UASB初次启动
UASB厌氧反应器操作说明书

UASB厌氧反应器操作说明书一 UASB厌氧反应器的原理:在UASB厌氧反应器内,厌氧细菌对有机物进行三个步骤的降解:(1)水解、酸化阶段;(2)产氢产乙酸阶段;(3)产甲烷阶段,使污染物质得到去除,并产生沼气和厌氧污泥。
通过UASB内部的三相分离器的作用,实现水、污泥、沼气的分离,污泥回流至UASB底部,沼气经收集后进行沼气利用系统,清水至后续处理。
UASB厌氧反应器的操作说明1开车:认真执行交接班制度,提前5分钟上岗,了解上一班的情况(如UASB进水水温、水量、COD、PH值、NH3-N、SO42-,以及UASB出水水温、COD、PH 值、VFA等,并要上厌氧反应器巡视出水有无异常现象)掌握本班的生产要求,做好班前检查工作,熟悉厌氧塔进水泵的运行情况。
在预处理中废水达到工艺控制参数后,既可开启厌氧泵往UASB进水。
2操作过程:1)在预处理的废水满足厌氧处理所需的进水条件后,启动厌氧泵向UASB反应器进水。
启动厌氧泵之前检查需检查泵是否正常,开启泵后,检查流量计显示,判断废水是否正常输出。
调节泵的出口阀门,将各厌氧反应器的流量调节到规定范围;起用泵前一定要详细检查该泵的运转纪录,确认该泵无异常后方可启用。
2)密切注意厌氧反应器上部出水情况,要注意跑泥现象,防止出水带泥过多,一般小于20%,定期清理溢流堰口的堵塞物,但需注意防止跌落溺水。
3)密切关注厌氧反应器出水的COD、PH值、VFA、温度等指标,防止反应器工艺指标变化过大;4)经常巡视厌氧反应器顶部水面的情况,防止大量气体溢出;5)经常观察水封中的水位,将水封水位控制在一定高度;6)根据需要,每班进行取样送检,并根据化验结果判断厌氧反应器的运行状况。
3停止:1)当预处理没有足够的废水或预处理水质达不到工艺控制控制要求时,反应器停止进水,待预处理正常后,再恢复进水;但在停水时要密切注意反应器内的温度变化,如温度下降多(超过5℃),再次进水时就先需将反应器的温度升至原正常运行时的温度,防止因温度变化的原因使反应器运行出现问题;2)当反应器出水带泥过多(SV≥20%要密切关注)或出水水质变差时,减少反应器的进水量或改为间歇进水,防止反应器的深度恶化;3)当UASB出水VFA大于8或UASB的COD去除率小于50%,适当减少反应器的进水量或改为间歇进水,甚至停止进水,防止反应器的深度恶化。
厌氧操作启动手册

UASB厌氧塔操作启动方案**************公司二零一七年零三月一、项目工程概述1、项目名称:2、设计规模 m3/d,处理量 m3/h。
3、进水COD≥ mg/L,出水水质COD≤ mg/L。
二、UASB厌氧系统安装1、UASB厌氧塔成套设备就位,与原混凝土基础预埋件焊接,并防腐;2、UASB厌氧塔自重15T,运行重约115T;3、工艺管线连接3.1、废水池提升泵至厌氧塔进水法兰口(DN100),管路中加装蝶阀、止回阀、软连接等3.2、设备回流口(DN100)连接回流泵,连接管路至废水进水主管,管路中加装蝶阀、止回阀、软连接等;3.3、活性污泥进料通过连接进料泵,并连接至废水进水主管,管路中加装蝶阀、止回阀、软连接等;3.4、设备排泥口(DN100)连接排泥泵,并连接至污泥池,管路中加装蝶阀、止回阀、软连接等;3.5、设备出水口(DN100)连接至后段工艺,管路中加装蝶阀,一般通过水压自流出水。
三、UASB系统启动1、启动概述启动时厌氧反应器达到设计要求后正常运行的前期工作,是厌氧反应器微生物污泥的培养和驯化过程。
厌氧反应器的启动成功与否,会直接影响厌氧处理系统能否顺利投入使用。
启动初期一般进行污泥接种,而且启动所需时间一般较长,为4~7周不等。
2、启动的基本方式对于较难降解的有机废水,采用分批培养法。
当接种适量污泥后,有机废水可分批进料,启动运行初期厌氧反应器间歇运行。
每批有机废水进入以后,厌氧反应器在静止状态下进行厌氧代谢,让接种的污泥或增值的污泥暂时聚集,经若干天(所需时间随水质和接种污泥浓度检测指标而变)厌氧反应后,大分子有机物被分解,再进第二批有机废水,再分批进水间歇运行时,可逐步提高进水的浓度,缩短反应的时间,直至最后完全适应有机废水并连续运行。
