基于ADS的平行耦合微带线带通滤波器的设计

合集下载

基于ADS的Ku波段微带滤波器的设计

基于ADS的Ku波段微带滤波器的设计
1 5 . 9~ 1 6 . 1 G H z , 带 内 波 纹 为 0 . 5 d B , 带 内插 损 小 于 i d B 。使 用
I Z 0 。 l = Z o [ 1 一 Z o l + ( Z o J , 1 ) ]
接 下 来 我 们 使用 A D S中 的 L a y O u t 电路
版 图设计功能,对平行耦合微带滤波器进行版 图的设计并投板加 工。最终我们对加工好 的滤
1 Z o ¨ = Z o [ 1 + Z o J i 1 + ( Z o L 】 ( 1 ・ 1 )
1 J 一 1 1 r BW
A D S 2 0 0 8 微 波仿真软件对 其进行 了 仿 真 与优 化 ,优化 完 毕制 成版 图 并加 工 P C B ,再使用安捷伦 矢量 网
求 如 下: 中 心 频 率 = 1 6 G Hz ,通 带 范 围为
1 5 . 9~ 1 6 . 1 GHz ,带 内波纹 为 0 . 5 d B, 驻 波 比 <1 . 5 , 在 =1 6 . 5 GHz以 及 c o= 1 5 . 5 G Hz时 ,
波仿真软件进 行了原理图仿真与e p , J , 板制作 ,
最终制成实物并完成 测试 。测试结果显示滤波 器具有 良好 的通带插损与 阻带抑 制,能够用于 K u波段通 信设备 中。本文 对滤波 器的设 计过 程进行 了详细 的阐述 ,为 以后相近频率 或相似
插入 损耗, > 3 0 d B。要满 足指 标要 求,根据 滤
6的波纹 系数 分 量、杂散信号 的作用 ,并 直接决定了混频输 波器 低通 原型 理论 ,应选 择 N=
带入 式 ( 1 . 1 ),可 计算 出滤 波 器的 奇模 与偶
模特性阻抗值 。

基于ADS的微带线带通滤波器设计

基于ADS的微带线带通滤波器设计

基于ADS的微带线带通滤波器设计摘要:该文章讨论的是基于ADS软件的平行耦合微带线带通滤波器的设计过程。

利用集总参数低通原型滤波器经过一系列转化可以得到微带线带通滤波器的特性,运用传输线原理和导纳变换公式获得带通滤波器的相关参数,并借助功能强大的ADS软件对微带线带通滤波器的原理图和版图进行设计制作。

该软件只需要输入相应的原始数据,便可方便得到频率响应等相关特性。

我们也可以借助ADS软件对其进行优化仿真,以得到更加优质的带通滤波器。

关键词:带通滤波器;微带线;传输线;ADS1.引言随着近年来无线通信技术的迅猛发展,微波滤波器已经成为作为辨别分离有用和无用资源的重要部件,并大量使用于通信系统领域,其性能的优越直接影响整个通信系统的质量。

现代通信对微波滤波器的整体要求越来越高,以求得到更加微小化、轻量化、集成化的高性能低成本的滤波器。

本文设计运用微带滤波器印刷电路的方法,可以满足尺寸小、成本低且性能稳定的要求,被广泛运用于无线通信系统中。

目前在无线通信系统领域中,微波滤波器的种类日益增多,性能和设计方法各有差异。

但总体来看,微波滤波器的设计大都采用从集总参数的低通原型滤波器出发经过一系列变换得到的。

本章讨论的是平行耦合微带线带通滤波器的设计,它同样是基于集总参数低通原型滤波器出发,经过等效变换可以得到与带通滤波器相应的低通原型模型,再经过阻抗倒置变换或导纳变换便可以得到相应的带通滤波器的设计模型及相关参数。

本文首先介绍微带线带通滤波器的设计原理,然后根据基本原理推导出滤波器的相关参数,再运用ADS软件进行制作、优化和仿真,最后将完整的设计图纸和相关参数拿到工厂加工制成成品。

