新课标数学一次函数复习课教案
一次函数复习课设计思路

一次函数复习课教学设计定陶县黄店镇中学王志海设计思路:一次函数的有关知识,在八年级下册第十章。
学生对基础知识有一定的了解,但由于函数中的概念和性质较为抽象,知识点多,学生在以前的学习过程中往往单纯地依赖模仿与记忆。
为了进一步夯实基础知识,从学生已有的知识实际出发,引导学生探索、回想、思考、归纳、应用与拓展,从而形成技能,发展思维,感受数学来源于生活又回归生活实际,才能有效学习。
教学环节1、中考导航2、重点知识(一)一次函数、正比例的定义(二)一次函数,正比例函数的图象各有什么特征。
(三)交点及与坐标轴围成的面积问题。
(四)待定系数法确定函数关系式。
(五)一次函数与二元一次方程组的关系(六)一次函数与一元一次不等式的关系板书设计:1、定义(表达式)y=kx n +b为一次函数的条件是什么?2、四种图像当k>O,b>O时,图象经过第一、二、三象限;当b>O,b<O时,图象经过第一、三、四象限;当k﹤O,b>0时,图象经过第一、二、四象限;当b<O,b<O时,图象经过第二、三、四象限.3、待定系数法求解析式(1)设(2)代(3)解(4)写4、小结(反思)本节复习了一次函数的有关知识,一次函数的定义、图像与性质、解析式的求法等知识。
反思课堂,结合近几年中考试题,应该注重对基础知识的复习,一节数学复习课,要做到两个关注:一是:关注学生,从学生的实际出发,关注学生的情感需求和认知需求,关注学生的已有的知识基础。
二是:关注数学:抓住数学的本质进行教学,注重数学基础、数学思维方法的渗透,让学生在学习过程中,使学生真正体验到数学,乐学、爱学数学。
培养学生学习的自信心。
这是我对这节课的想法和做法,不当之处,请各位同仁批评指正,提出宝贵的建议,谢谢大家。
最新人教版数学八年级下册第十九章《一次函数复习》优质教学课件

图象过二、三 、四象限
一次函数的增减性
对于一次函数y=k x + b (k ≠ 0),有: ⑴ 当k>0时,y随x的增大而_________。 ⑵ 当k<0时,y随x的增大而_________。
增大
减小
一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到. 当b>0时,向上平移; 当b<0时,向下平移.
七、正比例函数与一次函数图象之间的关系
怎样画一次函数y=kx+b的图象?
1、两点法
y=x+1
2、平移法
八、用待定系数法求函数解析式
先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法, --待定系数法
1、已知直线y=kx+b平行与直线y=-2x,且与y轴交于点(0,-2),则k=___,b=___. 此时,直线y=kx+b可以由直线y=-2x经过怎样平移得到?
解:(1)设购进A种T恤x件,则购进B种T恤(200-x)件, 由题意得: w=(80-50)x+(65-40)(200-x) w=5x+5000
答:w关于x的函数关系式为w=5x+5000;
九、一次函数的应用
九、一次函数的应用
2. 某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图.(1)第20天的总用水量为多少米?(2)求y与x之间的函数关系式. (3)种植时间为多少天时,总用水量达到7000 米3?
注意点:
(1)从函数图象中获取信息
-2
-2
练习:
2、若一次函数y=x+b的图象过点A(1,-1),则b=__________。
一次函数复习教案

