双目图像计算机测量系统的研究的开题报告

合集下载

水下机器人双目立体视觉定位系统研究的开题报告

水下机器人双目立体视觉定位系统研究的开题报告

水下机器人双目立体视觉定位系统研究的开题报告(以下为开题报告正文)一、研究背景水下机器人作为一种具有广泛应用前景的智能装备,已经被广泛应用于海洋资源勘探、水下搜救、海洋环保等领域。

水下机器人在进行任务执行时,往往需要精准的定位和导航能力,而水下环境复杂,导致其探测范围受到较大限制,传统的GPS等定位手段在水下难以使用,这就需要开发出一种适用于水下环境的定位系统。

双目立体视觉作为一种非接触式三维测量手段,可以有效地消除传统单目视觉测量的缺陷,提高测量精度和稳定性。

在水下机器人领域,双目立体视觉技术也得到了广泛的应用,并取得了良好的效果。

因此,本文将重点研究水下机器人双目立体视觉定位系统。

二、研究目标本文旨在开发一种适用于水下机器人的双目立体视觉定位系统。

具体目标如下:1. 设计并搭建双目立体视觉系统;2. 研究水下机器人定位算法,提高其精度和稳定性;3. 在实际水下环境中验证水下机器人双目立体视觉定位系统的有效性。

三、研究内容本文研究的具体内容如下:1. 双目立体视觉系统的设计和搭建根据水下机器人的实际需求,设计一个适用于水下环境的双目立体视觉系统。

该系统应包括可靠的照明设备、高分辨率的相机以及稳定的图像传输设备。

2. 水下机器人定位算法的研究根据水下机器人实际需求,对双目立体视觉数据进行处理,提取出机器人所在位置和姿态的相关信息,并结合陀螺仪、加速度计等其他传感器数据,实现水下机器人的定位和姿态估计。

3. 水下机器人双目立体视觉定位系统的实验验证在实际水下环境中,使用研究开发的双目立体视觉定位系统对机器人进行测试和验证,评估其定位精度和稳定性,为后续实际应用提供可靠的技术保障。

四、研究方法本文将采用以下研究方法:1. 理论研究和文献综述对现有的双目立体视觉技术进行深入学习和分析,找出适用于水下机器人的双目立体视觉算法,并针对性地进行研究。

2. 硬件开发和系统集成根据研究开发需求,设计并搭建一个适用于水下环境的双目立体视觉系统,并将其集成到水下机器人中。

双目立体视觉自动测量系统的研究与实现

双目立体视觉自动测量系统的研究与实现

双目立体视觉自动测量系统的研究与实现目录目录摘要 .......................................................................................................................... (I)Abstract ..................................................................................................... . (III)第一章绪论 (1)§1.1 课题研究目的和意义 (1)§1.2 国内外研究现状 (2)§1.3 本文主要研究工作 (3)§1.4 论文的组织结构 (4)第二章双目立体视觉测量系统分析与设计 (5)§2.1 系统功能设计 (5)§2.2 系统的结构框架 (7)§2.3 系统开发平台介绍 (8)§2.4 系统设计步骤 (8)§2.5 本章小结 (9)第三章摄像机标定技术研究与实现 (11)§3.1 摄像机模型 (11)§3.2标定方法研究 (12)§3.2.1张正友平面标定法 (12)§3.2.2 双目标定 (13)§3.2.3 基于极线几何约束的立体图像校正 (14)§3.3 标定及校正实验 (15)§3.3.1 Matlab标定及校正实验 (15)§3.3.2 VS2012实现的标定及校正实验 (18)§3.4 本章小结 (20)第四章立体匹配、视差优化以及双目测量 (21) §4.1 立体匹配算法及其改进 (21)§4.1.1 BM算法 (21)§4.1.2 SGBM算法 (23)§4.1.3 改进的SGBM算法 (25)§4.2 提出的基于前景检测的视差优化算法 (29) §4.2.1 前景目标提取 (29)§4.2.2 最小二乘法优化视差 (29)§4.2.3 该算法的实验效果及分析 (31)§4.3 双目测量 (32)§4.4 自动测量方法 (33)V万方数据目录§4.4.1 三维重投影 (33)§4.4.2 计算最小外接矩形框 (34)§4.4.3 测量过程 (36)§4.5 本章小结 (37)第五章系统研发和应用实例 (39)§5.1 系统概述 (39)§5.1.1 开发环境 (39)§5.1.2 运行环境 (39)§5.2 系统界面设计 (40)§5.3 系统主要功能验证及测量结果分析 (40) §5.3.1 双目标定 (40)§5.3.2 半自动测量 (44)§5.3.3 自动测量 (46)§5.3.4 系统测量结果精度分析 (49)§5.3.5 软件操作命令一览 (51)§5.4 本章小结 (53)第六章工作总结与展望 (55)§6.1 工作总结 (55)§6.2 课题展望 (56)参考文献 (57)致谢 (61)作者在攻读硕士研究生期间主要研究成果 (63)VI万方数据第一章绪论第一章绪论§1.1 课题研究目的和意义视觉是人类认知和感知外界信息的主要途径,而随着信息技术的发展,计算机的存储更加快捷运算更加快速,智能机器人开始模仿人类完成各种工作,甚至完成人类无法完成的事情。