3、在厌氧反应器的启动过程中,应特别注意以下几个问题①废水性质。
废水中易降解有机物的浓度对于厌氧反应器的启动影响很大。
合适的浓度能够使微生物污泥讯速絮凝形成,形成足够浓度和活性的微生物污泥,缩短启动的时间。
关于UASB的升流式厌氧污泥床反应器详解

关于UASB的升流式厌氧污泥床反应器详解!升流式厌氧污泥床反应器是一种处理污水的厌氧生物方法,又叫升流式厌氧污泥床,英文缩写UASB(Up-flowAnaerobicSludgeBed/Blanket)。
由荷兰Lettinga教授于1977年发明。
污水自下而上通过UASB。
反应器底部有一个高浓度、高活性的污泥床,污水中的大部分有机污染物在此间经过厌氧发酵降解为甲烷和二氧化碳。
一、UASB工艺的主要特点1)利用微生物细胞固定化技术-污泥颗粒化UASB反应器利用微生物细胞固定化技术—污泥颗粒化,实现了水力停留时间和污泥停留时间的分离,从而延长了污泥泥龄,保持了高浓度的污泥。
颗粒厌氧污泥具有良好的沉降性能和高比产甲烷活性,且相对密度比人工载体小,靠产生的气体来实现污泥与基质的充分接触,节省了搅拌和回流污泥的设备和能耗,也无需附设沉淀分离装置;同时反应器内不需投加填料和载体,提高了容积利用率,避免了堵塞问题,具有能耗低、成本低的特点。
2)由产气和进水的均匀分布所形成的良好的自然搅拌作用在UASB反应器中,由产气和进水形成的上升液流和上窜气泡对反应区内的污泥颗粒产生重要的分级作用。
这种作用不仅影响污泥颗粒化进程,同时还对形成的颗粒污泥的质量有很大的影响,同时这种搅拌作用实现了污泥与基质的充分接触。
3)设计合理的三相分离器的应用三相分离器是UASB反应器中最重要的设备,它可收集从反应区产生的沼气,同时使分离器上的悬浮物沉淀下来,使沉淀性能良好的污泥能保留在反应器内。
三相分离器的应用避免了辅设沉淀分离装置、脱气装置和回流污泥设备,简化了工艺,节约了投资和运行费用。
4)容积负荷率高对中高浓度有机废水容积负荷可达20kgCOD/(m3•d),COD去除率均可稳定在80%左右。
5)污泥产量低与传统好氧工艺相比,污泥产量低,污泥产率一般为0.05kgVSS/kgCOD~0.10kgVSS/kgCOD,仅为活性污泥产泥量的1/5左右。
第六章厌氧生物处理

(2)消化池的容积负荷较普通消化池高,中温消化时, 容积负荷较普通消化池高
一般为2~5kgCOD/(m3· d), 水力停留时间 (3)水力停留时间比普通消化池大大缩短,如常温下, 大大缩短 普通消化池为15~30天,而接触法小于10天; (4)不仅可以处理溶解性有机污水,也可以用于处理 可以处理溶解性
物的分解作用,池底
部容积主要用于贮存 和浓缩污泥。 特点:消化速率低, 消化时间长,适用于
小型装臵。
单级浮动盖式消化池: 不设搅拌装臵,有分 层,顶部为浮渣层,
中间是清液和起厌氧
分解的活性层,底部 为熟污泥。 功能:挥发性有机物 的消化、熟污泥的浓
缩和贮存。
特点:能提供1/3的 贮存体积。
(2)二级消化工艺
UASB 反应器 EGSB反应器 厌氧塘
完全混合型 厌氧滤池 流化床-复合床
工业上应用的UASB装置
厌氧生物处理的运行管理(UASB)
UASB反应器良好运行的三个重要前提是:
1)反应器内形成沉降性能良好的颗粒污泥或絮状污泥; 2)由产气和进水的均匀分布所形成的良好的自然搅拌作 用; 3)设计合理的三相分离器,这使沉淀性能良好的污泥能 保留在反应器内。
升流式厌氧污泥床反应器的特点是:(1)反应器内污 泥浓度高,一般平均污泥浓度为30~40g/L,高的可达60~ 80g/L ;(2)有机负荷高,水力停留时间短,中温消化, COD容积负荷一般为10~20kgCOD/(m3· d);(3)反应器内设 三相分离器,被沉淀区分离的污泥能自动回流到反应区,一
颗粒污泥来源:①原有的UASB反应器;②购买
UASB的运行规律详解

