (2)若f (x )为奇函数,则φ=________. 2.若函数f (x )=sin(x +φ)+cos(x +φ)⎝⎛⎭⎫|φ|<π2为偶函数,则φ=__________. 3.若函数f (x )同时具有以下两个性质:①f (x )是偶函数;②对任意实数x ,都有f ⎝ ⎛⎭⎪⎫π4+x =f ⎝ ⎛⎭⎪⎫π4-x ,则f (x )的解析式可以是()A .f (x )=cos x B .f (x )=cos ⎝ ⎛⎭⎪⎫2x +π2C .f (x )=sin ⎝ ⎛⎭⎪⎫4x +π2 D .f (x )=cos6x4.设函数f (x )=3sin ⎝⎛⎭⎫π2x +π4,若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为 .5设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=()A.-π6 B.π6C.-π3 D.π36(2020·北京中关村中学月考)下列函数中,对任意的x ①R ,同时满足条件f (x )=f (-x )和f (x -π)=f (x )的函数是( )A .f (x )=sin x B .f (x )=sin x cos x C .f (x )=cos x D .f (x )=cos 2x -sin 2x7.若函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +φ-π3(0<φ<π)是奇函数,则φ=________类型三 三角函数的对称性【题型要点】(1)对于函数f (x )=A sin(ωx +φ),其图象的对称轴一定经过函数图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数图象的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.(2)函数图象的对称性与周期T 之间有如下结论:①若函数图象相邻的两条对称轴分别为x =a 与x =b ,则最小正周期T =2|b -a |;①若函数图象相邻的两个对称中心分别为(a ,0),(b ,0),则最小正周期T =2|b -a |;①若函数图象相邻的对称中心与对称轴分别为(a ,0)与x =b ,则最小正周期T =4|b -a |.1.已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( )A.关于点⎝ ⎛⎭⎪⎫π3,0对称 B.关于点⎝ ⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称 D.关于直线x =π6对称2.若⎝ ⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是()A.2 B.4 C.6D.83..如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎪⎫4π3,0对称,那么|φ|的最小值为( )A.π6 B.π4 C.π3 D.π2 4函数y =sin(2x +φ)⎝⎛⎭⎫-π2<φ<π2的图象关于直线x =π3对称,则φ的值为________. 5.已知函数f (x )=2sin ⎝⎛⎭⎫ωx +π6(ω>0)的最小正周期为4π,则该函数的图象( ) A .关于点⎝⎛⎭⎫π3,0对称 B .关于点⎝⎛⎭⎫5π3,0对称C .关于直线x =π3对称 D .关于直线x =5π3对称 6. 若函数y =cos(ωx +π6)(ω∈N *)的图象的一个对称中心是(π6,0),则ω的最小值为( )A.1 B .2C.4D .87.(2020·广东七校联考)已知函数y =sin(2x +φ)在x =π6处取得最大值,则函数y =cos(2x +φ)的图象( )A .关于点⎪⎭⎫⎝⎛0,6π对称 B .关于点⎪⎭⎫⎝⎛0,3π对称C .关于直线x =π6对称 D .关于直线x =π3对称 8.(2020·辽宁辽阳一模)已知偶函数f (x )=2sin ⎝⎛⎭⎫ωx +φ-π6⎝⎛⎭⎫ω>0,π2<φ<π的图象的相邻两条对称轴间的距离为π2,则⎪⎭⎫⎝⎛83πf =( )A.22 B .- 2 C .- 3 D.2三角函数中ω值的求法已知函数f (x )=cos ⎪⎭⎫⎝⎛+3πωx (ω>0)的一条对称轴为x =π3,一个对称中心为点⎪⎭⎫⎝⎛0,12π,则ω有( ) A .最小值2B .最大值2C .最小值1D .最大值1【例4】已知函数f (x )=2sin ωx 在区间⎥⎦⎤⎢⎣⎡-4,3ππ上的最小值为-2,则ω的取值范围是________. 【例5】已知f (x )=sin(ωx +π3)(ω>0),⎪⎭⎫ ⎝⎛6πf =⎪⎭⎫ ⎝⎛3πf ,且f (x )在区间⎪⎭⎫⎝⎛3,6ππ内有最小值无最大值,则ω=________.练习题3.