一次函数复习教案教案标题:一次函数复习教案教案目标:1. 复习学生对一次函数的基本概念和性质的理解。
2. 帮助学生巩固一次函数的图像、斜率和截距等概念。
3. 引导学生运用一次函数的知识解决实际问题。
教学资源:1. 教材:包含一次函数相关知识的教材章节。
2. 白板、马克笔和擦布。
3. 学生练习册。
4. 计算器(可选)。
教学步骤:引入(5分钟):1. 引导学生回顾一次函数的定义和一次函数的一般形式。
2. 提问学生一次函数的斜率和截距的含义,并解释其在实际问题中的应用。
概念复习(15分钟):1. 提供一些简单的一次函数方程,要求学生计算其斜率和截距,并解释其含义。
2. 给出一些一次函数的图像,要求学生根据图像判断斜率和截距,并解释其含义。
3. 引导学生通过解方程组的方法求解一次函数的交点,并解释其实际意义。
图像绘制(15分钟):1. 提供一些一次函数的方程,要求学生在白板上绘制其图像。
2. 引导学生观察图像的特点,如斜率的正负、截距的位置等,并解释其含义。
3. 让学生自主绘制一些具有特定性质的一次函数图像,例如正斜率、负斜率、零截距等。
应用问题解决(15分钟):1. 提供一些实际问题,要求学生建立相应的一次函数方程,并解决问题。
2. 引导学生分析问题中的关键信息,如斜率代表什么,截距代表什么,并运用相关知识进行解答。
3. 让学生分享他们的解题思路和答案,并进行讨论和纠正。
练习巩固(15分钟):1. 分发练习册,让学生独立完成一些与一次函数相关的练习题。
2. 监督学生的练习过程,及时解答他们的疑问,并给予指导和反馈。
3. 收集学生的练习册,检查他们的答案,并进行讲解和讨论。
总结(5分钟):1. 总结本节课的重点内容和学习收获。
2. 强调一次函数在实际生活中的应用,并激发学生对数学的兴趣和探索欲望。
3. 鼓励学生继续巩固和拓展一次函数的知识,并提供相关的学习资源和参考书目。
教学延伸:1. 鼓励学生在日常生活中寻找和应用一次函数的例子,加深对其实际意义的理解。
一次函数复习 优秀教学设计

“课堂教学是一门遗憾的艺术”,由于学生的不同,同一堂课却会有完全不 同的课堂效果,所以我们只能不断地摸索、改进我们教学过程中可能存在的错误 或遗漏,争取减少这份遗憾。思之则活,思活则深,思深则透,思透则新,思新 则进。反思自己的教学行为,总结教学的得失与成败,对整个教学过程进行回顾、 分析和审视,才能不断提升自我发展能力,逐步完善教学水平。由于对学生的不 了解,虽然课前做了很多的准备工作,与教研员们一起探讨了整个教学设计环节, 但是课上仍有许多新的生成,要不断鼓励孩子勇于发表自己的见解,不怕说错, 敢于尝试。
请学生结合图形阐
加强学生对于一次 函数性质的灵活运 用.
述理由。
培养学生识图能力,
本题是对一次函数、
正比例函数性质的
A
B
灵活运用。
解题的关键在于通 过观察图像得出 k、 b 的取值范围。
C
D
2、当a 0,b 0时,函数y ax b 和y bx a在同一坐标系内的
图像大致是
在上题的基础上,稍 利用排除法结合一 作变化,请学生观察 次函数的性质进行 图像,判断正确的图 解题,巩固对一次函
增大而减小,求这个一次函数的
培养学生解题思考
解析式。
的严密性。
四、作业布置
1、一次函数的复习练习卷
五、本课小结
1、通过本节课的学习,你有什么收 请同学回答一次函
获?
数解题过程中需要
一次函数复习教案

(4)图像平行于直线y=-4x+3(5)图像与y轴交点在x轴下方2.如图,直线l1的解析表达式为:y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求出点P的坐标(四)小结教师引导学生进行小结:1.看图应先看横轴和纵轴所表示的意义。
2.“数”用“形”表示,由“形”想到数,数与形结合,是我们数学学习中一种很重要的思想方法,这就是数形结合法。
3.函数图象不仅与函数解析式有关,还直接与自变量的取值范围有关(五)课下作业布置教材97-101页复习题学生认真听讲,并仔细体会学生课下独立完成课堂达标检测题如图,直线l1的解析表达式为:y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求出点P的坐标板书设计一次函数一、知识网络概念函数的表示方法函数图像函数概念一次函数的图像、性质一次函数解析式的确定一次函数与一元一次方程的关系与二元一次方程(组)的关系应用教学反思本节课设计思路:1.没有提示用1分钟时间回忆本章内容2.根据课本目录提示用1分钟时间回忆本章内容3.根据自己做的知识网络图复习本章内容4.直接看课本复习本章内容5.老师引领复习本章内容6.练习7.小结8.作业本节课优点:思路清晰,前五步是复习本章知识点,每一步都为下一步做准备,下一步又都在为上一步查漏补缺,经过一个这样的过程,学生就会知道自己对各部分知识的掌握程度,找到自己以后的努力方向。
在练习题的设置上,我用尽量少的题去涵盖尽量多的知识点,综合性较强,能够起到拔高的作用。
并且在出示题后,鼓励学生大胆去做,对一部分同学能起到克服恐惧数学的作用。
人教版数学八年级下册_《第19章_第1课时_一次函数复习》教学设计