UASB的运行规律详解升流式厌氧反应器(UASB)中废水通过布水装置依次进入底部的污泥层和中上部污泥悬浮区。
与其中的厌氧微生物进行反应生成沼气,气、液、固混合液通过上部三相分别器进行分别,污泥回落到污泥悬浮区,分别后废水排出系统,同时回收产生的沼气。
注:常规的UASB没有外循环泵(在水力负荷特殊低,造成上升流速特殊低的状况下,有设置外循环泵的现场)一、UASB反应器的进水条件1、PH值6.0-8.02、养分比例(COD:氨氮:TP)100-500:5:13、进水悬浮物:≤1500mg/L4、B/C≥0.35、进水氨氮浓度:≤2000mg/L6、进水COD浓度:≥1500mg/L7、其他有毒物质最大允许值:除上面提到的细菌中毒之外,在UASB中还有一些形式的中毒。
游离H2S-S浓度达到80mg/l时,发生硫化物中毒。
假如UASB的进水满意下列条件,则H2S中毒可以避开。
1)COD/SO4>20g/g,2)COD/SO4>15g/g和COD<30g/l,3)COD/SO4>10g/g和COD<10g/l,4)COD/SO4>7.5g/g和COD<5g/l,留意:COD与SO42-的比值大于10是抱负条件。
(规范上给出的硫酸根浓度≤1000mg/L)二、UASB常用参数及公式1、当废水可生化性差的时候需要在UASB前端设置水解酸化池。
水解酸化池的容积负荷常用的计算公式:式中:V——反应器有效容积,m3;Q——设计处理量,m3/d;Nv——容积负荷,kgCOD/(m3·d)S0——进水COD,mg/L容积负荷取值范围:2、UASB容积负荷UASB反应器容积负荷常用的计算公式:式中:V——反应器有效容积,m3;Q——设计处理量,m3/d;Nv——容积负荷,kgCOD/(m3·d)S0——进水COD,mg/L容积负荷取值范围:3、布水装置多点布水,进水管负荷,见下表4、其他常用参数:有效水深:5-8m;上升流速:<0.8m/h。
厌氧UASB初次启动及运行经验

厌氧UASB初次启动及运行经验以下是这些年做的关于厌氧UASB的经验,供大家学习交流。
工艺概述:某酒精企业污水处理场处理经由酒精蒸发工艺排出的二次蒸汽冷凝水及事故排放的部分离心清液两股废水。
平均水量为405 m3/d,平均温度为50℃左右,pH值为3.6,原液COD约为8000mg/l ,SS为1600mg/l 。
废水经由酸化调节池进行水解酸化并加碱调整pH值>6.0,再由耐酸液下泵送至UASB反应器。
UASB反应器为钢制矩形罐体,外形尺寸9m×13.6m×6m,有效容积750 m3。
设计容积负荷(VLR)为4.3KgCOD/(m3·d)。
进液布水采用一管多孔配水方式。
原液经反应器底部经4根布水管分配到各自的支管,并由支管下方等距布水孔射流到反应器底部的反射锥,此时与污泥床上的污泥充分接触并发生扰动。
由于采用多孔配水,考虑到布水管道末端容易出现死角及堵塞现象,故在反应器底部设有兼作放空用的排泥管两根。
经两台排泥管道泵(Q=25 m3/h、H=30m、W=4kw、一开一备)送入污泥压滤机。
UASB反应器内安装有玻璃钢材质预制的可供水、泥、气分离用的三相分离器,共分16组、三层,由碳钢为加固连接为一整体结构。
属多级厌氧分离装置。
厌氧水由三相分离器出水堰溢流到集水槽后汇集到出水总管后重力流入好氧处理系统。
考虑到北方气候因素,在反应器罐体内距底部1.2m处设有一根蒸汽加热管线,在启动初期及冬季对反应器内部进行直接加热。
由集气室所产生的沼气首先由位于反应器顶部的4根支管收集后通过主管进入气液分离器,在进行气液分离后通过水封罐进入沼气柜。
沼气柜为浮罩式,设有限位器、排空阀、泄压阀、水封、溢流、蒸汽伴热及柜顶配重。
沼气通过输送风机直接运送到锅炉回收利用。
初次启动进料流量调整:2001年3月初各装置安装完成后开始初次启动的准备工作,首先将酸化调节池注入清水,打开UASB底部人孔,进入反应器内后启动酸化调节池液下泵向UASB进水,逐一查看穿孔支管射流量是否均匀有无阻塞、死角,并通过阀门调整各支管流出水量基本一致。
污泥气循环UASB反应器的启动及循环时间的研究
重要的影响.