为了验证该微带线带通滤波器的设计和仿真的正确性,本文采用网络分析仪对该滤波器进行了相关测试,测试结果和仿真效果相吻合。

2.微带线带通滤波器的设计原理及设计过程根据滤波器综合理论,低通原型滤波器是设计其他滤波器的基础。

本文设计的带通滤波器同样是在低通原型滤波器的基础上经过变换得到的。

基于ADS的平行耦合微带带通滤波器的优化设计

基于ADS的平行耦合微带带通滤波器的优化设计

how o us D S o t ar t eA s f w e qui kl a c y nd f e i l m i r t i flerde i oc s e f ctvey c os rp it s gn pr es ;D esgn ptm i aton i o i z i ofpar am e er t s
i pr ve t c a y d t bi iy he de c m o he ac ur c an s a lt of t vi e.The m e hod of t a t c ngi t he pr c i ale nee i r ng s gn o i r t i f le s ha de i f m c os r p t r ve i
m e h ih he tadii nalde i eho notonl c i t odw t t r to s gn m t d, y an sgni c nty ed i f a l r ucet o kl he w r oad,s hor e he de i t n t sgn yce,a an c l nd c
的设计 流程 。
微 波 滤 波 器 是 微 波 系 统 中用 于 控 制 频 率 响 应 特 性 的 二
端 口 网 络 , 其 通 带 内 对 信 号 表 现 为 传 输 特 性 ,而 在 其 阻 带 在
内 表 现 为衰 减 特 性 。在 微 波 电路 系 统 中.滤 波 器 的 性 能 对 电
A D S- s d O ptm i e e i ba e i z d D s gn r le upl d i r t i ofPa a l lCo e M c os r p
Li a . ne B nd . pas le s Fit r

ADS平行耦合微带线带通滤波器仿真REV1.0

ADS平行耦合微带线带通滤波器仿真REV1.0

ADS平行耦合微带线带通滤波器的设计1.设计指标通带3.0~3.1GHz带内衰减小于2dB,起伏小于1dB截止频率2.8GHz和3.3GHz,衰减大于40dB端口反射系数小于-20dB2.设计原理图新建工程couplefilter_weidai,菜单File->New Project(命名Project)->New Schematic window新建一个名为“couplefilter_weidai”原理图并保存,如下图所示。

(注意:工程保存的目录不能含有中文)在“Tline-Microstrip”元器件面板列表中,选择控件并编辑其属性选择微带传输线控件选择耦合线控件路图。

这样完成了滤波器原理图基本结构,为了达到设计性能,还必须对滤波器中微带电路的电气参数和尺寸进行设置。

3.电路参数设置3.1 设置微带线参数MSUB3.2 滤波器两边的引出线是特性阻抗为50Ω的微带线,其物理尺寸可由ADS自带小软件LINECALC计算得到。

执行菜单命令【Tools】/【LineCalc】/【Start Linecalc】Substrate Parameters按照MSUB参数设置;中心频率Freq设置为:3.05GHz;Electrical设置Z0=50Ohm,E_Eff=90deg;Physical单位设置为:mm;点击Synthesize,综合出微带线宽度W=1.52mm L=13.63mm。

3.3 为了便于修改和优化,将微带线的长度和宽度用变量代替,考虑到平行耦合线滤波器的对称性,所以5个耦合线节中,第1节与第5节、第2节与第4节尺寸完全相同,按照下图参数进行设置(注意单位要选择mm)。

件。

把变量控件放置到原理图中。

双击变量控件,弹出变量设置对话框,在“Name”文本框中输入变量名称,“Variable Value”文本框中输入变量的初值,单击【Add】按钮添加变量,然后单击【Tune/Opt/Sat/DOE Setup…】按钮打开参数优化对话框设置变量的取值范围,选择“Optimation”标签页。

平行耦合微带线带通滤波器分析与设计

平行耦合微带线带通滤波器分析与设计

平行耦合微带线带通滤波器分析与设计刘新红【摘要】为了克服平行耦合微带线带通滤波器设计中存在的尺寸大、需要查表、优化困难等问题,提出了一种平行耦合微带线带通滤波器基于ADS软件的设计方法。

经过深入的理论分析发现,平行耦合线带通滤波器系统阻抗微带线非谐振单元,长度可尽量取短以减小电路尺寸;利用ADS软件自带滤波器设计工具可得到低通滤波器原型,省去了查表的麻烦;在版图优化上采用调谐方法比优化方法更有效。