基于HALCON的双目视觉系统深度信息测量技术研究

基于HALCON的双目视觉系统深度信息测量技术研究

基于HALCON的双目视觉系统深度信息测量技术研究基于 HALCON 的双目视觉系统深度信息技术研究立体视觉技术是机器人技术研究中最为活跃的一个分支是智能机器人的重要标志双目立体视觉是通过对同一目标的两幅图像提取识别匹配和解释进行三维环境信息的重建其过程主要包括视频捕获摄像机定标图像预处理和特征提取立体匹配以及三维重建为解决智能移动机器人工业装配机器人家用机器人公共服务机器人的视觉问题双目立体视觉技术的进一步研究可对多目视觉具有重要的启发本文对双目立体视觉测深原理和双目视觉系统的结构进行了初步研究其图象处理主要包括图像的获取摄像机标定图像预处理与特征提取立体匹配信息提取等五个部分并且应用 HALCON 软件实现了这些步骤的算法最后对基于HALCON 双目视觉系统测量深度进行了初步编程测试关键字双目视觉系统 HALCON 标定IV基于 HALCON 的双目视觉系统深度信息技术研究AbstractStereo vision technology is one of active branches in the robot technology it is animportant symbol of the intelligent robot Inthe system the three-dimensionalreconstruction environmental information is reconstructedby the objective extractionfrom images identification matching and explanation The process includes videocapture camera calibration image pre-processing and feature extractionthree-dimensional matching and three-dimensional reconstruction In order to solve theproblems about the vision of smart mobile robots industrial robot household robotsrobot visual public service problems the further study on the three-dimensional visiontechnology could inspire to more eyes visionIn the thesis the principle of binocular stereovision measuring depth and thestructure of binocular stereo vision are studied preliminarily Itsimage process includesfive parts such as image acquisition calibrationimage pre-processing and featureextraction three-dimensional matching and information extraction Thehalcon softwareto realize the algorithm of these steps have been applied Finally theexperiment of theprogramming to measure the depth based on the halcon in the binocularvision systemhave been carried and tested preliminaryKey words Binocular vision system halcon CalibrationV基于 HALCON 的双目视觉系统深度信息技术研究目录第一章绪论 111 研究的背景及意义 112 双目立体视觉系统的现状及发展方向 1com 双目视觉系统技术的国内外现状1com 双目立体视觉系统发展方向313 本文的主要研究内容 3第二章双目立体系统测量深度原理 521 双目立体视觉原理 522 体视觉系统的图象处理 6com 图像的获取 6com 摄像机的标定 7com 图像预处理与特征提取9com 图像匹配 9com 获得立体信息 1023 双目视觉系统的结构 11com 系统的结构 11com 双目测量深度的硬件组成12 第三章双目视觉系统深度测量程序设计 1431 本程序的设计思路及程序框图 1432 利用HALCON进行双目测深图像处理结果14 com 获取标定板图像 14com 处理标定板图像 15com 双目视觉系统标定 17com 获取观察物图像 17com 矫正图像 18com 获得中心点 3D信息1833 生成VC程序及制作应用软件20第四章基于halcon双目测深实验结果及误差分析21 41 实验结果 21VI基于 HALCON 的双目视觉系统深度信息技术研究42 误差分析 21第五章设计总结与展望 23参考文献 24致谢 26附录 1 27附录2 38声明 42VII基于 HALCON 的双目视觉系统深度信息技术研究第一章绪论11 