(2020·河北衡水第十三中学质检(四))同时满足f (x +π)=f (x )与⎪⎭⎫ ⎝⎛+x f 4π=⎪⎭⎫⎝⎛-x f 4π的函数f (x )的解析式可以是( )A .f (x )=cos 2xB .f (x )=tan xC .f (x )=sin xD .f (x )=sin 2x4.(2020·河南六市联考)已知函数f (x )=2sin ⎪⎭⎫⎝⎛+6πωx (ω>0)的图象与函数g (x )=cos(2x +φ)⎪⎭⎫ ⎝⎛<2πϕ的图象的对称中心完全相同,则φ为( )A.π6 B .-π6C.π3D .-π35.(2020·河南中原名校联盟联考)已知函数f (x )=4sin(ωx +φ)(ω>0).在同一周期内,当x =π6时取最大值,当x =-π3时取最小值,则φ的值可能为( )A.π12B .π3C.13π6 D .7π66.已知函数f (x )=tan2x ,则下列说法不正确的是( )A .y =f (x )的最小正周期是πB .y =f (x )在⎪⎭⎫ ⎝⎛-4,4ππ上单调递增 C .y =f (x )是奇函数D .y =f (x )的对称中心是⎪⎭⎫⎝⎛0,4πk (k ①Z ) 7.(2020·福建六校联考)若函数f (x )=2sin(ωx +φ)对任意x 都有⎪⎭⎫⎝⎛+x f 3π=f (-x ),则⎪⎭⎫⎝⎛6πf =( ) A .2或0 B .0C .-2或0D .-2或25. 已知函数f (x )=cos(x +φ)⎪⎭⎫⎝⎛<<20πϕ,⎪⎭⎫ ⎝⎛+x f 4π是奇函数,则( )A .f (x )在⎪⎭⎫⎝⎛ππ,4上单调递减 B .f (x )在⎪⎭⎫ ⎝⎛4,0π上单调递减C .f (x )在⎪⎭⎫ ⎝⎛ππ,4上单调递增D .f (x )在⎪⎭⎫⎝⎛4,0π上单调递增 9.(2020·衡水联考)函数f (x )=sin ⎪⎭⎫⎝⎛+32πx -13在区间(0,π)内的所有零点之和为( )A.π6 B.π3 C.7π6 D.4π3 10.函数f (x )=sin ⎪⎭⎫⎝⎛+-32πx 的单调递减区间为________. 11.已知函数f (x )=2sin(ωx -π6)+1(x ①R )的图象的一条对称轴为x =π,其中ω为常数,且ω①(1,2),则函数f (x )的最小正周期为________.12.已知函数f (x )=2sin ⎪⎭⎫⎝⎛+3πωx 的图象的一个对称中心为⎪⎭⎫⎝⎛0,3π,其中ω为常数,且ω①(1,3).若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是________.13.已知函数f (x )=sin ωx +3cos ωx (ω>0),f (π6)+f (π2)=0,且f (x )在区间(π6,π2)上递减,则ω=________.14.(2020·江赣十四校第二次联考)如果圆x 2+(y -1)2=m 2至少覆盖函数f (x )=2sin 2⎪⎭⎫⎝⎛+125ππx m- 3 cos⎪⎭⎫⎝⎛+32ππx m(m >0)的一个最大值点和一个最小值点,则m 的取值范围是________. 15.(2020·赣州摸底)已知函数f (x )=sin ⎪⎭⎫ ⎝⎛-6πωx +12,ω>0,x ①R ,且f (α)=-12,f (β)=12.若|α-β|的最小值为3π4,则⎪⎭⎫⎝⎛43πf =________,函数f (x )的单调递增区间为________. 三、解答题 1.已知函数f (x )=(sin x +cos x )2+2cos 2x -2. (1)求f (x )的单调递增区间;(2)当x ①⎥⎦⎤⎢⎣⎡43,4ππ时,求函数f (x )的最大值和最小值. 2.已知函数f (x )=4sin(x -π3)cos x + 3.(1)求函数f (x )的最小正周期和单调递增区间;(2)若函数g (x )=f (x )-m 在[0,π2]上有两个不同的零点x 1,x 2,求实数m 的取值范围,并计算tan(x 1+x 2)的值.3.已知函数f (x )=2sin ⎪⎭⎫⎝⎛-4πωx (ω>0)的最小正周期为π. (1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎥⎦⎤⎢⎣⎡2,0π上的单调性. 4.已知函数f (x )=2sin 2⎪⎭⎫⎝⎛+x 4π-3cos2x -1,x ①R . (1)求f (x )的最小正周期;(2)若h (x )=f (x +t )的图象关于点⎪⎭⎫⎝⎛-0,6π对称,且t ①(0,π),求t 的值; (3)当x ①⎥⎦⎤⎢⎣⎡2,4ππ时,不等式|f (x )-m |<3恒成立,求实数m 的取值范围. 函数y =A sin(ωx +φ)18.函数y =A sin(ωx +φ)的有关概念19用五点法画函数y =A sin(ωx +φ)一个周期内的简图用五点法画函数y =A sin(ωx +φ)(A >0,ω>0)一个周期内的简图时,要找五个关键点,如下表所示:用“五点法”作函数y =A sin(ωx +φ)的简图,精髄是通过变量代换,设z =ωx +φ,由z 取0,π2,π,3π2,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象,其中相邻两点的横向距离均为T4.20.