专题2.9 双星与天体追及相遇问题(原卷版)

合集下载

双星与天体追及相遇问题

双星与天体追及相遇问题

【例3】设:每颗星的质量均为m.
(1)求第一种形式下,星体的线速度和周期;
(2)假设两种形式星体的运动周期相同,第二种形式下星体间距为 多少?
【解析】
(1)星体运动的向心力是由另外
两星体对它的万有引力提供,则有
F1
Gm2 R2

F2
F1
F2
Gm2
2R2

R
F1
F2
m
v2 R

v 5GmR 2R
第六章 万有引力与航天 知识应用
章末复习 双星、三星、暗物质、 天体的追及与相遇问题
2020年4月21日(星期二)

1. 环绕型:
识 回
G
Mm r2
m
v2 r
m 2r
m
4 2
T2
r
mv

2. 表面型:
G Mm mg即GM gR2 R2
黄金代换公式
目录 CONTENT
S
一、双星系统
二、三星系统
(2)B星体所受合力大小FB;
(3)C星体的轨道半径RC; (4)三星体做圆周运动的周期T。
多星(聚星)系统
宇宙中存在一些离其他恒星很远的四颗恒星组成的四星系统,通常可忽 略其他星体对它们的引力作用。稳定的四星系统存在多种形式,其中一种是 四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨 道做匀速圆周运动,如图左;另一种是三颗恒星始终位于正三角形的三个顶 点上,另一颗位于正三角形的中心O点,外围三颗星绕O点做匀速圆周运动, 如图右。
(2)设第二种情形下星体做圆周运动的半径为r
则相邻两星体间距离
则相邻两星体之间的万有引力 为:
F G mm Gm2 ( 3r)2 3r2

2025高考物理 卫星变轨、对接、追及相遇问题

2025高考物理 卫星变轨、对接、追及相遇问题

2025高考物理 卫星变轨、对接、追及相遇问题一、单选题1.如图是一次卫星发射过程。

先将卫星发射进入绕地球的较低圆形轨道Ⅰ,然后在a 点使卫星进入椭圆形的转移轨道Ⅰ,再在椭圆轨道的远地点b 使卫星进入同步轨道Ⅰ,则下列说法正确的是( )A .卫星在轨道Ⅰ的速率小于卫星在轨道Ⅰ的速率B .卫星在轨道Ⅰ的周期大于卫星在轨道Ⅰ的周期C .卫星运动到轨道Ⅰ的b 点时的加速度与轨道Ⅰ的b 点加速度相等D .卫星运动到轨道Ⅰ的a 点时,需减速才可进入轨道Ⅰ二、多选题2.在空间运行的某人造地球卫星由于空气阻力的作用运行轨道将发生变化,则卫星运行轨道发生变化后,下列说法正确的是( )A .卫星的线速度将减小B .卫星的角速度将变大C .卫星的向心加速度将变大D .卫星的运行周期将要变大三、单选题3.物体在万有引力场中具有的势能叫做引力势能。

取两物体相距无穷远时的引力势能为零,一个质量为m 0的质点距离质量为M 0的引力源中心为r 0时。

其引力势能00p 0M m E G r =-(式中G 为引力常数)。

现有一颗质量为m 的人造地球卫星以圆形轨道环绕地球飞行,由于受高空稀薄空气的阻力作用,卫星的圆轨道半径从r 1缓慢减小到r 2.已知地球的半径为R,地球表面的重力加速度为g ,此过程中卫星克服空气阻力做功为( )A .12112mgR r r ⎛⎫- ⎪⎝⎭B .21112mgR r r ⎛⎫- ⎪⎝⎭C .221112mgR r r ⎛⎫- ⎪⎝⎭D .212112mgR r r ⎛⎫- ⎪⎝⎭四、多选题4.嫦娥工程分为三期,简称“绕、落、回”三步走。

嫦娥探测器在历经主动减速、快速调整、悬停避障、缓速下降等阶段后,着陆器、上升器组合体最后稳稳地落于月面。

如图所示为我国嫦娥工程第二阶段的登月探测器“嫦娥三号”卫星的飞行轨道示意图。

则A .登月探测器在环月轨道2(椭圆轨道)上绕行时P 点处速度最大B .登月探测器在环月轨道1(圆轨道)的速度比月球上的第一宇宙速度小C .登月探测器在接近月面过程喷火以减速,该过程机械能增加D .登月探测器在环月轨道1上P 点的速度大于在环月轨道2上P 点的速度五、单选题5.2022年5月,我国成功完成了天舟四号货运飞船与空间站的对接,形成的组合体在地球引力作用下绕地球做圆周运动,周期约90分钟。