研究的背景及意义双目视觉系统技术的研究一直是机器视觉中的热点和难点使用双目立体视觉系统可以确定任意物体的三维轮廓并且可以得到轮廓上任意点的三维坐标因此双目立体视觉系统可以应用在多个领域双目立体视觉系统在机器视觉领域有着广泛的应用前景双目立体视觉是机器视觉的一种重要形式它是基于视差原理并由多幅图像获取物体三维几何信息的方法双目立体视觉系统一般由双摄像机从不同角度同时获得被测物的两幅数字图像或由单摄像机在不同时刻从不同角度获得被测物的两幅数字图像并基于视差原理恢复出物体的三维几何信息重建物体三维轮廓及位置HALCON是德国MVtec公司的图像处理软件是世界公认具有最佳效能的机器视觉软件这是一套图像处理库由一千多个各自独立的函数以及底层的数据管理核心构成其中包含了各类滤波色彩分析以及几何数学变换形态学计算分析校正分类辨识形状搜索等等基本的几何以及图像计算功能由于这些功能大多并非针对特定工作设计的因此只要用得到图像处理的地方就可以用HALCON强大的计算分析能力来完成工作由于机器视觉技术的发展这种可以"取代人眼"对重复工作不会疲劳精度高且稳定的特质促进了高科技业的发展例如电子业[1]产量的大幅提升本文研究了基于 HALCON 实现双目立体视觉系统以及立体视觉的基本理论方法和相关技术搭建双目立体视觉系统和提高算法效率12 双目立体视觉系统的现状及发展方向com 双目视觉系统技术的国内外现状双目视觉系统技术应用非常广泛目前主要应用于四个领域机器人导航操作系统的参数检测三维测量和虚拟现实日本大阪大学自适应机械系统研究院研制了一种自适应双目视觉伺服系统利用双目体视的原理以每幅图像中相对静止的三个标志为参考实时计算目标图像的雅可比矩阵从而预测出目标下一步运动方向实现了对运动方式未知的目标的自适1基于 HALCON 的双目视觉系统深度信息技术研究应跟踪该系统仅要求两幅图像中都有静止的参考标志无需摄像机参数而传统的视觉跟踪伺服系统需事先知道摄像机的运动光学等参数和目标的运动方式日本东京大学将实时双目立体视觉和机器人整体姿态信息集成开发了仿真机器人动态行走导航系统该系统实现分两个步骤首先利用平面分割算法分离所拍摄图像对中的地面与障碍物再结合机器人躯体姿态的信息将图像从摄像机的二维平面坐标系转换到描述躯体姿态的世界坐标系建立机器人周围区域的地图其次根据实时建立的地图进行障碍物检测从而确定机器人的行走方向华盛顿大学与微软公司合作为火星卫星探测者号研制了宽基线立体视觉系统使探测者号能够在火星上对其即将跨越的几千米内的地形进行精确的定位导航系统使用同一个摄像机在探测者的不同位置上拍摄图像对拍摄间距越大基线越宽能观测到越远的地貌系统采用非线性优化得到两次拍摄图像时摄像机的相对准确的位置利用鲁棒性强的最大似然概率法结合高效的立体搜索进行图像匹配得到亚像素精度的视差并根据此视差计算图像对中各点的三维坐标相比传统的体视系统能够更精确地绘制探测者号周围的地貌和以更高的精度观测到更远的地形东南大学电子工程系基于双目立体视觉提出了一种灰度相关多峰值视差绝对值极小化立体匹配新方法可对三维不规则物体偏转线圈的三维空间坐标进行非接触精密测量哈工大采用异构双目活动视觉系统实现了全自主足球机器人导航将一个固定摄像机和一个可以水平旋转的摄像机分别安装在机器人的顶部和中下部可以同时监视不同方位视点体现出比人类视觉优越的一面通过合理的资源分配及协调机制使机器人在视野范围测量精度及处理速度方面达到最佳匹配双目协调技术可使机器人同时捕捉多个有效目标观测相遇目标时通过数据融合也可提高测量精度在实际比赛中其他传感器失效的情况下仅仅依靠双目协调仍然可以实现全自主足球机器人导航火星 863 计划课题人体三维尺寸的非接触测量采用双视点投影光栅三维测量原理由双摄像机获取图像对通过计算机进行图像数据处理不仅可以获取服装设计所需的特征尺寸还可根据需要获取人体图像上任意一点的三维坐标该系统已通过中国人民解放军总后勤部军需部鉴定可达到的技术指标数据采集时间小于5s人提供身高胸围腰围臀围等围度的测量精度不低于10cm[2]2基于 HALCON 的双目视觉系统深度信息技术研究com 双目立体视觉系统发展方向就目前立体视觉技术的发展现状而言要构造出类似于人眼的通用双目立体视觉系统还有很长的路要走进一步的研究方向可归纳如下1如何建立更有效的双目体视模型能更充分地反映立体视觉不确定性的本质属性为匹配提供更多的约束信息降低立体匹配的难度2 探索新的适用于全面立体视觉的计算理论和匹配策略选择有效的匹配准则和算法结构以解决存在灰度失真几何畸变透视旋转缩放等噪声干扰特殊结构平坦匹域重复相似结构等及遮掩景物的匹配问题双目立体视觉这一有着广阔应用前景的学科随着光学电子学以及计算机技术的发展将不断进步逐渐实用化不仅将成为工业检测生物医学虚拟现实等领域的关键技术还有可能应用于航天遥测军事侦察等领域目前在国外双目体视技术已广泛应用于生产生活中而我国正处于初始阶段尚需广大科技工作者共同努力为其发展做出贡献13 本文的主要研究内容立体视觉的基本原理是从两个或多个视点观察同一景物以获取在不同视角下的感知图像通过三角测量原理计算图像象素间的位置偏差即视差来获取物体的三维信息这一过程与人类视觉的立体感知过程是类似的一个完整的双目立体视觉系统一般包括图像的获取摄像机标定图像预处理与特征提取立体匹配信息提取等五个部分本文研究内容为利用 HALCON 软件对图像进行处理通过图像匹配技术得到目标视差从而转化为物体所需的深度信息程序大致关键步骤分为图像获取―摄像机标定-物体识别-深度信息确定分析了各个步骤的相应问题和处理方法并将本课题的重点集中于测量深度信息各种算法 HALCON 软件编程这一部分第一章介绍了本文的研究意义以及双目立体视觉系统的国内外现状和发展方向最后介绍了本文的主要研究内容及章节安排第二章介绍了双目立体视觉原理及结构介绍了双目视觉的技术实现包括图像获取摄像机标定图像预处理与特征提取立体匹配信息提取3基于 HALCON 的双目视觉系统深度信息技术研究第三章研究了应用 HALCON 