关键词 : 污泥气循 环 ; UAS B反应器 ; 城市 生活污水
中图分类号 : X 7 0 3 文献 标 志 码 : A 文章 编 号 : 1 6 7 3 — 4 6 0 2 ( 2 0 1 3 ) 0 6 — 0 0 4 9 — 0 5
S t u d y o n s t a r t _ - u p a nd c i r c u l a t i ng t i me o f t h e s l u dg e
T h e C OD c r v o l u me l o a d i s 5 . 0 k g / ( m。 ・ d ) .Th e r a t e o f r e mo v a l C OD c i s a b o v e 8 O .Me a n —
s l u d g e g a s c i r c u l a t i n g UAS B r e a c t o r t r e a t me n t e f f i c i e n c y f o r u r b a n s a n i t a r y s e wa g e o f l o w c o n c eБайду номын сангаасn t r a t i o n a n d i n f l u e n c e o f s l u d g e g a s c i r c u l a t i n g wa y .Th e e x p e r i me n t i n d i c a t e s t h a t , u n — d e r t h e c o n d i t i o n o f n o r ma l t e mp e r a t u r e 。 t h e r e a c t o r c a n o p e r a t e s t a b l y a n d t h e l i q u i d i s c l e a r .
uasb火炬操作规程
uasb火炬操作规程UASB(上升式厌氧污泥床)是一种高效的污水处理工艺,采用厌氧条件下的生物降解过程,具有处理效率高、耗能低等优点,在工业和城市污水处理中得到广泛应用。
为了保证UASB火炬的正常运行和高效处理污水,制定一套操作规程是必要的。
以下是一份UASB火炬操作规程。
1. 火炬的启动1.1 确保供水系统正常运行,保证火炬供水的稳定性和充分性。
1.2 确保有足够的厌氧污泥进行投料,投料比例为床内污泥:投料污水=1:1。
1.3 调整火炬进水阀门,使水流均匀,并且避免堵塞和溢流现象。
1.4 设置火炬内的曝气装置,保证厌氧污泥床内的气体均匀分布,加快生化反应。
2. 火炬的运行2.1 监测火炬的进水流量、出水流量、进水COD、出水COD等关键参数,确保火炬运行稳定。
2.2 根据实际情况调整火炬进水阀门,控制进水流量,保持污水在火炬中停留的时间。
2.3 做好火炬内部曝气装置的维护和清洁工作,检查气体分布是否均匀,是否有堵塞现象。
2.4 定期对火炬内的厌氧污泥床进行观察和维护,清除污泥床上的杂质和沉积物,防止堵塞。
2.5 监测火炬内的温度,保持温度在适宜的范围内,促进生化反应的进行。
3. 火炬的停运和检修3.1 当火炬进水COD超过规定的限值或出水COD浓度超出排放要求时,应立即停止火炬的运行,并检查原因。
3.2 停运火炬前,应将进水、出水、曝气等系统进行逐一检查,确保系统正常关闭,防止污水外泄。
3.3 对火炬进行例行检修,清除污泥床上的沉积物和杂质,检查曝气装置是否正常,如果有问题及时修复。
3.4 若发现火炬内部厌氧污泥床的活性降低,可考虑进行污泥调剂或替换操作,提高火炬的处理效率。
4. 安全操作4.1 火炬操作人员必须经过专业培训,并严格按照操作规程进行操作,确保安全。