由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)(A >0,ω>0)的图象的两种方法联系:两种变换方法都是针对x 而言的,即x 本身加减多少,而不是ωx 加减多少.区别:先平移变换(左右平移)再周期变换(伸缩变换),平移的量是|φ|个单位,而先周期变换(伸缩变换)再平移变换(左右平移),平移的量是⎪⎪⎪⎪φω个单位题型一 函数y =A sin(ωx +φ)的图象及变换【题型要点】(1)y =A sin(ωx +φ)的图象可用“五点法”作简图得到,可通过变量代换z =ωx +φ计算五点坐标. (2)由y =sin ωx 到y =sin(ωx +φ)的变换:向左平移φω(ω>0,φ>0)个单位长度而非φ个单位长度.(3)平移前后两个三角函数的名称如果不一致,应先利用诱导公式化为同名函数,ω为负时应先变成正值.[记结论]1.函数y =A sin(ωx +φ)+k 图象平移的规律:“左加右减,上加下减”.2.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.题型一 函数y =A sin(ωx +φ)的图象及变换1.(2021·全国乙卷)把函数y =f (x )图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin ⎝⎛⎭⎫x -π4的图象,则f (x )等于( ) A .sin ⎝⎛⎭⎫x 2-7π12B .sin ⎝⎛⎭⎫x 2+π12C .sin ⎝⎛⎭⎫2x -7π12 D .sin ⎝⎛⎭⎫2x +π12 2.(2022·天津二中模拟)将函数y =sin 2x 的图象向左平移φ⎝⎛⎭⎫0≤φ<π2个单位长度后,得到函数y =cos ⎝⎛⎭⎫2x +π6的图象,则φ等于( )A.π12B.π6C.π3D.5π33.要得到函数y =cos ⎝⎛⎭⎫2x -π6的图象,可以把函数y =sin ⎝⎛⎭⎫2x +π6的图象( ) A .向右平移π6个单位长度B .向右平移π12个单位长度C .向左平移π6个单位长度D .向左平移π12个单位长度4(2022·开封模拟)设ω>0,将函数y =sin ⎝⎛⎭⎫ωx +π6的图象向右平移π6个单位长度后,所得图象与原图象重合,则ω的最小值为( )A .3 B .6 C .9 D .125.将函数的图像沿轴向左平移个单位后,得到一个偶函数的图像,则的一个可能取值为 A .B .C .0D . 6.将函数f (x )=cos 2x 的图象向左平移φ(φ>0)个单位长度,得到函数g (x )的图象.若函数g (x )的图象关于原点对称,则φ的一个取值为________.(答案不唯一)7.设ω>0,函数y=s in(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是8.若将函数()sin 2cos 2f x x x =+图象向右平移ϕ(0ϕ>)个单位,所得图象关于y 轴对称,则ϕ的最小值是 若将函数()sin 2cos 2f x x x =+图象向右平移ϕ(0ϕ>)个单位,所得图象关于原点轴对称,则ϕ的最小值是()sin 2y x ϕ=+x 8πϕ34π4π4π-若将函数()sin 2cos 2f x x x =+图象向右平移ϕ(0ϕ>)个单位,所得图象关于原函数图像重合,则ϕ的最小值是题型二 求函数y =A sin(ωx +φ)的解析式【题型要点】确定y =A sin(ωx +φ)+B (A >0,ω>0)的解析式的步骤(1)求A ,B ,确定函数的最大值M 和最小值m ,则A =M -m 2,B =M +m2. (2)求ω,确定函数的周期T ,则ω=2πT .“)即图象上升时与x 轴的交点)为ωx +φ=0;“第二零点”⎪⎭⎫⎝⎛-0,ωϕπ(即图象下降时与x 轴的交点)为ωx +φ=π;(3)求φ,常用方法有:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间还是在下降区间)或把图象的最高点或最低点代入;①五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(第一零点”),(0-ωϕ即图象上升时与x 轴的交点)为ωx +φ=0;“第二点”(⎪⎭⎫⎝⎛-0,ωϕπ即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”(即图象上升时与x 轴的交点)为ωx +φ=2π.