软件编程各种算法所得的整个程序四个主要步骤标定立体摄像系统获取图像矫正图像获得 3D 信息以及制作 VC 程序和应用软件第四章对基于 HALCON 双目视觉系统测量深度进行了实验对实验结果处理并分析了实验误差第五章最后介绍了本设计的总结及对今后的工作进行了展望4基于 HALCON 的双目视觉系统深度信息技术研究第二章双目立体系统测量深度原理21 双目立体视觉原理双目立体视觉三维测量是基于视差原理图 2-1 所示为简单的平视双目立体成像原理图两摄像机的投影中心分别为O 和O 点P为观察物上的中心点基线距b21为两摄像机的投影中心的连线距离两摄像机的焦距为f且相同左边摄像机的坐标系的原点在摄像机镜头的光心O处坐标系O_ x y z 如图 1 所示左右摄像机的c c c成像平面为O uv和O uv O 和O 分别为左右图像坐标系的原点在摄像机光轴与平21 2 1面的交点实际上摄像机的成像平面在镜头的光心后面f处这里绘制在镜头的光心前面f处成像平面的u轴和v轴和摄像机坐标系O_ x y z 的x 轴和y 轴方向一致c c c c c这样可以简化计算过程图2 -1 双目立体成像原理图点P在左摄像机成像平面和右摄像机成像平面中相应的坐标分别为Pu v 和11 1P u v 假定两摄像机的图像在同一个平面上则P点坐标y 在O uv和O uv系中v2 2 2c1 2坐标相同即v v 由三角几何关系得到215基于 HALCON 的双目视觉系统深度信息技术研究x x b ycu f c u c v v1 v2 f2-11 2 1z z zc c c视差定义为某一点在两幅图像中相应点的位置差其表达式为f bd u u2-21 2zc由此可计算出空间中某点P 在左摄像机坐标系中的坐标为b u1xc db vy c 2-3db fzcd因此只要能够找到空间中某点 P 在左右两个摄像机像面上的相应点并且通过摄像机标定获得摄像机的内外参数就可以确定这个 P 点的三维坐标这样深度信息的测量变为 P 点的 Z 轴之间的差值22 体视觉系统的图象处理一个完整的双目立体视觉系统的图象处理一般包括图像的获取摄像机标定图像预处理与特征提取立体匹配信息提取等五个部分com 图像的获取双目体视的图像获取是由不同位置的两台摄像机CCD 经过移动或旋转拍摄同一幅场景获取立体图像对其模型如图 2-2 假定摄像机C 与 C 的角距和内部参12数都相等两摄像机的光轴互相平行二维成像平面u O v 和u O v 重合P 与P 分1 1 12 2 2 1 2别是空间点P在C 与C 上的成像点但一般情况下两个摄像机的内部参数不可能1 2完全相同摄像机安装时无法看到光轴和成像平面故在实际中难以应用上海交大在理论上对会聚式双目体视系统的测量精度与系统结构参数之间的关系作了详尽分析并通过试验指出对某一特定点进行三角测量该点测量误差与两CCD光轴夹角是一个复杂的函数关系若两摄像头光轴夹角一定则被测坐标系与摄像头坐标系之间距离越大测量得到点距离的误差就越大在满足测量范围的前提下应选择两CCD之间夹角在 50-80 度之间[561012]6基于 HALCON 的双目视觉系统深度信息技术研究图2-2 双摄像机模型com 摄像机的标定计算机视觉的基本任务之一是从摄像机获取的图像信息出发计算三维空间中物体的几何信息而空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系是由摄像机成像的几何模型决定的这些几何模型参数就是摄像机参数这个过程被称为摄像机标定根据摄像机参数性质可以分为内部参数和外部参数内部参数描述摄像机的内部光学和几何特性如图像中心焦距镜头畸变以及其它系统误差参数等相对于一个世界坐标系的摄像机坐标的三维位置和方向称为外部参数摄像机标定是立体视觉研究的重要组成部分首先建立 4 个坐标系见图 2-3 1 三维世界坐标系O_X YZ Xw ww wYw Zw 为物体点 P 的三维世界坐标 2 摄像机坐标系 O_X Y Z 图中光心到图c c c像平面距离OO 为摄像机有效焦距 f 3 成像平面坐标系 O XY P X Y1 uu u表示针孔模型下 P点的理想成像坐标P X Y 是由透镜径向畸变引起的偏离 Pd d d uX Y 的实际成像平面坐标 4 图像坐标系 O uv 原点 O 在图像平面u u 0 0的左上角每一像素的坐标u v 分别是该像素在数组中的列数和行数所以uv 是以像素为单位的图像坐标系的坐标[2389]7基于HALCON 的双目视觉系统深度信息技术研究图2-3四个坐标系图摄像机内参数的标定和单目视觉系统标定一致双目立体视觉系统的标定主要是指摄像机的内部参数标定后确定视觉系统的结构参数 R 和 T 即两个摄像机之间的位置关系R 和 T 分别为旋转矩阵和平移向量一般方法是采用标准的 2D 或3D 精密靶标通过摄像机图像坐标与三维世界坐标的对应关系求得这些参数具体的标定过程如下1将标定板放置在一个适当的位置使它能够在两个摄像机中均可以完全成像通过标定确定两个摄像机的内部参数以及他们的外部参数R T 与R T1 12 2则R T 表示左摄像机与世界坐标系的相对位置R T 表示右摄像机与世界坐标1 12 2系的相对位置2 假定空间中任意一点在世界坐标系左摄像机坐标系和右摄像机坐标系下的非齐次坐标分别为Xw Xc1 Xc2 则X R X T X R X T 11 2-41 C1 1 2W2 C W 2消去XW 得到1 1 11 2-5X R R X T R R T2 2 C 1 1 2 2 C 1 12两个摄像机之间的位置关系RT可以用以下关系式表示R R R T T R R T 1 1 2-62 1 2 2 1 128基于 HALCON 的双目视觉系统深度信息技术研究com 