仿真结果表明,所设计带通滤波器系统阻抗微带线为2.5 mm,中心频率5 GHz,相对带宽10%。

该方法在减小滤波器尺寸的同时没有降低滤波器性能,设计实现快速高效。

%In view of large size,table checking required and difficult optimization in the design of parallel coupled microstrip line bandpass filter,a design method of parallel coupled microstrip line bandpass filter based on ADS is proposed.Based on thorough theoret⁃ical analysis,it is found that the parallel coupled microstrip line bandpass filter system impedance microstrip line is not resonant,so the length can be as short as possible to reduce the circuit size.A prototype of a lowpass filter is obtained by using ADS software,eliminating the trouble of the look⁃up table;In the layout optimization,the tuning method is more effective than the optimization method.The simula⁃tion results show that the system impedance microstrip line is 2.5 mm long,the center frequency is 5GHz,and the relative bandwidth is 10%.This method can reduce the size of filter and not reduce the performance of the filter.The design and implementation of this method is fast and efficient.【期刊名称】《无线电工程》【年(卷),期】2016(046)002【总页数】6页(P52-57)【关键词】平行耦合微带线;带通滤波器;谐振器;插入损耗;回波损耗;ADS仿真【作者】刘新红【作者单位】北京信息职业技术学院,北京100015【正文语种】中文【中图分类】TN713.5AbstractIn view of large size,table checking required and difficult optimization in th e design of parallel coupled microstrip line bandpass filter,a design metho d of parallel coupled microstrip line bandpass filter based on ADS is propo sed.Based on thorough theoretical analysis,it is found that the parallel cou pled microstrip line bandpass filter system impedance microstrip line is not resonant,so the length can be as short as possible to reduce the circuit siz e.A prototype of a lowpass filter is obtained by using ADS software,elimina ting the trouble of the look-up table;In the layout optimization,the tuning method is more effective tha n the optimization method.The simulation results show that the system im pedance microstrip line is 2.5 mm long,the center frequency is 5 GHz,and t he relative bandwidth is 10%.This method can reduce the size of filter andnot reduce the performance of the filter.The design and implementation of this method is fast and efficient.Key wordsparallel coupled microstrip line;bandpass filter;resonator;insertion loss;retu rn loss;ADS simulation0 引言平行耦合微带线滤波器广泛应用于微波、无线通信射频前端和终端已有数十年。

基于ADS的平行耦合微带线带通滤波器的设计及优化

基于ADS的平行耦合微带线带通滤波器的设计及优化

基于ADS的平行耦合微带线带通滤波器的设计及优化
张福洪;张振强;马佳佳
【期刊名称】《电子器件》
【年(卷),期】2010(033)004
【摘要】介绍一种借助ADS(Advanced Design System)软件进行设计和优化平行耦合微带线带通滤波器的方法,给出了清晰的设计步骤,最后结合设计方法利用ADS给出一个中心频率为2.6 GHz,带宽为200 MHz的微带带通滤波器的设计及优化实例和仿真结果,并进一步给出电路版图Momentum仿真结果.仿真结果表明:这种方法是可行的,满足设计的要求.
【总页数】5页(P433-437)
【作者】张福洪;张振强;马佳佳
【作者单位】杭州电子科技大学通信工程学院,杭州,310018;杭州电子科技大学通信工程学院,杭州,310018;杭州电子科技大学通信工程学院,杭州,310018
【正文语种】中文
【中图分类】TN713
【相关文献】
1.平行耦合式微带线带通滤波器的ADS辅助设计研究 [J], 邓建平;胡泽宾;赵惠昌
2.基于ADS设计平行耦合微带线带通滤波器 [J], 梁荣江;曹栋
3.基于ADS简易设计及优化的平行耦合微带线带通滤波器 [J], 尹彩霞;刘小亚
4.平行耦合微带线带通滤波器的设计与优化 [J], 李奇威;郭陈江;张兴华
5.平行耦合微带线带通滤波器的设计及优化 [J], 高蟠;李少甫;何永斌
因版权原因,仅展示原文概要,查看原文内容请购买。

ADS滤波器设计

ADS滤波器设计

ADS滤波器设计实验一设计一个满足如下条件的耦合微带线带通滤波器:中心频率f0:2.45GHz,上下边频与中心频率的差值△ f:±50MHz,当f=f0时,li≤-1.5dB;当f=f0±300MHz时,li≥-30dB,微带线介质层厚度h:1mm;介质层介电常数:2.65,输入输出阻抗Zin,Zout均为:50Ω。

要求 1、提供设计原理(即耦合微带线滤波器的设计原理)2、具体的设计过程(用ADS软件分别仿真原理级电路和Layout 板级电路)3、提供两种电路的仿真结果并比较(S11 和 S21)4、设计结果的分析与误差解释5、提供一个包含上述 1-4 要求的 word 文档,并提供 ADS 的耦合微带滤波器设计源文件滤波器是用来分离不同频率信号的一种器件。