【例1】如图,函数f (x )=A sin(2x +φ)(A >0,|φ|<π2)的图象过点(0,3),则f (x )的函数解析式为( )A .f (x )=2sin(2x -π3)B .f (x )=2sin(2x +π3)C .f (x )=2sin(2x +π6)B . D .f (x )=2sin(2x -π6)【例2】 函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0,0<φ<π2)的部分图象如图所示,则f (-π3)=________.3.知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的表达式为( )A .f (x )=sin ⎝⎛⎭⎫2x +π6B .f (x )=sin ⎝⎛⎭⎫2x -π6C .f (x )=sin ⎝⎛⎭⎫x +π6D .f (x )=sin ⎝⎛⎭⎫x +π3 4.设函数)52sin(2)(ππ+=x x f ,若对任意x ∈R ,都有,f (x 1 )≤f (x )≤f (x 2 )成立,则|x 1—x 2|的最小值为 ( )5.已知函数)sin(2θω+=x y 为偶函数0(<θ<π),其图象与直线y =2的某两个交点横坐标为1x ,2x ,||12x x -的最小值为π,则( ) A.2=ω,2π=θ B.21=ω,2π=θ C.21=ω,4π=θ D.2=ω,4π=θ 6.已知函数()3sin cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是7.已知函数)0(tan >=w wx y 的图像与直线1y =的交点间的最小距离是3π,则w =______。
题型三 三角函数与解三角形 ——高考数学高频题型专项讲解
题型三三角函数与解三角形——高考数学高频题型专项讲解一、思路分析三角函数定义的应用,利用同角三角函数的基本关系、诱导公式化简与求值都是高考中的热点考查内容,常与三角恒等变换结合命题,同时应注意象限角、终边相同的角等与三角函数的综合,以及扇形的弧长和面积公式的考查,考查基本运算能力,题型以选择题、填空题为主.三角恒等变换在高考中重点考查两角和与差的正弦、余弦、正切公式以及二倍角公式的综合应用,主要体现在:(1)三角函数式的化简;(2)三角函数的求值;(3)通过恒等变换研究函数的性质等.注意三角恒等变换与三角函数的图象和性质、解三角形、平面向量的综合命题,难度中等偏下.高考考查三角函数的命题点主要有三个方面:(1)三角函数的图象及应用;(2)三角函数的性质及应用;(3)三角函数图象与性质的综合应用,有时也与三角恒等变换、平面向量、不等式等综合考查.多以选择题和填空题的形式出现,难度中等,多了解命题新角度、新综合以及三角函数模型的应用问题.解三角形是高考的重点和热点,主要考查正弦定理、余弦定理和三角形面积公式的应用,有时也与三角恒等变换、立体几何等进行综合命题,加强解三角形与其他章节知识的综合训练以及解三角形在生活、生产实践中的应用,题型既有选择题、填空题,也有解答题,难度属于中低档.二、考纲要求1.任意角和弧度制、三角函数的概念和诱导公式(1)了解任意角的概念和弧度制,能进行弧度与角度的互比.(2)理解并掌握同角三角函数的基本关系式.(3)掌握诱导公式及其应用.2.三角恒等变换(1)掌握两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式.(2)能进行简单的三角恒等变换.3.三角函数的图象与性质(1)理解三角函数的定义,掌握三角函数的周期性、单调性、奇偶性、最大(小)值等性质及其应用.(2)了解sin()y A x ωϕ=+的实际意义,理解参数A ,ω,ϕ的意义以及参数的变化对函数图象的影响.(3)会用三角函数解决简单的实际问题,体会可以利用三角函数构建刻画事物周期变化的数学模型.4.解三角形(1)掌握余弦定理、正弦定理.(2)能用余弦定理、正弦定理解决简单的实际问题.三、方法技巧1.利用诱导公式化简求值的思路(1)给角求值问题,关键是利用诱导公式把任意角的三角函数值转化为锐角的三角函数值求解,转化过程中注意口诀“奇变偶不变,符号看象限”的应用.(2)在对给定的式子进行化简或求值时,要注意给定的角之间存在的特定关系,充分利用给定的关系结合诱导公式将角进行转化.特别要注意每一个角所在的象限,防止符号及三角函数名称搞错.2.弧长和扇形面积问题的解题策略(l )求扇形面积的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量.(2)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.(3)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.3.三角函数定义问题的常见类型及解题策略(1)已知角α终边上一点P 的坐标,可求角α的三角函数值:先求点P 到原点的距离,再用三角函数的定义求解.(2)已知角α的某个三角函数值,求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.