天体的追及相遇问题(分层练习)(原卷版)

天体的追及相遇问题(分层练习)(原卷版)

天体的追及相遇问题1.高度为R ,此时a 、b 恰好相距最近。

已知地球质量为M 、半径为R 、地球自转的角速度为ω,万有引力常量为G ,忽略卫星间的引力,下列说法中正确的是( )A .发射卫星b 时速度要大于11.2km/sB .卫星a 受到的合力大于卫星b 受到的合力C .卫星a 和b 到再次相距最近,至少还需时间38t GM R ω=-D .若要卫星c 与b 实现对接,可让卫星c 直接在原轨道加速2.北斗卫星导航系统由地球同步静止轨道卫星a 、与地球自转周期相同的倾斜地球同步轨道卫星b ,以及比它们轨道低一些的轨道卫星c 组成,它们均为圆轨道卫星。

若轨道卫星c 与地球同步静止轨道卫星a 运动轨迹在同一平面内,已知卫星c 的离地高度为h ,地球自转周期为T ,地球半径为R ,地球表面重力加速度为g ,万有引力常量为G ,下列说法正确的是( )A .若卫星a 与卫星c 的周期之比为3:1,某时刻两者相距最近,则经过2T 时间后,两者再次相距最近 B .卫星a 与卫星b 一定具有相同的机械能C .可以发射一颗地球同步静止轨道卫星,每天同一时间经过杭州正上空同一位置D .卫星c ()2Rh gR π+3.如图所示,A 、B 两卫星绕地球做匀速圆周运动,它们的轨道在同一平面内且绕行方向相同。

若A 离地面的高度为h ,运行周期为T ,根据观测记录可知,A 观测B 的最大张角θ=60°。

设地球的半径为R ,则下列说法中不正确...的是( )A .卫星B 的运行轨道半径为2R h + B .卫星A 与B 的加速度之比为1:4C .卫星A 与B 运行的周期之比为2D .若某时刻卫星A 和B 相距最近,则再经过时间T ,它们又相距最近4.(2022春·重庆沙坪坝·高一重庆八中校考期末)(多选)如图所示,有A 、B 两颗行星绕同一恒星O 做圆周运动,运行方向相反。

A 行星的周期为A T ,B 行星的周期为B T ,在某一时刻两行星相距最近,则( )A .经过时间AB B A T T t T T =+,两行星将再次相距最近 B .经过时间A B B A T T t T T =-,两行星将再次相距最近 C .经过时间()A B B A 2nT T t T T =+(n =1,3,5,…),两行星相距最远 D .经过时间()A B B A 2nT T t T T =-(n =1,3,5,…),两行星相距最远 5.如图所示,地球的两个卫星绕地球在同一平面内做匀速圆周运动,已知卫星一运行的周期为T 1=T 0,地球的半径为R 0,卫星一和卫星二到地球中心之间的距离分别为R 1=2R 0,R 2=4R 0,引力常量为G ,某时刻,两卫星与地心之间的夹角为23π。

卫星变轨和追及相遇问题 双星模型(解析版)-高中物理

卫星变轨和追及相遇问题 双星模型(解析版)-高中物理

卫星变轨和追及相遇问题双星模型(单选基础练+多选提升练+计算综合练)一、基础练(单选题)1.神舟十六号于2023年5月30日上午9时31分在甘肃酒泉卫星发射中心发射,取得圆满成功!神舟十六号乘组有景海鹏、桂海湖、朱杨柱三位航天员,这是中国第十六次载人航天发射,是中国航天工程实现的又一个历史性突破。

此次神舟十六号还会前往空间站执行维修任务,包括加装新的天线、引导机器人等工作。

宇航员们还将会进行科学实验,比如观察天体、检测太空环境等等。

若神舟十六号与空间站核心舱在对接的最后阶段,神舟十六号与空间站处于同一轨道上同向运动,两者的运行轨道均视为圆周。

要使神舟十六号在同一轨道上追上空间站实现对接,神舟十六号喷射燃气的方向可能正确的是()A. B.C.D.【答案】A【详解】要想使神舟十六号在与空间站的同一轨道上对接,则需要加速使神舟十六号速度变大,与此同时要想不脱离原轨道,根据F =m v 2r则必须要增加向心力,即喷气时产生的推力一方面有沿轨道向前的分量,另一方面还要有指向地心的分量,而喷气产生的推力与喷气方向相反,可知,只有第一个选项符合要求。