4.2 火炬操作区域应具备良好的通风条件,避免有害气体积聚,操作时应佩戴防护设备。
4.3 火炬进出水口、曝气装置等位置应设有防护罩,防止人员误操作或触摸造成伤害。
上流式厌氧污泥床反应器UASB
1、污泥床
❖ 污泥床位于整个 UASB反应器的底部。
❖ 污泥床内具有很高的 污泥生物量,其污泥 浓度(MLSS)一般为 40000~80000mg/L
❖ 污泥床中污泥由高度发展的颗粒污泥组成,其中活 性生物量(或细菌)占70%~80%以上的,正常运行的 UASB中颗粒污泥的粒径一般在0.5~5mm之间,具 有优良的沉降性能,
❖ 在反应过程中,经过水解、发酵、产酸和产气步骤, 复杂的底物被厌氧微生物转化为多种多样的中间产 物,如糖类、有机酸、醇、醛和氢等,并最终转化 为沼气。
❖ 在厌氧消化过程中参与反应的厌氧微生物主 要有以下几种:
❖ 水解—发酵(酸化)细菌:将复杂的聚合底物 水解成各种有机酸、乙醇、糖类、氢和二氧 化碳。
❖ 反应器中所要求的水温较高,最好在35℃ 左右。
六、UASB反应器的控制要点
❖ 在UASB反应器的运行中,其控制要点及常 见问题主要有以下四个方面:
❖ 反应器的启动和颗粒污泥培养 ❖ 反应器污泥流失及解决方法 ❖ 反应器中的酸碱平衡及pH值的控制 ❖ 反应器中硫酸盐、硫化氢的控制技术
1、反应器的启动和颗粒污泥培养
❖ 目前生产性UASB反应器装置所采用的进水 方式:
❖ 间隙式进水、 ❖ 脉冲式进水、 ❖ 连续均匀进水 ❖ 连续进水与间隙回流相结合的进水方式
❖ UASB反应器中一般情况下多采用连续进水 的运行方式,必要时也可采用脉冲式进水和 连续进水与间隙回流相结合的进水方式。采 用后两种进水方式的目的是使反应器内的絮 凝、颗粒污泥经常性地处于均匀混合和颗粒 松散状态,多在反应器的启动初期或反应器 中出现沟流时使用。当反应器运行正常后, 一般不必进行回流,而进行连续进水。
一般平均污泥浓度为30~40g/L,污泥床为 40~80g/L,污泥悬浮层为15~30g/L。 ❖ 反应器中的污泥颗粒化。 颗粒污泥具有生物固体沉降性能好、生物浓度高、 固液分离好的特点,使反应器对不利条件的抗性 增强,是UASB反应器的一个重要特征。
uasb调试方案
uasb调试方案随着城市化进程的加快,污水处理成为城市发展中的重要环节。
UASB(Upflow Anaerobic Sludge Blanket)是一种高效低能耗的污水处理技术,具有处理能力强、占地少、操作简便等优点,被广泛应用于污水处理厂的建设和运营。
然而,UASB过程中的调试是一个关键环节,本文将从调试的步骤、技术要点和常见问题解决方案三个方面介绍UASB调试方案。
一、调试步骤1. 启动预处理系统:在正式启动UASB处理系统之前,首先要启动预处理系统,确保进水具备进入UASB反应器的水质条件。
通常预处理系统包括格栅机、沉砂池和格林森厌氧发酵池等。
2. 通水试验:在预处理系统正常运行后,开始进行通水试验。
此时关闭污水进水闸门,打开厌氧池入口闸门,让预处理系统中的水进入UASB反应器,观察水位的变化,检查系统是否漏水。
3. 注入沉积物:当通水试验正常后,注入适量的污泥,以形成一定的沉积物层。
沉积物层具有过滤和固定微生物菌群的作用,对UASB 的正常运行至关重要。
4. 调整进水量:根据设计要求,逐渐调整进水量,确保UASB反应器运行正常。
进水量过大容易导致污泥混浊,进水量过小则容易导致反应器反应不充分。
5. 监测关键指标:连续监测关键指标,如进水COD(化学需氧量)浓度、反应器内溶解气浓度、出水COD浓度等,及时了解反应器的运行情况。
二、技术要点1. 控制进水负荷:UASB的效果与进水负荷密切相关。