(3)三角函数值的符号及角的终边位置的判断.已知一角的三角函数值中任意两个的符号,可分别确定出角终边所在的可能位置,二者的交集即为该角终边的位置.注意终边在坐标轴上的特殊情况.4.应用三角恒等变换公式的策略(1)正用三角函数公式时,要记住公式的结构特征和符号变化规律,如两角差的余弦公式可简记为“同名相乘,符号反”.(2)逆用公式时,要准确找出所给式子和公式的异同,创造条件逆用公式.(3)注意和差角和倍角公式的变形.(4)三角恒等变换常与同角三角函数基本关系、诱导公式等综合应用.5.解决三角函数的图象变换问题的基本方法(1)直接法:平移变换规则是“左加右减,上加下减”,并且在变换过程中只变换自变量x ,如果x 的系数不是1,那么要先把x 的系数提取出来再确定平移的单位长度和方向.(2)方程思想法:可以把变换前后的两个函数变为同名函数,且x 的系数变为一致,通过列方程求解.(3)数形结合法:平移变换的实质就是点的坐标的变换,横坐标的平移交换对应着图象的左右平移,纵坐标的平移变换对应着图象的上下平移,一般可选定变换前后的两个函数()f x ,()g x 的图象与x 轴的交点(如图象上升时与x 轴的交点),其分别为1(,0)x ,2(,0)x (1()0f x =,2()0g x =),则由21x x -的值可判断出左右平移的情况,由()()g x f x -的值可判断出上下平移的情况,由三角函数最小正周期的变化可判断出伸缩变换的情况.6.给值求值问题的解题策略从角的关系中找解题思路:已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,根据需要灵活地进行拆角或凑角的变换.7..解给值求角问题的一般步骤(1)确定角的范围,根据条件确定所求角的范围.(2)求所求角的某种三角函数值,为防止增解最好选取在上述范围内单调的三角函数.(3)结合三角函数值及角的范围求角.8.利用三角函数处理物理学问题的策略(1)常涉及的物理学问题有单摆,光波,电流,机械波等,其共同的特点是具有周期性.(2)明确物理概念的意义,此类问题往往涉及诸如频率、振幅等概念,因此要熟知其意义并与对应的三角函数知识结合解题.9.正、余弦定理判断三角形形状的方法(1)角化边:通过正、余弦定理化角为边,通过因式分解、配方等方法得出边与边之间的关系进行判断.(2)边化角:通过正、余弦定理化边为角,利用三角恒等变换公式、三角形内角和定理及诱导公式等推出角与角之间的关系进行判断.10.解三角形中的最值(取值范围)问题的求解方法(1)函数法:通过正、余弦定理将边转化为角,再根据三角恒等变换:及三角形内角和定理转化为“一角一函数”的形式,最后结合角的范围利用三角函数的单调性和值域求解,(2)基本不等式法:利用正、余弦定理,面积公式建立a b +,ab ,22a b +之间 的等量关系与不等关系,然后利用基本不等式求解.(3)几何法:根据已知条件画出图形,结合图形,找出临界位置,数形结合求解.11.利用正弦定理、余弦定理解三角形的步骤(1)找条件.寻找三角形中已知的边和角,确定转化方向.(2)定工具,根据已知条件和转化方向,选择使用的定理和公式,进行边角之间的转化.(3)求结果,根据前两步的分析,代入求值得出结果.(4)反思,转化过程中要注意转化的方向,审视结果的合理性.12.几个典型三角形应用问题的处理方法.(1)求距离问题的注意事项:①选定或确定要创建的三角形,要首先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.②确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.(2)处理高度问题的注意事项:①在处理有关高度问题时,理解仰角、俯角(视线在水平线上方、下方的角分别称为仰角、俯角)是一个关键.②在实际问题中,可能会遇到空间与平面同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.(3)测量角度问题的一般步骤:①在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离;②用正弦定理或余弦定理解三角形;③将解得的结果转化为实际问题的解.。
高中数学《三角函数》知识点及题型总结(最全)—精品文档