故选A 。

2.随着科技的发展,载人飞船绕太阳运行终会实现。

如图所示,Ⅰ、Ⅲ轨道分别为地球和火星绕太阳运动的圆轨道,II 轨道假设是载人飞船的椭圆轨道,其中点A 、C 分别是近日点和远日点,B 点为轨道Ⅱ、Ⅲ的交点,若运动中只考虑太阳的万有引力,则()A.载人飞船的运动周期小于1年B.载人飞船在C 的速率小于火星绕日的速率C.载人飞船在Ⅰ轨道上A 点的速率大于在Ⅱ轨道上A 点的速率D.只要绕行时间相同,载人飞船在Ⅱ轨道扫过的面积就等于火星在Ⅲ轨道扫过的面积【答案】B【详解】A .根据开普勒第三定律a 3T 2=k 由于Ⅱ轨道的半长轴大于Ⅰ轨道的半径,则载人飞船的运动周期大于地球的公转周期,即载人飞船的运动周期大于1年,故A 错误;B .假设飞船在C 处变轨到绕太阳做匀速圆周运动的轨道上,则飞船在C 处需要点火加速;根据万有引力提供向心力可得GMm r 2=m v 2r 可得v =GM r 可知火星绕日的速率大于C 处绕太阳做匀速圆周运动的速率,则载人飞船在C 的速率小于火星绕日的速率,故B 正确;C .飞船在Ⅰ轨道上A 点需要点火加速做离心运动才能到达Ⅱ轨道上,故载人飞船在Ⅰ轨道上A 点的速率小于在Ⅱ轨道上A 点的速率,故C 错误;D .根据开普勒第二定律可知,同一轨道上的行星在相同时间内,行星与太阳连线扫过的面积相等,但不同轨道的行星,在相同时间内扫过的面积不一定相等,故D 错误。

专题2.9 双星与天体追及相遇问题(解析版)

专题2.9 双星与天体追及相遇问题(解析版)

高考物理备考微专题精准突破专题2.9 双星与天体追及相遇问题【专题诠释】一、双星问题(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.(2)特点:Gm1m2 2 Gm1m2 2①各自所需的向心力由彼此间的万有引力相互提供,即②两颗星的周期及角速度都相同,即T1=T2,ω1=ω2.=m1ω1r1,L2=m2ω2r2.L2③两颗星的半径与它们之间的距离关系为:r1+r2=L.(3)两颗星到圆心的距离r1、r2 与星体质量成反比,即m1=r2.m2 r1二、卫星中的“追及相遇”问题某星体的两颗卫星之间的距离有最近和最远之分,但它们都处在同一条直线上.由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量,若它们的初始位置与中心天体在同一直线上,内轨道所转过的圆心角与外轨道所转过的圆心角之差为π的整数倍时就是出现最近或最远的时刻.【高考领航】【2018·高考全国卷Ⅰ】2017 年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km,绕二者连线上的某点每秒转动12 圈.将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( )A.质量之积B.质量之和C.速率之和D.各自的自转角速度【答案】BC【解析】两颗中子星运动到某位置的示意图如图所示.1每秒转动12 圈,角速度已知,中子星运动时,由万有引力提供向心力得Gm1m2=m1ω2r1①l2Gm1m2=m2ω2r2②l2l=r1+r2③由①②③式得G(m1+m2)2ω2l3l2质量之和可以估算.=ω l,所以m1+m2=,G由线速度与角速度的关系v=ωr 得v1=ωr1④v2=ωr2⑤由③④⑤式得v1+v2=ω(r1+r2)=ωl,速率之和可以估算.质量之积和各自自转的角速度无法求解.【技巧方法】1.双星问题求解思维引导2.对于天体追及问题的处理思路(1)根据GMm=mrω2,可判断出谁的角速度大;r2(2)根据天体相距最近或最远时,满足的角度差关系进行求解.【最新考向解码】【例1】(2019·山东恒台一中高三上学期诊断考试)2017 年8 月28 日,中科院南极天文中心的巡天望远镜观测到一个由双中子星构成的孤立双星系统产生的引力波。

专题26 卫星或天体中的追及、相遇模型(原卷版)