进水负荷过高会造成污泥漂浮、沉积物层破坏等问题,进水负荷过低则会导致反应器运行不稳定。
因此,要根据处理能力和水质状况,合理调控进水负荷。
2. 控制水解酸化阶段:UASB反应器通过水解酸化阶段将有机废水转化为可溶性有机物和挥发性脂肪酸,为后续的产气反应提供充足的有机负荷。
在调试过程中,要控制水解酸化阶段的温度、pH值和停留时间等参数,保证反应器内的微生物活性和产气效果。
3. 适当改变流化状态:UASB反应器中的水流动状态是影响反应效果的重要因素之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工艺概述:某酒精企业污水处理场处理经由酒精蒸发工艺排出的二次蒸汽冷凝水及事故排放的部分离心清液两股废水。
平均水量为405 m3/d,平均温度为50℃左右,pH值为3.6,原液COD约为8000mg/l ,SS为1600mg/l 。
废水经由酸化调节池进行水解酸化并加碱调整pH值>6.0,再由耐酸液下泵送至UASB反应器。
UASB反应器为钢制矩形罐体,外形尺寸9m×13.6m×6m,有效容积750 m3。
设计容积负荷(VLR)为4.3KgCOD/(m3·d)。
进液布水采用一管多孔配水方式。
原液经反应器底部经4根布水管分配到各自的支管,并由支管下方等距布水孔射流到反应器底部的反射锥,此时与污泥床上的污泥充分接触并发生扰动。
由于采用多孔配水,考虑到布水管道末端容易出现死角及堵塞现象,故在反应器底部设有兼作放空用的排泥管两根。
经两台排泥管道泵(Q=25 m3/h、H=30m、W=4kw、一开一备)送入污泥压滤机。
UASB反应器内安装有玻璃钢材质预制的可供水、泥、气分离用的三相分离器,共分16组、三层,由碳钢为加固连接为一整体结构。
属多级厌氧分离装置。
厌氧水由三相分离器出水堰溢流到集水槽后汇集到出水总管后重力流入好氧处理系统。
考虑到北方气候因素,在反应器罐体内距底部1.2m处设有一根蒸汽加热管线,在启动初期及冬季对反应器内部进行直接加热。
由集气室所产生的沼气首先由位于反应器顶部的4根支管收集后通过主管进入气液分离器,在进行气液分离后通过水封罐进入沼气柜。
沼气柜为浮罩式,设有限位器、排空阀、泄压阀、水封、溢流、蒸汽伴热及柜顶配重。
沼气通过输送风机直接运送到锅炉回收利用。
初次启动进料流量调整:2001年3月初各装置安装完成后开始初次启动的准备工作,首先将酸化调节池注入清水,打开UASB底部人孔,进入反应器内后启动酸化调节池液下泵向UASB进水,逐一查看穿孔支管射流量是否均匀有无阻塞、死角,并通过阀门调整各支管流出水量基本一致。
进水流量调整非常关键,在很多同样布水条件的实例中,布水不均现象多有发生,这样会造成污泥床的形成不均衡,减小反应器的处理能力。
种泥的选择:由于没有现成的颗粒污泥,就近选择采购了某生活污水厂的消化污泥(含水率80~85%);另一部分采购自某酒精厂的厌氧絮状污泥(含水率85~90%)(二次启动)。
污泥接种:将污泥投入搅拌罐注入工艺冷却水(30℃)稀释、搅拌,并经过充分筛滤处理后,经临时管线将污泥输送至反应器沉淀区流入罐底。
当反应器填充量达到25%时,通入蒸汽升温,开始对污泥进行72h活化,使反应器罐体内温度恒定在37℃~41℃之间,活化过程中每24h进料一次,进料量为25m3/d(COD≤500 mg/l),为防止污泥在活化过程中因沉淀分层,增设一回流管线利用两台排泥管道泵对污泥进行强制回流扰拌。
污泥驯化:污泥驯化分为二个阶段进行:第一阶段为初始阶段,分反应器负荷<1 KgCOD/m3·d。
此阶段周期为70天。
第二阶段为提高阶段,1KgCOD/m3·d<反应器负荷<3KgCOD/m3·d。