它的主要作用是抑制不需要的信号,使其不能通过滤波器,只让需要的信号通过。

在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。

微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。

平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。

一、设计原理:耦合微带线:当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。

根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。

每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。

级连耦合微带线:由于单个耦合微带线滤波器不能提供良好的滤波器响应及陡峭的通带-阻带过渡。

然而可以通过级连这些基本单元最终得到高性能的滤波器,如图1图1集总参数滤波器设计:先计算带通滤波器归一化频率Ω=f0fℎ−fl ·(ff0+f0f),这样就把带通滤波器设计问题转化为低通滤波器设计问题(都是在归一化频率下进行设计),根据需要选择滤波器种类和阶数,查表可得归一化参数g0,g1,g2……gN,gN+1.将集总参数滤波器转化为耦合微带线滤波器:1、先根据上下边频fl和fh,以及中心频率f0=(fl+fh)/2,确定滤波器带宽:BW=(fh-fl)/f02、根据带宽指标计算下列参数:3、利用上述参数计算耦合微带线奇模偶模特性阻抗Z0o丨i,i+1=Z0[1-Z0Ji,i+1+ (Z0 Ji,i+1)²]Z0e丨i,i+1 = Z0[1+Z0Ji,i+1+ (Z0 Ji,i+1)²]4、计算完奇模偶模特征阻抗后利用ADS的微带线计算器即可计算出微带线几何尺寸W,S,L。

基于ADS的平行耦合微带线带通滤波器的设计

基于ADS的平行耦合微带线带通滤波器的设计

基于ADS的平⾏耦合微带线带通滤波器的设计基于ADS的平⾏耦合微带线带通滤波器的设计摘要:本⽂介绍了平⾏耦合微带线带通滤波器的电路结构,阐述了设计带通滤波器的⽅法,最后给出了相对带宽为10%的滤波器设计的实例及仿真分析结果,证明了该⽅法的可⾏性和便捷性。

关键词: ADS; 微带线;带通滤波器;优化0 引⾔微带滤波器具有⼩型化、⾼性能、低成本等优点,在射频电路系统设计中得到⼴泛的应⽤。

其主要技术指标包括传输特性的插⼊损耗及回波损耗,通带内的相移与群时延,寄⽣通带等参数。

传统的设计⽅法是通过经验公式和查表来求得相关参数,⽅法繁琐且精度不⾼。

近年来,随着射频CAD软件的不断发展,微带滤波器的设计也进⼊了⼀个全新的阶段。

借助CAD软件可以避开复杂的理论计算,进⼀步精确和调整设计参数,确保设计出的滤波器特性符合技术要求。

本⽂通过ADS软件对平⾏耦合微带线带通滤波器进⾏优化仿真设计,证明了该⽅法的可⾏性和便捷性。

1微带带通滤波器的理论设计⽅法1.1 微带带通滤波器主要指标和基本设计思想微带滤波器的主要技术指标包括以下⼏个:(1) 通带边界频率与通带内衰减、起伏, 以及阻带边界频率与阻带衰减;(2) 通带的输⼊电压驻波⽐;(3) 通带内的相移与群时延;(4) 寄⽣通带, 它是由于分布参数传输线的周期性频率特性引起的, 即离设计通带⼀定处⼜产⽣了通带。

微波带通滤波器应⽤⼴泛, 结构多样, 但以微带线实现带通滤波器的结构种类有限, 为此,本⽂以平⾏耦合微带线为例来设计微带带通滤波器。

由于单个带通滤波器单元不能提供良好的滤波响应及陡峭的通带- 阻带过渡, ⽽通过级连基本的带通滤波器单元则可以得到⾼性能的滤波效果。

图1所⽰是⼀种多节耦合微带线带通滤波器的结构⽰意图, 这种结构不要求对地连接, 因⽽结构简单, 易于实现, 这是⼀种应⽤⼴泛的滤波器。

整个电路可以印制在很薄(⼩于1mm) 的介质基⽚上;其纵向尺⼨虽和⼯作波长可以⽐拟, 但采⽤⾼介电常数的介质基⽚则可使线上的波长⽐⾃由空间缩⼩⼏倍; 此外, 整个微带电路元件共⽤⼀个接地板, 且只需由导体带条构成电路图形, 因⽽结构⼤为紧凑, ⼤⼤减⼩了其体积和重量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于ADS的平行耦合微带线带通滤波器的设计
摘要:本文介绍了平行耦合微带线带通滤波器的电路结构,阐述了设计带通滤波器的方法,最后给出了相对带宽为10%的滤波器设计的实例及仿真分析结果,证明了该方法的可行性和便捷性。