专题26 卫星或天体中的追及、相遇模型(原卷版)

专题26 卫星或天体中的追及、相遇模型1、科学思维——模型建构卫星或天体中的追及、相遇模型中,两卫星或天体均绕同一颗中心天体做匀速圆周运动,求解何时相距最近或最远即为此模型。

解决此类模型,需结合实际的物理模型和开普勒第三定律进行求解。

2、模型特征模型图示特点模型1:从相距最近开始,同向运动,何时再次相距最近(1)扫过角度关系:∆θa −∆θb =2π(2)最短时间:∆t =T a TbT b−T a模型2:从相距最近开始,同向运动,何时再次相距最远(1)扫过角度关系:∆θa −∆θb =π (2)最短时间:∆t =T a Tb 2(T b−T a)模型3:从相距最近开始,反向运动,何时再次相距最近(1)扫过角度关系:∆θa +∆θb =2π(2)最短时间:∆t =T a Tb T b+T a模型4:从相距最近开始,反向运动,何时再次相距最远(1)扫过角度关系:∆θa +∆θb =π (2)最短时间:∆t =T a T b 2(T b +T a )模型5:从相距最远开始,同向运动,何时再次相距最近(1)扫过角度关系:∆θa −∆θb =π (2)最短时间:∆t =T a T b 2(T b −T a )模型6:从相距最远开始,反向运动,何时再次相距最近(1)扫过角度关系:∆θa +∆θb =π(2)最短时间:∆t =T a Tb 2(T b+T a)【典例1】[从相距最近开始,同向运动,何时再次相距最近或最近](多选)如图所示,a 和b 是某天体M 的两个卫星,它们绕天体公转的周期为T a 和T b ,某一时刻两卫星呈如图所示位置,且公转方向相同,则下列说法中正确的是( )A. 经T a T bT b−T a后,两卫星相距最近B. 经T a T b2(T b−T a)后,两卫星相距最远C. 经T a+T b2后,两卫星相距最近D. 经T a+T b2后,两卫星相距最远【典例2】[从相距最远开始,同向运动,何时再次相距最近或最近]“火星合日”是指火星、太阳、地球三者之间形成一条直线时,从地球的方位观察,火星位于太阳的正后方,火星被太阳完全遮蔽的现象,如图所示,已知地球、火星绕太阳运行的方向相同,若把火星和地球绕太阳运行的轨道视为圆,火星绕太阳运动的公转周期约等于地球公转周期的2倍,由此可知()A. “火星合日”约每1年出现一次B. “火星合日”约每4年出现一次C. 火星的公转半径约为地球公转半径的√43倍D. 火星的公转半径约为地球公转半径的8倍【典例3】[相切模型]如图所示,一颗卫星与同步卫星在同一轨道面内,运行方向相同,其轨道半径为同步卫星轨道半径的二分之一,地球自转的周期为T。