图像预处理与特征提取由光学成像系统生成的二维图像包含了各种各样的随机噪声和畸变因此需要对原始图像进行预处理突出有用信息抑制无用信息从而改善图像质量图像预处理的目的主要有两个一是改善图像的视觉效果提高图像的清晰度二是使图像变的更有利于计算机的处理便于各种特征分析图像预处理技术包括图像对比度的增强随机噪声的去除边缘特征的加强等特征提取是为了得到匹配赖以进行的图像特征由于目前尚没有一种普遍适用的理论可运用于图像特征的提取从而导致了立体视觉研究中匹配特征的多样性目前常用的匹配特征主要有点特征线特征和区域特征等一般来讲大尺度特征含有较丰富的图像信息在图像中的数目较少易于得到快速的匹配但它们的定位精度差特征提取与描述困难而小尺度特征数目较多其所含信息较少因而在匹配时需要较强的约束准则和匹配策略以克服歧义匹配和提高运算效率良好的匹配特征应具有可区分性不变性稳定性唯一性以及有效解决歧义匹配的能力[1415]com 图像匹配由双目立体视觉系统原理可以看出双目立体视觉是建立在对应点的视差基础之上因此左右图像中各点的匹配关系成为双目立体视觉技术的一个极其重要的问题然而对于实际的立体图像对求解对应问题极富挑战性可以说是双目立体视觉中最困难的一步为了能够增加匹配结果的准确性以及匹配算法的速度在匹配过程中通常会加入下列几种约束1 极线约束在此约束下匹配点已经位于两副图像中相应的极线上2 唯一性约束两副图像中的对应的匹配点有且仅有一个3 视差连续性约束除了遮挡区域和视差不连续区域外视差的变化都是平滑的4 顺序一致性约束位于一副图像极线上的系列点在另一幅图像中极线上有相同的顺序图像匹配的方法有基于图像灰度区域的匹配基于图像特征的匹配和基于解释的匹配或者多种方法结合的匹配针对模板匹配HALCON 提供了许多不同的方法方法的选择取决于图像的数据和需要解决的任务9基于 HALCON 的双目视觉系统深度信息技术研究基于灰度值的匹配gray-value-based macthing 是典型的匹配方法如果物体中灰度值变化不大没缺损部分和混乱这种方法可以被使用这种方法能够处理单一物体实例该实例在查找图像中可以是旋转的基于形状的匹配shape-based macthing 是机器视觉中的先进技术基于形状的匹配不是使用灰度值而是提取并使用轮廓的特征来产生模板和完成匹配在照明的变化和物体灰度值的变化的情况下这种方法得到的效果都是完全一致的他能够处理物体上的缺损部分混乱和噪声而且同一模板的多个实例可被同时发现多个的不同模板也可以被同时使用这种方法允许物体被旋转和缩放基于成分的匹配component-based matching 被认为是一种更高级的基于形状的匹配增强的功能是物体能够包含若干个可旋转和平移的部分旋转和平移是相对于这些部分之间进行的一个简单的例子是一对钳子逻辑上这被认为是一个物体但物体上它包含了两部分成分匹配允许只用一个查找步骤就能处理类似这样的复合物与将各个部分处理为整个特殊模型的方法相比成分匹配的优点在于提高了执行速度和算法的健壮性基于点的匹配point-based matching 目的是为了组合两幅有两幅重叠区域的图像首先在这两幅图像上提取有效点这些点被输入到实际的匹配过程匹配的结果是从一幅图像到另一幅图像映射允许平移旋转缩放和透视失真这种映射的典型应用是把两幅图像结合成一幅更大的图像当然一幅图像也可以作为模板对待另一幅图像则被视为包含需被查找模板实例的图像对待这种方法的优点在于能够处理没有校准的透视失真缺点在于增加了执行时间时间主要被用于有[1]效点的提取com 获得立体信息立体视觉的任务就是得出感兴趣场景的三维信息对于不同的应用可以有不同的要求但最基本的就是要计算目标的深度信息得到三维坐标若需要结果的可视化则可对场景进行重建己知立体成像模型和完成立体匹配后三维信息的恢复是比较容易的重要的是如何提高计算的精确度其影响因素是多方面的如摄像机参数标定图像特征定位的精确程度和立体匹配的准确性等等因此要提高三维重建的精度还需要更深入的研究而本文研究的正是最基本的目标获得深度信息得到三维坐标10基于 HALCON 的双目视觉系统深度信息技术研究23 双目视觉系统的结构com 系统的结构由上述双目视觉系统的基本原理可知为了获得三维空间中某点P 的三维坐标需要在左右两个摄像机像面上都存在该点的相应点立体视觉系统的一般结构为交叉摆放的两个摄像机从不同角度观测同一被测物体如图 2-4 所示为系统结构的实物图图2-4 一般双目立体视觉系统结构的实物图图2-4 所示双目视觉系统中两个真彩色摄像机型号均为 SSE1616两相机光轴中心设计在同一水平面上水平间距设计为 20Omm 且两摄像机之间的为50 度摄像机的图像传感器和镜头的物理参数分别为图像有效尺寸646515晶片尺寸617 H μm617 V μm 镜头焦距 f 16 mm 考虑到本系统为双目立体视觉系统要求双摄像机能够同时采集场景图像所以本文采用的是大恒公司 DH-VT121 视频采集卡它是基于 PC104-Plus 总线开发的可双路同时操作的视频采集卡它具有高品质的图像质量和稳定性因为深度信息的测量变为 P 点在不同位置的 Z 轴之间的差11基于 HALCON 的双目视觉系统深度信息技术研究值这样我们只要识别到一个点就可以因此我设定观察物为一张带有黑圆圈白纸P 点设为黑圆圈的中心点这样通过求得观察物上点P的两个摄像机的图像中相应点的图像坐标便可以由双目立体视觉测量原理求取点P在三维空间坐标基于双摄像机的双目立体视觉系统必须安装在一个稳定的平台上在进行双目视觉系统标定以及应用该系统进行测量时要确保摄像机的内参比如焦距和两个摄像机相对位置关系不能够发生变化如果任何一项发生变化则需要重新对双目立体视觉系统进行标定com 双目测量深度的硬件组成。