P xyAOM T 高中数学《三角函数》知识点及题型总结(最全)一、知识点汇编A斜边 π-α (0,r) α 邻边 B 对边 C (∠A=) (﹣r,0) (r , 0)A 1π+α (0,﹣r) ﹣α(∠A=∠B=45°) B 1 CA2 ∠A=30°,∠B=60°)=,=,=一、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()220r r x y =+> 则sin y r α=,cos x r α=,()tan 0yx xα=≠.(任意角α的三角函数值只与α有关,而与点P 的位置无关)二、三角函数值在各象限的符号函数值 第一象限第二象限第三象限第四象限Sin α+ + ﹣ ﹣ Cos α+﹣﹣+Otan α+﹣+ ﹣三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割-----+++++-+正弦、余割o o o x yx yx ySin α Cos α tan α注:①三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. ②正弦的符号决定于纵坐标y 的符号 ③余弦的符号决定于横坐标x 的符号④正切是纵坐标y ,横坐标x 共同决定,同号(+),异号(-)三、特殊角的三角函数值1.常见角函数值30 45 6090° 180° 270° 360°1-11-111不存在不存在2.特殊角函数值15° 75° 105°2-2+-2-四、三角函数诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2k π+α)=sin α cos (2k π+α)=cos α tan (2k π+α)=tan α cot (2k π+α)=cot α 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)=-sin α cos (π+α)=-cos α tan (π+α)=tan α cot (π+α)=cot α 公式三:任意角α与 -α的三角函数值之间的关系: sin (-α)=-sin α cos (-α)=cos α tan (-α)=-tan α cot (-α)=-cot α 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)=sin α cos (π-α)=-cos α tan (π-α)=-tan α cot (π-α)=-cot α 公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)=-sin α cos (2π-α)=cos α tan (2π-α)=-tan α cot (2π-α)=-cot α 公式六:(π/2)±α与α的三角函数值之间的关系:五、角与角之间的转换⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-;ααπsin )21cos(=-ααπcos )21sin(=-ααπcos )21sin(=+ααπsin )21cos(-=+⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ , ()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- , ()()tan tan tan 1tan tan αβαβαβ+=+-).六、二倍角的正弦、余弦和正切公式⑴sin 22sin cos ααα=. ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-(2cos 21cos 2αα+=,21cos 2sin 2αα-=). ⑶22tan tan 21tan ααα=- 七、公式变形2cos 21cos 2αα+=21cos 2sin 2αα-=1+= 1-=a b = (a)八、正弦、余弦定理的比较正弦定理余弦定理内容A a sin =B b sin =Ccsin =2R (外接圆直径);a 2=b 2+c 2-2bccosA . c 2=a 2+b 2-2abcosC . b 2=a 2+c 2-2accosB .变形形式①边化角⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2②角化边RcC R b B R a A 2sin ,2sin ,2sin ===. ③ a ∶b ∶c =sin A ∶sin B ∶sin C . ④aSinB=bSinA;bSinC=cSinB ;aSinC=cSinA解决问题①已知两角和任一边,求其他两边及一角.②已知两边和其中一边对角,求另一边的对角.(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边.九、常用面积公式1. S=a(表示a 边上的高) 2.S=ab=ac=bc3.S=r (a+b+c ) (r 为内切圆的半径)十.