天体运动中的追击相遇问题

天体运动中的追击相遇问题1.天文上曾出现几个行星与太阳在同一直线上的现象,假设地球和火星绕太阳的运动看作是匀速圆周运动,周期分别是T1和T2,它们绕太阳运动的轨道基本上在同一平面上,若某时刻地球和火星都在太阳的一侧,三者在一条直线上,那么再经过多长的时间,将再次出现这种现象(已知地球离太阳较近,火星较远)()再次出现这种现象(已知地球离太阳较近,火星较远)()2. 如图,两颗行星和太阳在同一条直线上.外面的行星B每12年绕太阳一周,里面的行星A每3年绕太阳一周.两颗行星都沿顺时针方向运行.如果今年这两颗行星和太阳形成一条直线,再过多少年两颗行星又将和太阳形成一条直线?解:根据行星A与行星B要成一条直线就是说它们要成180°,设N年成一条直线.行星B12年绕一圈就是说一年转30度,行星A3年绕一圈一年就是转120度,所以得到:120°×N-30°×N=180°,解得:N=2,所以过2年两颗行星又将和太阳形成一条直线.3.(2007•黄冈)张宇同学是一名天文爱好者,他通过查阅资料得知:地球、火星的运行轨道可以近似地看成是以太阳为圆的两个同心圆,且这两个同心圆在同一平面上(如图所示).由于地球和火星的运行速度不同,所以二者的位置不断发生变化.当地球、太阳和火星三者处在一条直线上,且太阳位于地球、火星中间时,称为“合”;当地球、太阳和火星三者处在一条直线上,且地球于太阳与火星中间时,称为“冲”.另外,从地球上看火星与太阳,当两条视线互相垂直时,分别称为“东方照”和“西方照”.已知地球距太阳15(千万千米),火星距太阳20.5(千万千米).(1)分别求“合”、“冲”、“东方照”、“西方照”时,地球与火星的距离(结果保留准确值);(2)如果从地球上发射宇宙飞船登上火星,为了节省燃料,应选择在什么位置时发射较好,说明你的理由.(注:从地球上看火星,火星在地球左、右两侧时分别叫做“东方照”、“西方照”.)(1)“合”=地球距太阳距离+火星距太阳距离、“冲”=火星距太阳距离-地球距太阳距离、勾股定理得出“东方照”、“西方照”=(2)从地球上发射宇宙飞船登上火星,为了节省燃料,即找出地球与火星的最短距离,这时太阳和火星三者处在一条直线上,且地球于太阳与火星中间.解:(1)“合”=15+20.5=35.5(千万千米),“冲”=20.5-15=5.5(千万千米),“东方照”=“西方照”(2)“冲”位置时发射较好,因为太阳和火星三者处在一条直线上,且地球于太阳与火星中间,地球与火星的距离最短.4.2013年10月3日发生天王星“冲日”,此时天王星、地球、太阳位于同一条直线上,地球和天王星距离最近,每到发生天王星“冲日”的时候,是天文学家和天文爱好者观测天王星的最佳时机.若把地球、天王星围绕太阳的运动当作匀速圆周运动,并用r1、r2分别表示地球、天王星绕太阳运转的轨道半径,并设太阳质量M与万有引力常量G的乘积GM=1/k2,再经过多长时间发生下一次天王星“冲日”?()研究天王星、地球绕太阳做匀速圆周运动,根据万有引力提供向心力,列出等式表示出角速度.天王星、地球绕太阳做匀速圆周运动,当地球转过的角度与天王星转过的角度之差等于2π时,再一次相距最近.5.据报道,美国宇航局发射的“勇气”号和“机遇”号孪生双子火星探测器在2004年1月4日和1月25日相继带着地球人的问候在火星着陆.假设火星和地球绕太阳的运动可以近似看作同一平面内同方向的匀=2.4×1011m,地球的轨道半速圆周运动,已知火星的轨道半径r1径r=1.5×1011m,如图所示,从图示的火星与地球相距最近的时2刻开始计时,请估算火星再次与地球相距最近需多长时间()。

2020年高考物理专题精准突破 双星与天体追及相遇问题(解析版)

2020年高考物理专题精准突破 专题 双星与天体追及相遇问题【专题诠释】 一、双星问题(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.(2)特点:①各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2L 2=m 2ω22r 2. ②两颗星的周期及角速度都相同,即 T 1=T 2,ω1=ω2.③两颗星的半径与它们之间的距离关系为:r 1+r 2=L . (3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1.二、卫星中的“追及相遇”问题某星体的两颗卫星之间的距离有最近和最远之分,但它们都处在同一条直线上.由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量,若它们的初始位置与中心天体在同一直线上,内轨道所转过的圆心角与外轨道所转过的圆心角之差为π的整数倍时就是出现最近或最远的时刻. 【高考领航】【2018·高考全国卷Ⅰ】2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的 过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈.将两颗 中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一 时刻两颗中子星( )A .质量之积B .质量之和C .速率之和D .各自的自转角速度 【答案】 BC【解析】 两颗中子星运动到某位置的示意图如图所示.每秒转动12圈,角速度已知,中子星运动时,由万有引力提供向心力得 Gm 1m 2l 2=m 1ω2r 1① Gm 1m 2l 2=m 2ω2r 2② l =r 1+r 2③由①②③式得G (m 1+m 2)l 2=ω2l ,所以m 1+m 2=ω2l 3G ,质量之和可以估算.由线速度与角速度的关系v =ωr 得 v 1=ωr 1④ v 2=ωr 2⑤由③④⑤式得v 1+v 2=ω(r 1+r 2)=ωl ,速率之和可以估算. 质量之积和各自自转的角速度无法求解. 【技巧方法】1.双星问题求解思维引导2.对于天体追及问题的处理思路(1)根据GMmr2=mrω2,可判断出谁的角速度大;(2)根据天体相距最近或最远时,满足的角度差关系进行求解. 【最新考向解码】【例1】(2019·山东恒台一中高三上学期诊断考试)2017年8月28日,中科院南极天文中心的巡天望远镜观测到一个由双中子星构成的孤立双星系统产生的引力波。