苹果采摘机器人双目视觉系统的研究的开题报告

苹果采摘机器人双目视觉系统的研究的开题报告

苹果采摘机器人双目视觉系统的研究的开题报告一、选题背景随着农业机械自动化技术的发展,越来越多的农业作业开始使用机械化设备,从而提高了生产效率和质量。

而苹果作为一种大众化水果,在全球范围内被广泛种植和消费。

苹果采摘作业繁琐、费力、成本高,目前采取的方式多为人工操作。

然而,人工采摘存在着弊端,比如效率低下、劳动强度大、人为因素影响等问题。

因此,研发一种高效、准确、智能的苹果采摘机器人双目视觉系统,对于农业机械化生产的发展和苹果产业的增加效益和降低成本具有重要意义。

二、研究内容本研究旨在开发一种苹果采摘机器人双目视觉系统,实现智能化采摘,提高采摘效率和准确性。

研究内容包括:1. 系统架构设计:针对苹果采摘过程中需要的视觉计算和机械臂控制,设计合适的系统结构,确保系统稳定性和实时性。

2. 机器视觉算法研究:探究苹果的特征识别和目标检测技术,利用机器学习算法实现苹果的自动识别和定位,为机器人的准确摘取提供支持。

3. 机械控制算法研究:实现机械臂对苹果的准确抓取和放置,研究机械臂的操纵控制算法以及机器人的自适应控制算法,优化机器人的采摘能力。

4. 系统集成与测试:将系统开发完成后,对整个系统进行测试和分析,评估其实际采摘效果和适应性。

三、研究意义本研究旨在研发一种高效、准确、智能的苹果采摘机器人双目视觉系统,通过将图像处理技术和机器人技术融合,实现苹果采摘自动化。

其意义如下:1. 提高农业生产效率和质量,降低农业生产成本。

2. 减少人工采摘带来的劳动强度和安全隐患。

3. 为实现现代农业机械化提供技术支持,有助于加速我国农业现代化进程。

4. 对机器人、机器视觉等相关技术的研究和发展具有重要的推动作用。

四、研究方法本研究采用如下方法:1. 研究相关文献,积累理论知识。

2. 实验室模拟苹果采摘环境,并利用实验数据进行系统算法设计和评估。

3. 利用机器学习技术,建立苹果特征库和目标检测算法,采集、处理和存储苹果采摘相关数据。

基于二维图像的准直测量技术研究的开题报告

基于二维图像的准直测量技术研究的开题报告

基于二维图像的准直测量技术研究的开题报告
一、研究背景和意义
准直测量是制造行业中常用的一种测量方法,它可以通过测量被测物体上的点到相对位置平面的投影,得到这些点的三维坐标。

二维图像的准直测量技术可以将三维空间的特征投影到二维图像上进行测量,适用范围广泛,精度高,实用性强。

二、研究对象和内容
本研究主要针对基于二维图像的准直测量技术进行深入探究,研究对象主要包括如何重建三维模型、如何测量形状、尺寸和位置等方面的问题。

研究内容包括图像的采集、预处理、特征提取和三维模型重建、几何量计算以及误差分析等。

三、研究方法和步骤
本研究采用文献资料法、数学统计法、试验分析法等多种方法进行研究。

研究步骤包括搜集相关文献、设计实验和测试流程、开发实验平台、数据处理和结果分析等。

四、研究结果和预期目标
通过本研究,预计可以开发出一种基于二维图像的准直测量技术,可以实现精度高、适用范围广的三维模型重建和测量。

同时,还可以为制造行业中的形状、位置、尺寸等要素的测量提供一种新的技术方案,为提高产品制造质量和效率提供有力支持。

计算机视觉中双目测距系统研究

计算机视觉中双目测距系统研究

计算机视觉中双目测距系统研究李宏伟1,崔羊威1,张贺磊2摘要:近年来随着计算机技术发展,更多研究学者和公司开始着手于人工智能技术的研究和应用。

以机器视觉中双目测距系统为研究对象,搭建一套双目视觉系统进行测量;利用MATLAB和OpenCV平台工具,先采集20对棋盘格图像进行摄像机的标定,再利用标定结果进行立体校正,运行BM、SGBM、GC和SIFT四种算法,分别对它们进行测距计算;结果表明,错误率分别是5%、3.6%、2.4%和4.1%,准确率都很高,都表现出较好的测量性能。