关键词: ADS; 微带线;带通滤波器;优化
0 引言
微带滤波器具有小型化、高性能、低成本等优点,在射频电路系统设计中得到广泛的应用。

其主要技术指标包括传输特性的插入损耗及回波损耗,通带内的相移与群时延,寄生通带等参数。

传统的设计方法是通过经验公式和查表来求得相关参数,方法繁琐且精度不高。

近年来,随着射频CAD软件的不断发展,微带滤波器的设计也进入了一个全新的阶段。

借助CAD软件可以避开复杂的理论计算,进一步精确和调整设计参数,确保设计出的滤波器特性符合技术要求。

本文通过ADS软件对平行耦合微带线带通滤波器进行优化仿真设计,证明了该方法的可行性和便捷性。

1微带带通滤波器的理论设计方法
1.1 微带带通滤波器主要指标和基本设计思想
微带滤波器的主要技术指标包括以下几个:
(1) 通带边界频率与通带内衰减、起伏, 以及阻带边界频率与阻带衰减;
(2) 通带的输入电压驻波比;
(3) 通带内的相移与群时延;
(4) 寄生通带, 它是由于分布参数传输线的周期性频率特性引起的, 即离设计通带一定处又产生了通带。

微波带通滤波器应用广泛, 结构多样, 但以微带线实现带通滤波器的结构种类有限, 为此,本文以平行耦合微带线为例来设计微带带通滤波器。

由于单个带通滤波器单元不能提供良好的滤波响应及陡峭的通带- 阻带过渡, 而通过级连基本的带通滤波器单元则可以得到高性能的滤波效果。

图1所示是一种多节耦合微带线带通滤波器的结构示意图, 这种结构不要求对地连接, 因而结构简单, 易于实现, 这是一种应用广泛的滤波器。

整个电路可以印制在很薄(小于1mm) 的介质基片上; 其纵向尺寸虽和工作波长可以比拟, 但采用高介电常数的介质基片则可使线上的波长比自由空间缩小几倍; 此外, 整个微带电路元件共用一个接地板, 且只需由导体带条构成电路图形, 因而结构大为紧凑, 大大减小了其体积和重量。

多节耦合微带线带通滤波器的结构示意图
图1 多节耦合微带线带通滤波器的结构示意图
1.2 平行耦合微带线带通滤波器的理论设计方法 1.
2.1 平行耦合微带通滤波器单元特性
平行耦合微带线带通滤波器的基本单元如图1 所示。

每条微带线的宽度为W ,微带之间的距离为S ,相互耦合部分的长度为L 。

单个长平行耦合微带线单元具有典型的带通滤波器的特性,但不能提供良好的滤波器响应及陡峭的通带到阻带的过渡。

如果将多个耦合微带线单元级联可构成高性能的带通滤波器,具有良好的滤波特性。

图2 耦合微带线基本单元
1.2.2 设计步骤
(1) 选择标准低通滤波器参数。

根据需要的衰减和波纹, 通过查表选择合适的标准低通滤波器参数
0,1,2,1......n n g g g g g +
(2) 根据上边频和下边频,确定滤波器相对带宽∆。

21
c
w w w -∆=
(3) 根据相对带宽确定耦合微带线各节偶模和奇模的特性阻抗
00101
2J Z g g π∆
=
(2)
n,n+101
J 2n n Z g g π+∆
=
(3)
i,i+101
J 2i i Z g g +=
(i 从1到n-1) (4)
()2
0000[1]e Z Z JZ JZ =++ (5) ()2
0000[1]o Z Z JZ JZ =-+ (6)
其中下标i , i 1表示耦合段单元,0Z 取50Ω,是滤波器输入、输出端口的传输线特性阻抗。

(4) 确定微带线的实际尺寸。

根据得到的各节微带线的奇模特性阻抗和偶模特性阻抗,传统的方法是通过查表计算得到其几何尺寸,本文是利用ADS 自带的LineCale 工具计算其实际几何尺寸。

2 基于ADS 的平行耦合微带线带通滤波器设计实例
2.1 设计指标
(1) 带通滤波器中心频率2GHz ; (2) 通带 1.9-2.1GHz ;
(3) 通带内衰减小于2dB ,起伏小于1dB ,端口反射系数小于-15dB ;
(4) 1.7GHz 以下及2.3GHz 以上衰减大于20dB,通带内输入驻波比小于2dB; (5) 微带线基板的厚度选为0.8mm ,基板的相对介电常数选为4.3。