万有引力与航天专题(天体质量和密度的计算、变轨问题、双星和多星问题、天体的追及相遇问题)

万有引力与航天专题(天体质量和密度的计算、变轨问题、双星和多星问题、天体的追及相遇问题、不同轨道上卫星各物理量的比较)60分钟考点序号考点 考向 题型分布考点1万有引力与航天专题(天体质量和密度的计算、变轨问题、双星和多星问题、天体的追及相遇问题、不同轨道上卫星各物理量的比较)考向1:天体质量和密度的计算 考向2:不同高度重力加速度的计算 考向3:不同轨道上卫星各物理量的比较考向4:变轨问题 考向5:双星和多星问题考向6:卫星的追及相遇问题 14单选+4多选万有引力与航天专题(天体质量和密度的计算、变轨问题、双星和多星问题、天体的追及相遇问题、不同轨道上卫星各物理量的比较)(14单选+4多选) 1.(2024·河南·模拟预测)如图所示,A 、B 、C 分别表示太阳、水星和地球,假设水星和地球在同一平面内绕太阳做匀速圆周运动,水星公转半径为r ,地球公转半径为R ,此时AB 与BC 垂直.水星的公转周期为1T ,地球的公转周期为2T ,太阳质量为M ,引力常量为G ,所有天体均可视为质点,不考虑其他天体的影响,下列说法正确的是( )A .行星AB 、的质量之比为1:4 B .行星A B 、的密度之比为1:2C .行星A B 、的第一宇宙速度之比为1:2D .行星A B 、的同步卫星的向心加速度之比为1:8 3.(2024·北京海淀·模拟预测)如图所示,a 为地球赤道上的物体,b 为沿地球表面附近做匀速圆周运动的人造卫星,c 为地球同步卫星。

关于a 、b 、c 做匀速圆周运动的说法中错误的是( )A.a、b、c三物体,都仅由万有引力提供向心力B.周期关系为a c b=>T T TC.线速度的大小关系为a c b<<v v vD.向心加速度的大小关系为b c a>>a a a8.(2024·山东烟台·三模)北京时间2024年1月5日19时20分,我国在酒泉卫星发射中心用快舟一号甲运载火箭,成功将天目一号气象星座15-18星(以下简称天目星)发射升空,天目星顺利进入预定轨道,至此天目一号气象星座阶段组网完毕。

天体追击相遇和双星

追及相遇例1如图1所示,有A、B两颗行星绕同一颗恒星M做圆周运动,旋转方向相同,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则①经过多长时间,两行星再次相距最近?②经过多长时间,两行星第一次相距最远?分析与解答:A、B两颗行星做匀速圆周运动,由万有引力提供向心力,因此T1<T2。

可见当A运动完一周时,B还没有达到一周,但是要它们的相距最近,只有A、B行星和恒星M的连线再次在一条直线上,且A、B 在同侧,从角度看,在相同时间内,A比B多转了2π;如果A、B在异侧,则它们相距最远,从角度看,在相同时间内,A比B多转了π。

所以再次相距最近的时间t1,由;第一次相距最远的时间t2,由。

如果在问题中把“再次”或“第一次”这样的词去掉,那么结果如何?1.设地球质量为M,绕太阳做匀速圆周运动,有一质量为m的飞船由静止开始从P点沿PD 方向做加速度为a的匀加速直线运动,1年后在D点飞船掠过地球上空,再过3个月又在Q 处掠过地球上空,如图2所示(图中“S”表示太阳)。

根据以上条件,求地球与太阳之间的万有引力大小。

分析与解答:飞船开始与地球相当于在D点相遇,经过3个月后,它们又在Q点相遇,因此在这段时间内,地球与太阳的连线转过的角度。

设地球的公转周期为T,飞船由静止开始做加速度为a的匀加速直线运动,则地球的公转半径为所以地球与太阳之间的万有引力大小为例3阅读下列信息,并结合该信息解题:(1)开普勒从1609年~1619年发表了著名的开普勒行星运动三定律,其中第一定律为:所有的行星分别在大小不同的椭圆轨道上围绕太阳运动,太阳在这个椭圆的一个焦点上。