此阶段周期为90天初始阶段:反应器内温度控制在37~39℃之间。
每日进料量保持在100 m3/d(COD≤1000 mg/l)左右控制进水PH值在6.0-6.5之间,当UASB反应器充满后,三相分离器溢流出水部分回流至调节池,这样既可以减少污泥洗出量,也可以节省碱投加量。
每天定时取厌氧进出水样,通过观测COD、VFA、pH值三项指标分析反应器内环境状态。
保证反应器内COD<600~800、VFA<300、出水PH值控制在6.5~7.0之间为正常。
根据化验结果调整进水水质水量,测出口水样COD、VFA、pH值,观察进料后反应器工作状态。
回流4h以保证反应器内保持升流状态并且将部分较轻的污泥洗出。
(由于被洗出的较轻污泥经过调节池又返回到UASB反应器从而在三相分离器溢流堰逐渐生成大量浮渣积累,影响了出水效果,由于本工程未设浮渣冲洗装置,采用人工冲洗,从而增加了操作难度。
)系统运行达到10天时,打开气液分离器底阀,发现已有少量沼气产生。
当系统运行20天后,出水COD降至100 mg/l左右,考虑进行增加进水能力试验,增大了负荷(当时反应器负荷实际为0.13 KgCOD/m3·d),连续四天提高进料量达到150~200 m3/d,提高负荷(进水COD达到1500 mg/l~2500 mg/l),观察出水VFA>600,之后又连续进料两天,VFA最高达到800以上,反应器出水pH值<5发生明显“酸化”;沼气产大量减少。
七天生产指标如下(表1)。
(表1)( 图1)(图2)从(图1)、(图2)的趋势分析中不难看出,虽然在进料过程中进行了相应的调整,但由于进料指标远远超出反应器内负荷,出现“酸化”是不可逆转的。
停止进料,增加循环,当停止进料4天后系统参数趋与正常。
之后的近20天内,每5天增加50 m3/d进料量,而进水COD控制在1000 mg/l左右。
当系统运行50天后,出水COD保持在200mg/l左右,已达到80%的去除率。
再次增加负荷,每5天进料COD增加500 mg/l,进料量保持250 m3/d,第70天左右进料COD为3000 mg/l,出水COD为500mg/l,去除率达80~85%。
反应器负荷达到1 KgCOD/(m3·d),至此启动第一阶段基本完成。
提高阶段:负荷逐日增加,每2天进料COD增加200 mg/l,进料量为保持250 m3/d。
系统运行至30天左右时进料COD为6000 mg/l,反应器出水为500 mg/l ,反应器负荷达到2 KgCOD/(m3·d),去除率达80~85%。
沼气产量达到400~600m3/d,在此其间发现三相分离器集气室(玻璃钢材质)漏气。
厂家来人维修(10d),将UASB反应器内排出大部分污泥排入调节池保存。
二次启动时将保存至调节池的污泥引回至UASB反应器中,同时再投放部分某酒精厂的絮状厌氧污泥进行培养(进料量250 m3/d、COD为2000 mg/l),当培养至10天左右,出水COD为200 mg/l,此时重新启动开始进行。
重新启动后每1天进料COD增加100mg/l,进料量也逐日增加,至80天时进料量达到350 m3/d,COD为7000 mg/l左右。
出水COD为1500 mg/l。
之后又经过10天左右的调整,到90天后进料量达到400 m3/d,COD8000 mg/l,出水COD为1200~1500 mg/l。
反应器负荷为3KgCOD/(m3·d)左右。
去除率达到80~85%左右,已达到后续好氧工艺进水要求,反应器初次启动成功。
小结此装置3月培菌,8月中旬启动成功,历时5个多月。
总结以下几点在试车过程中的教训:1 接种菌种最好使用发酵工业厌氧污泥,便于驯化培养。
2 反应器内pH值、温度、VFA作为指导初次启动的主要控制及观察参数。