三角函数图像sin y x =cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R函数性 质最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π 2π π奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z ⎪⎝⎭ 对称轴()x k k π=∈Z 对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭ 无对称轴十一,函数f(x)=Asin(ωx+φ)的图像与性质Y =Asin(ωx+φ)+b周期是ωπ2=T ; 对称轴ωx+φ=k +得x= ;对称中心:ωx+φ= k 得x=,所以对称中心为(,0)A 0 , ω0A 0 , ω0单调性单增 2kωx+φ2k π+单减2k π+ωx+φ2k π+单增2k π+ωx+φ2k π+单减2k ωx+φ2k π+ωx+φ=2k π+ωx+φ=2kωx+φ=2k ωx+φ=2k π+值域Y =Acos (ωx+φ)+b周期是ωπ2=T ; 对称轴ωx+φ=k 得x=;对称中心:ωx+φ= k +得x= ,所以对称中心为(,0)A 0 , ω0A 0 , ω0 单调性单增 2k -ωx+φ2k π单减2k πωx+φ2k π+单增2k πωx+φ2k π+ 单减 2k -ωx+φ2k πωx+φ=2k ωx+φ=2k +ωx+φ=2k+ωx+φ=2k值域十二、图像变化Y=Asin(ωx+φ)+b1.向上(下)平移K个单位,得Y=Asin(ωx+φ)+b k2.向左(右)平移K个单位,得Y=Asin+b3.横坐标不变,纵坐标变为原来的K倍,得Y=k4.纵坐标不变,横坐标变为原来的K倍,得Y=Asin(ω+φ)+b解题方法:1.求一个角的大小,通常求余弦值2.已知一个角的大小时,马上求出另外两角之和3.看见两角之和,马上变为减去第三个角4.看见,马上想到:=得到5.当有边的一次关系时,用正弦定理(边化角:a=2RsinA…角化边:sinA=…)6.已知角与对边关系,用正弦定理7.既有边的平方关系,又有边的乘积关系时,用余弦定理8.已知角与邻边关系时,用余弦定理9. 已知面积S=ab =ac =bc ,求出两边之积10. 2cos 21cos 2αα+=, 21cos 2sin 2αα-= ,11. a b=(a)y =A sin(ωx +φ)+B 的图象求其解析式的问题,主要从以下四个方面来考虑:①A 的确定:根据图象的最高点和最低点,即A =最高点-最低点2;②B 的确定:根据图象的最高点和最低点,即B =最高点+最低点2;③ω的确定:结合图象,先求出周期,然后由T =2πω(ω>0)来确定ω;④φ的确定:把图像上的点的坐标带入解析式y =A sin(ωx +φ)+B ,代入最高点或最低点题型分类剖析一、求三角函数求值1. 已知sin cos 2αα-=,α∈(0,π),则sin 2α=2.3sincos 2αα==若,则 3.已知sin2α=,则cos 2(α+)=4.若α∈⎝⎛⎭⎪⎫0,π2,且sin 2α+cos2α=14,则tan α的值等于5.若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭cos sin αα+= 6.已知π4cos sin 365αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值的大小 7.已知:1tan()3πα+=-,22sin 2()4cos 2tan()10cos sin 2παααβαα-++=-.(1)求tan()αβ+的值; (2)求tan β的值.二、求三角形中的函数值8.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c.若a 2-b 2=3bc ,sinC =23sinB ,求角A 的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数高考题型分类总结
在高考数学中,三角函数是一个重要的考点,通常会涉及到以下几种题型分类:
1. 求特殊角的值:考生需要掌握常见角度(如30°、45°、60°)对应的正弦、余弦、正切值等,以及这些值的简单性质。
2. 求三角函数的基本关系:包括正弦定理、余弦定理、正切的定义等。
考生需要能够根据已知条件利用这些关系式求解各种三角函数的值。
3. 化简与证明:考生需要根据三角函数的性质进行化简或证明,例如利用和差化积、倍角公式、半角公式等来简化复杂的三角函数表达式。
4. 解三角函数方程:要求考生解出满足某个条件的三角函数方程,例如求解sin x = 0、cos x = 1/2等。
解题方法包括利用特殊角的周期性、利用图像、利用性质变形等。
5. 三角函数的图像与性质:要求考生根据给定的函数表达式画出三角函数的图像,并利用图像分析函数的周期性、单调性、奇偶性等性质。
6. 三角函数的应用:考生需要掌握利用三角函数解决实际问题的方法,例如利用正弦定理解决三角形的边长或角度、利用余弦定理解决三角形的边长或角度、利用正切函数解决两点之间的高度差等。
这些是一些常见的三角函数的高考题型分类,通过理解和掌握这些题型,考生可以更好地应对高考数学中的三角函数相关题目。
当然,具体的考题形式还需要根据不同的考试要求和出题风格来进行针对性的准备。