第三定律:所有行星的椭圆轨道的半长轴的三次方跟公转周期的平方的比值都相等。

实践证明,开普勒三定律也适用于其他中心天体的卫星运动。

(2)从地球表面向火星发射火星探测器,设地球和火星都在同一平面上绕太阳做圆周运动,火星轨道半径R m为地球轨道半径R e的1.500倍,简单而又比较节省能量的发射过程可分为两步进行:第一步,在地球表面用火箭对探测器进行加速,使之获得足够动能,从而脱离地球引力作用成为一个沿地球轨道运动的人造卫星;第二步是在适当时刻点燃与探测器连在一起的火箭发动机,在短时间内对探测器沿原方向加速,使其速度数值增加到适当值,从而使得探测器沿着一个与地球轨道及火星轨道分别在长轴两端相切的半个椭圆轨道正好射到火星上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考物理备考微专题精准突破专题2.9双星与天体追及相遇问题
【专题诠释】一、双星问题
(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.
(2)特点:
①各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2=m 1ω2
1r 1,Gm 1m 2L
2=m 2ω22r 2.②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2.
③两颗星的半径与它们之间的距离关系为:r 1+r 2=L .(3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1
.二、卫星中的“追及相遇”问题
某星体的两颗卫星之间的距离有最近和最远之分,但它们都处在同一条直线上.由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量,若它们的初始位置与中心天体在同一直线上,内轨道所转过的圆心角与外轨道所转过的圆心角之差为π的整数倍时就是出现最近或最远的时刻.【高考领航】
【2018·高考全国卷Ⅰ】2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前约100s 时,它们相距约400km ,绕二者连线上的某点每秒转动12圈.将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星(
)
A .质量之积
B .质量之和
C .速率之和
D .各自的自转角速度
【技巧方法】
1.双星问题求解思维引导
2.对于天体追及问题的处理思路
(1)根据GMm
r2=mrω
2,可判断出谁的角速度大;
(2)根据天体相距最近或最远时,满足的角度差关系进行求解.
【最新考向解码】
【例1】(2019·山东恒台一中高三上学期诊断考试)2017年8月28日,中科院南极天文中心的巡天望远镜观测到一个由双中子星构成的孤立双星系统产生的引力波。