关键词:人工智能;机器视觉;测距;OpenCV;错误率0 前言近些年来,在世界范围内软件和硬件技术都有着很大的发展和突破,使很多科学理论研究变为现实为可成。

19世纪50年代的模式识别[1],它是让计算机使用数学的思想方法去解决模式(环境与客体)的分析处理问题;再到近十年来被人们广泛谈起的人工智能,让机器具有人类思维去分析处理现实中的问题。

很多研究学者都认为模式识别技术就是早期的人工智能。

人工智能有着广泛的应用范围,其中机器视觉[2]是它很重要的一个分支方向。

机器视觉在无人驾驶[3]、电力巡检[4]、物体尺寸测量[5]、车牌识别[6]、农业果蔬采摘[7]等众多领域有着广泛应用。

等本文选择一个双目摄像头,搭建了双目测距系统平台,利用MATLAB与OpenCV 工具[8],对实验过程中的数据进行处理分析,最后通过结论验证实验数据的准确性和可靠性。

1 双目视觉测距理论介绍所谓的双目测距系统[9],简单地说就是在自然的真实场景中,采用一个摄像头在不同的位置采集两张图像或者使用双目摄像头采集两张图像。

然后将这两张图像通过相应的计算机视觉图像算法处理,便可得到所需的数据结果。

双目测距系统主要是由双目立体匹配和测距计算两个部分组成的[10]。

其中双目立体匹配技术的研究分析一直是研究学者近些年来探究的热点[11],它又可以分为基于区域的和基于全局的。

二维目标视觉检测与跟踪系统设计的开题报告

二维目标视觉检测与跟踪系统设计的开题报告

二维目标视觉检测与跟踪系统设计的开题报告一、题目背景近年来,随着机器人技术的不断发展,机器人已经广泛应用于各个领域,如工业、医疗、服务等。

在机器人领域中,视觉检测与跟踪技术是非常重要的一部分,对于机器人的感知、判断和决策都有着至关重要的作用。

在物体检测与跟踪中,二维目标视觉检测与跟踪系统是关键技术之一,可以在机器人场景中高效、准确地实现对目标的检测、追踪和识别。

因此,设计一种高效、准确的二维目标视觉检测与跟踪系统对于推进机器人技术的发展和应用具有重要的意义。

二、研究目的和意义本研究的主要目的是设计一种高效、准确的二维目标视觉检测与跟踪系统。

为了达到这一目的,我们将运用深度学习等相关技术,对图像进行特征提取和分类,采用跟踪算法对目标进行跟踪,以实现对目标的检测、追踪和识别。

该系统可广泛应用于机器人领域中,如自主导航、工业自动化、智能监控等各个方面。

三、研究内容和方法1. 系统需求分析:分析机器人应用场景和用户需求,确定系统设计的目标和功能。

2. 图像采集与预处理:使用相机或其他采集设备获取场景图像,并对图像进行预处理,如噪声过滤、亮度调整等。

3. 物体检测与分类:基于深度学习等相关技术,对图像中的目标进行特征提取和分类,实现目标物体的快速、准确检测。

4. 目标跟踪算法:根据目标特征和运动状态,采用跟踪算法对目标进行跟踪,实时更新目标位置和状态。

5. 系统实现与测试:在实际场景中实现系统功能,并进行测试,评估系统性能和效果。

四、研究进度安排阶段目标时间安排1. 系统需求分析和文献调研第一周 ~ 第二周2. 图像采集与预处理第三周 ~ 第四周3. 物体检测与分类第五周 ~ 第六周4. 目标跟踪算法第七周 ~ 第八周5. 系统实现与测试第九周 ~ 第十周6. 系统优化和性能评估第十一周 ~ 第十二周七、参考文献[1] Gao Y, Bronstein M, Bronstein A, et al. Deep learning for object tracking: A survey. arXiv preprint arXiv:1809.04436, 2018.[2] Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.[3] Li W, Li J, Lu H, et al. DeepID-Net: Object detection with deformable part based convolutional neural networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(7): 1320-1334.[4] Bagdanov A D, del Bimbo A. Fast and effective object detection under low illumination conditions[C]//4th International Workshop on Visual Surveillance. 2007: 23-30.[5] Chu D, Porikli F. Small target detection using L1-norm maximization[C]//European conference on computer vision. Springer, Cham, 2014: 439-454.。

基于双目视觉系统三维成像精准测量的算法研究

基于双目视觉系统三维成像精准测量的算法研究

基于双目视觉系统三维成像精准测量的算法研究双目视觉系统是一种模拟人眼视觉的成像系统,通过两个相互独立的摄像机模拟人眼的立体视觉效果,能够实现对物体的三维重建与测量。