2.2 ADS 的设计及优化
根据1.7GHz 频率点的衰减大于20dB 的要求可以确定低通原型滤波器的阶数:首先将1.7GHz 这个频率转换到归一化低通形式(c ω=1):
0011 1.72 3.260.12 1.7ωωωωω⎛⎫⎛⎫

-=-=- ⎪ ⎪∆⎝⎭
⎝⎭
这个值在图上横向标度是:
1 3.261 2.26c
ωω-=--=,
查表得滤波器的阶数min N =3,带内波纹为0.5 dB 的Chebyshev 滤波器原型参数为:1g =1.5963, 2g =1.0967, 3g =1.5963,
04g g ==1.0000。

利用公式(5)和(6)求出平行耦合微带线的奇模、偶模特性阻抗,计算结
利用 ADS 软件进行优化设计,在ADS 原理图板块中选择Mcfil 、MLIN 及MSUB 等元件模拟微带线进行布局,并将其连接好,插入VAR 变量控件、S 参数仿真控件和Goal 优化控件,得到微带线带通滤波器的优化原理图如图3所示。

设置控件MSUB 参数时,可选基片厚度0.8mm ,介电常数4.3,磁导率为1,金属电导率为5.88E+7,封装高度1.0e+33mm,金属层厚度0.03mm ,损耗正切角为1e-4,表面粗糙度为0mm ,滤波器两边的引出线是50欧姆的微带线,其宽度可利用ADS 自带的LineCale 工具计算得出。

设计过程主要以滤波器的S 参数作为优化目标进行优化仿真,选取了四个优化目标,其中21
S
可用来优化通带、阻带的衰减,优化参数11
S 主要用来优化通带内的反射系数,设计时用变
量代替各耦合单元的结构参数,最后用随机法进行全局优化。

图3 耦合微带线带通滤波器优化原理图
其中微带线的初始尺寸可由ADS自带的LineCale计算工具得到,并以此数据为初值进行优化,参数如表2所示。

n W(mm)S(mm)L(mm)
1,4 1.2960.23221.392
2,3 1.4750.91220.925
2.3 仿真结果与分析
由原理图产生的仿真曲线初始不能满足指标要求,利用ADS 进行多次全局优化后,得到的仿真曲线如图2所示。

由图3可知,插入损耗S21曲线在1.7GHz、1.9GHz、2.1GHz和2.3GHz 处的数据都满足技术指标。

由图4可见,在滤波器通带内的群延时随频率变化很小,说明滤波器具有很好的群延时特性。

由图5可见,通带内滤波器的输入驻波比很小,满足设计要求。

图3 优化后滤波器的插入损耗和回波损耗
图5 滤波器的输入驻波比图4 群延时响应
2.4 版图的生成及矩量法仿真
微带滤波器实际电路的性能与原理图仿真的结果可能有很大的差别。

利用ADS软件的矩量法可以进行版图仿真,仿真后才能进行电路板的制作。

由原理图生成的版图如图6所示,利用矩量法仿真,得到的S参数变化曲线如图7所示。

版图仿真结果表明,其结果比原理图仿真更加准确(通带到阻带的过渡更加陡峭),可将其作为对原理图设计的验证。

如果两者相差较大,必须回到原理图中重新调整微带线的结构参数并优化,直到版图仿真符合要求为止。

图6 原理图生成版图
图7 版图仿真曲线
3 结论
本文介绍了基于ADS设计耦合微带线带通滤波器的方法,传统设计方法因为需要查表及曲线拟合来完成,工作量大,而且设计精度不高。

文中通过利用ADS软件对平行耦合微带线带通滤波器进行优化仿真设计的实例,证明了该方法的可行性和便捷性。

简化了设计,提高精度,降低成本。

对高性能滤波器的设计具有重要的实用价值。

参考文献
[1] Reinhold Ludwing and Pavel Bretchko, RF Circuit Design: Theory and Applications,
Publishing House of Electronics Industry, 2010.
[2] David M. Poar, Microwave Engineering Third Edition, publishing House of
Electronics Industry, 2010.
[3] 冯新宇,车向前,穆秀春. ADS2009射频电路设计与仿真. 电子工业出版社, 2010.
[4] 马涛,柴常春.一种利用ADS设计微带带通滤波器的新方法.技术前沿,第八卷第十期,
2006.
(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注!)。

相关文档
最新文档