3 厌氧菌的培养是个缓慢的过程,进水的COD及水量渐近的均匀稳定的提高是保证初次启动成功的关键。
4 一定量的回流可以降低运行成本且有助于UASB反应器内溢出的种泥重新利用,改善废水与污泥的混合条件,但容易造成大量浮渣的积累。
5 注意冬季寒冷气候对整个系统的外部影响。
(室外设备及阀门的保温) 6 三相分离器所有溢流堰应保证同一标高(满水试验时检查)以确保反应器内污泥床高度的均匀。
7 开车前布水孔布水能力应仔细检查以保证反应器内布水均匀没有死角。
8 反应器顶部有氧条件下H2S氧化为硫酸对金属、水泥都能造成一定的腐蚀。
本人主要从事工业废水处理中试实验,现谈一下试验期间的调试方式,请各位大峡多指点:厌氧调试第一次进水cod控制在1500毫克每升(高有机污染废水),打循环5-7天,然后连续进水出水5天;提高进水浓度,每次提高1500,连续驯化5天,依次类推。
好氧首次进水浓度控制在600以内,新接种的污泥要闷曝48小时注意补充营养物质。
厌氧池可用泵打回流,加强搅拌,有利于污泥驯化风机1、噪声不达标。
这是风机最常见的情况。
排除一些劣质品牌生出来就是残疾无法解决噪声问题以外,调试时应该注意从以下几点找原因:a.开机前是否加油;b.检查皮带的松紧度;c.风机是否在反转;d.进气口是否有堵塞;e.基础安装是否牢靠;f.风机工作风压是否超过额定风压(阀门是否关得太小)2、曝气风量不均或达不到要求。
这个问题涉及到设计多一点,主要原因可能是风机选型有问题,或者曝气管道设计不合理。
我遇到过很多工程设计对曝气管都没有进行计算,管径和穿孔管的孔径、间距都是按经验进行,最后造成风量分布不均。
建议大家设计时一定要尽量对称布设曝气管,同时尽量环形连接。
还要考虑管径是否满足大于穿孔管孔径之和。
3、还有一种情况就是设计人员为了保险期间将风机型号选得过大,结果造成曝气量太大,生化池溶解氧太高。
想调小风机风压又超过额定风压,发热很厉害同时噪声也大。
这时候调试人员无能为力啊。
所以设计人员一定要记得按需设计,不是越保险越好的。
谈到风管设计问题再多罗嗦几句,因为风机出来的风都是温度较高的,所以主管道一定要考虑温度影响,用耐温的钢管,水下部分才考虑用UPVC等塑料管道。
虽然有人反对风机加旁通管,但我个人认为还是加旁通管便于操作控制。
但要考虑到旁通管道的气体对周围的影响以及噪声问题。
最好设在隐蔽处。
4、还有一点提一提,一般调试和操作人员很少在正常运行前去调节风机的安全阀门,这样不好。
虽然风机出厂时安全阀的力度一般是按照大于额定风压的10%左右设定,但为了安全起见还是重新调整一次比加药1、加药量按说加药量应该是设计时就应该考虑到的,调试运行时只是根据系统实际出水水质情况进行微调,然而,根据我的体验,城市污水一般是大设计院出来的作品,对此会进行一些计算,水质也比较稳定可以作为一定的参考。
现在工业废水设计能够算出加药量的公司和设计人员屈指可数,而且工业废水水质和水量都不稳定,所以一定要在调试时严格进行加药量的调节,并做好记录,这一点直接关系到运行费用和出水效果,应当慎之又慎。
而且即使调节好了,在日后的运行中还要进行关注。
有一点需要说明,我们做技术的不要过多地受到外来压力的影响,还是实事求是一点比较好。
有些单位领导一到现场听说一天要几吨药品要花多少米米就气急败坏,还有些单位为了省钱专门买进劣质药品,当然还有些单位为了水质达到要求将所有计量泵都打到最大,这些极端的事情大家都应给处变不惊,沉着应付和加药量相关的因素有:药品的质量。
不同厂牌差别很大值得注意,甚至一个公司的产品也有优劣之分。
由一些不法商贩开始一两批会给你好质量的药品,后面就回质量下降,或者混入一些劣质产品,造成后面水质不达标到时候还不知怎么回事呢,可恶!药品的纯度。