该双星系统以引力波的形式向外辐射能量,使得圆周运动的周期T极其缓慢地减小,双星的质量m1与m2均不变,在两颗中子星合并前约100s时,它们相距约400km,绕二者连线上的某点每秒转动12圈,将两颗中子星都看做是质量均匀分布的球体,则下列关于该双星系统的说法正确的是()
A.两颗中子星的自转角速度相同,在合并前约100s时ω=24πrad/s
B.合并过程中,双星间的万有引力逐渐增大
C.双星的线速度逐渐增大,在合并前约100s时两颗星速率之和为9.6π×106m/s
D.合并过程中,双星系统的引力势能逐渐增大
【例2】(2019·河南洛阳尖子生一联)设金星和地球绕太阳中心的运动是公转方向相同且轨道共面的匀速圆周运动,金星在地球轨道的内侧(称为地内行星),在某特殊时刻,地球、金星和太阳会出现在一条直线上,这时候从地球上观测,金星像镶嵌在太阳脸上的小黑痣缓慢走过太阳表面,天文学称这种现象为“金星凌日”,假设地球公转轨道半径为R,“金星凌日”每隔t0年出现一次,则金星的公转轨道半径为()
A.t0 1+t0B.R(t0
1+t0
)3
C .R 3(1+t 0t 0)2
D .R 3(
t 0
1+t 0
)2【微专题精练】
1.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为()
A .
n 3k 2
T B .
n 3k
T C.
n 2k
T D .
n k
T 2.双星系统由两颗绕着它们中心连线上的某点旋转的恒星组成.假设两颗恒星质量相等,理论计算它们绕连线中点做圆周运动,理论周期与实际观测周期有出入,且T 理论T 观测=n
1(n >1),科学家推测,在以两星球中心连
线为直径的球体空间中均匀分布着暗物质,设两星球中心连线长度为L ,两星球质量均为m ,据此推测,暗物质的质量为(
)
A .(n -1)m
B .(2n -1)m C.n -1
4
m D.n -2
8
m 3.(2019·广州执信中学期中)太空中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用.已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R 的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行.设这三个星体的质量均为M ,并设两种系统的运动周期相同,则
(
)
A .直线三星系统中甲星和丙星的线速度相同
B .直线三星系统的运动周期T =4πR R 5GM
C .三角形三星系统中星体间的距离L =312
5
R
D .三角形三星系统的线速度大小为
12
5GM R
4.(2019·聊城模拟)如图所示,甲、乙、丙是位于同一直线上的离其他恒星较远的三颗恒星,甲、丙围绕乙在半径为R 的圆轨道上运行,若三颗星质量均为M ,万有引力常量为G ,则(
)
A .甲星所受合外力为
5GM 2
4R 2B .乙星所受合外力为
5GM 2
4R 2C .甲星和丙星的线速度相同
D .甲星和丙星的角速度相同
5.在赤道平面内有三颗在同一轨道上运行的卫星,三颗卫星在此轨道均匀分布,其轨道距地心的距离为地球半径的3.3倍,三颗卫星自西向东环绕地球转动.某时刻其中一颗人造卫星处于A 城市的正上方,已知地球的自转周期为T ,地球同步卫星的轨道半径约为地球半径的
6.6倍,则A 城市正上方出现下一颗人造卫星至少间隔的时间约为(
)
A .0.18T
B .0.24T
C .0.32T
D .0.48T
6.如图所示,甲、乙两卫星在某行星的球心的同一平面内做圆周运动,某时刻恰好处于行星上A 点的正上方,从该时刻算起,在同一段时间内,甲卫星恰好又有5次经过A 点的正上方,乙卫星恰好又有3次经过A 点的正上方,不计行星自转的影响,下列关于这两颗卫星的说法正确的是(
)
A .甲、乙两卫星的周期之比为2∶3
B .甲、乙两卫星的角速度之比为3∶5
C .甲、乙两卫星的轨道半径之比为
39
25
D .若甲、乙两卫星质量相同,则甲的机械能大于乙的机械能
7.太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动.当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”.据报道,2014年各行星冲日时间分别是:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日.已知地球及各地外行星绕太阳运动的轨道半径如下表所示.则下列判断正确的是(
)地球
火星木星土星天王星海王星轨道半径(AU)
1.0
1.5
5.2
9.5
19
30
A.各地外行星每年都会出现冲日现象B .在2015年内一定会出现木星冲日
C.天王星相邻两次冲日的时间间隔为土星的一半
D.地外行星中,海王星相邻两次冲日的时间间隔最短
8.2017年三名美国科学家获本年度诺贝尔物理学奖,用以表彰他们在引力波研究方面的贡献.人类首次发现了引力波来源于距地球之外13亿光年的两个黑洞(质量分别为26个和39个太阳质量)互相绕转最后合并的过程.设两个黑洞A、B绕其连线上的O点做匀速圆周运动,如图所示.黑洞A的轨道半径大于黑洞B 的轨道半径,两个黑洞的总质量为M,两个黑洞间的距离为L,其运动周期为T,则()
A.黑洞A的质量一定大于黑洞B的质量B.黑洞A的线速度一定大于黑洞B的线速度
C.两个黑洞间的距离L一定,M越大,T越大D.两个黑洞的总质量M一定,L越大,T越大
9.2016年2月11日,美国科学家宣布探测到引力波的存在,引力波的发现将为人类探索宇宙提供新视角,这是一个划时代的发现.在如图所示的双星系统中,A、B两个恒星靠着相互之间的引力正在做匀速圆周运动,已知恒星A的质量为太阳质量的29倍,恒星B的质量为太阳质量的36倍,两星之间的距离L=2×105m,太阳质量M=2×1030kg,万有引力常量G=6.67×10-11N·m2/kg2.若两星在环绕过程中会辐射出引力波,该引力波的频率与两星做圆周运动的频率具有相同的数量级,则根据题目所给信息估算该引力波频率的数量级是()
A.102Hz B.104Hz
C.106Hz D.108Hz
10.(2019·衡水调研卷)军用卫星指的是用于各种军事目的的人造地球卫星,在现代战争中大显身手,作用越来越重要,一颗军事卫星在距离地面高度为地球半径的圆形轨道上运行,卫星轨道平面与赤道平面重合,侦察信息通过无线电传输方式发送到位于赤道上的地面接收站,已知人造地球卫星的最小周期约为85min,则下列判断正确的是()
A.该军事卫星的周期约480min
B.该军事卫星的运行速度约为7km/s
C.该军事卫星连续两次通过接收站正上方的时间间隔约为576min
D.地面接收站能连续接收的信息的时间约为96min。

相关文档
最新文档