在工业、医疗、自动驾驶等领域有广泛的应用。

本文将基于双目视觉系统的三维成像精准测量算法进行研究。

首先,双目视觉系统的原理是通过两个摄像机同时采集同一个物体的图像,然后利用这两个图像之间的差异来计算物体的三维坐标。

通常采用的算法主要有视差法、三角测量法和基线法。

其中,视差法是最常用的方法之一,它通过计算两个图像之间像素点的位移来估计物体距离。

在实际应用中,需要对左右两个图像进行校正,消除不同视角引起的畸变。

然后,可以通过每个像素点的对应点,计算视差大小,从而得到物体的深度信息。

视差法的优点是计算量较小,实时性较强,但精度相对较低。

三角测量法是另一种常用的方法,它利用双目视觉系统的两个光心和物体上的一个特征点构成一个三角形,通过测量三角形的各个角度来计算物体的距离。

具体操作步骤如下:首先,通过摄像机标定得到相机的内参和外参,然后通过图像处理技术提取特征点,如角点、边缘等,对应于左右两个图像;接着利用相机模型计算特征点在三维空间中的坐标,最后通过三角测量得到物体的三维坐标。

三角测量法的优点是精度较高,但计算复杂度较大。

基线法是一种基于模板匹配的方法,它通过匹配左右两个图像中的模板来计算视差信息,然后通过视差信息与基线长度之间的关系计算物体的距离。

具体操作步骤如下:首先,通过摄像机标定得到相机的内参和外参,然后利用模板匹配技术找出左右两个图像中的模板,计算视差信息;接着根据基线长度和视差信息的关系得到物体的距离。

基线法的优点是精度高,但对模板的匹配要求较高,而且计算复杂度也相对较大。

除了上述介绍的算法,还有一些其他的方法可以用于双目视觉系统的三维成像精准测量,如结构光法、点云法、光栅法等。

这些方法的选择需要根据实际应用场景和要求来确定。

总之,双目视觉系统的三维成像精准测量是一个复杂的问题,需要综合考虑摄像机标定、图像处理、特征提取、匹配算法等多个方面的因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双目图像计算机测量系统的研究的开题报告
一、研究背景
随着科技的进步和应用场景的不断扩展,计算机视觉技术日渐成熟。

双目视觉计算机测量系统作为计算机视觉技术的一个重要应用领域,可
以实现对图像中物体的三维测量,被广泛应用于机器人、医疗、航空、
军事等领域。

然而在实际应用中,双目视觉计算机测量系统仍然存在一
系列问题,如精度问题、计算速度问题、视差估计问题等。

针对这些问题,需要通过深入研究和优化算法,提高该系统的精度和速度,以满足
实际应用需求。

二、研究目的
本研究旨在通过对双目视觉计算机测量系统的设计和优化,提高该
系统的测量精度和处理速度,解决实际应用中的问题,包括:
1、设计一种优秀的双目视觉系统,提高测量精度和处理速度。

2、优化视差估计算法,提高系统的测量精度和可靠性。

3、优化点云处理算法,提高系统的点云处理速度。

三、研究内容
本研究将围绕上述目的,进行以下研究内容:
1、双目视觉系统的设计。

本研究将设计一种结合硬件和软件的视觉系统,实现对物体的三维测量和重建。

设计的系统将包括双目相机、图
像采集卡、计算机和相关软件。

2、视差估计算法的研究。

本研究将综合利用多种视差估计算法,如基于区域的视差估计、基于能量的视差估计、级联视差估计等,提高系
统的测量精度和可靠性。

3、点云处理算法的优化。

点云处理是双目视觉系统中的关键步骤,直接影响系统的测量速度。

本研究将针对点云归一化、噪声滤除、点云
重建等方面进行优化。

四、预期成果
本研究的预期成果如下:
1、设计出一种高效的双目视觉计算机测量系统,实现对物体的三维测量和重建。

2、优化视差估计算法和点云处理算法,提高系统的测量精度和处理速度。

3、实验验证系统的性能和可靠性,并提出改进方案。

五、拟定研究计划
本研究计划分为以下几个阶段:
1、文献综述。

研究双目视觉计算机测量系统的相关理论和算法,理解系统的实现原理,并分析目前存在的问题和解决方案。

2、双目视觉系统的设计。

根据文献综述的结果,设计出一个有效的双目视觉系统,包括硬件和软件部分。

软件部分包括图像采集、图像处理、视差估计、点云处理等。

3、视差估计算法的研究。

根据文献综述的结果,针对视差估计问题,探究多种视差估计算法的优缺点,并结合实际需求,选择最合适的视差
估计算法。

4、点云处理算法的优化。

根据文献综述的结果和视差估计结果,针对点云处理过程中存在的问题,研究多种点云处理算法的优缺点,并优
化系统的点云处理算法。

5、系统实验。

通过对设计的系统进行实验验证,评估系统的性能、可靠性和实用性,并提出改进方案。

六、研究意义
本研究的意义在于:
1、提高双目视觉计算机测量系统的测量精度和处理速度,满足实际应用需求。

2、为机器人、医疗、航空、军事等领域的应用提供支持和服务。

3、促进计算机视觉技术的发展和应用。

相关文档
最新文档