人教版八下第19章一次函数复习课(第1课时)教学设计教学内容解析教学流程图地位与作用函数是反映现实世界中数量关系和变化规律的常见数学模型之一,一次函数作为学生接触的第一种函数模型,是数学中最简单、最基本的函数,也是学生今后学习二次函数、反比例函数的基础.本章学习了函数与一次函数的定义和图象,结合图象研究了一次函数的性质,探讨了一次函数与一元一次方程、一元一次不等式、二元一次方程组之间的关系;其中,对一次函数的图象和性质的研究思路和方法,将对其他函数的研究起到很好的铺垫作用.一次函数是初中数学研究的一类最基本、最简单的函数,其中函数的定义、一次函数的定义、图象和性质是本章的主要基础知识;会根据问题的条件写出一次函数的解析式,会画一次函数的图象,是学习本章后应具备的基本技能.通过复习,加深学生利用函数观点对数学问题的理解.概念解析在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值都有唯一确定的y值与其对应,那么我们就说x是自变量,y是x的函数.函数的定义中包括了对应值的存在性和唯一性两重意思.单值对应是函数概念的关键词,是函数概念的核心所在.变量y要成为变量x的函数需满足两个条件:一是在同一变化过程中有两个变量x和y;二是对于变量x的每一个确定值,变量y都有唯一确定的值与之对应.一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数.一次函数与正比例函数之间的关系是一般与特殊的关系,当一次函数中常数b=0时,一次函数就是正比例函数.思想方法本章从实际问题出发,研究变量与变量之间的一种对应关系,提出了函数的概念,给出了三种刻画函数的表示形式;学习了利用待定系数法求函数解析式的方法;结合函数图象研究了函数的性质,利用函数的性质也解释了函数的图象,接着研究了一次函数与一元一次方程、一元一次不等式、二元一次方程组之间的关系.这个过程不仅是知识的形成过程,更体现了数学建模、方程、数形结合、由特殊到一般等数学思想.知识类型本课时复习内容既有概念性知识,又有像正比例函数、一次函数的图象与性质等关于有理与规则的知识,更有数学抽象、数学建模、数形结合等关于数学思想方法的知识.由知识的类型决定,教学中应由具体事例出发,引导学生回顾知识,逐步完善知识结构,并注意对有关技能给予强化训练.教学重点一次函数的图象和性质,及三个“一次”之间的关系.教学目标解析教学目标1.掌握一次函数及其相关知识;并能运用这些知识解决相关的数学问题.2.通过具体实例,进一步体会数学中的数学建模、方程思想、数形结合、待定系数法等重要的数学思想和方法.目标解析达成目标1的标志是:能辨别函数及一次函数,会用描点法画函数的图象,能说出一次函数的性质,并能利用一次函数图象和性质解决相关的数学问题.达成目标2的标志是:能分析实际问题中变量之间的关系,将实际问题抽象为函数问题,能利用待定系数法求出一次函数解析式,能依据一次函数性质或图象解决有关问题.教学问题诊断分析具备的基础学生已经学完了本章的内容,对函数的定义、一次函数的图象和性质、一次函数与方程不等式的关系有了一定的理解,另外学生已掌握一元一次方程、二元一次方程组的解法,具备了一定的化归能力,积累了一定的数形结合解决问题的经验.与本课目标的差距分析学习本节内容,需要学生在学习过函数、一次函数相关知识的基础上,深入理解函数的概念,熟练准确调用一次函数的性质,并能结合函数的图象解决相关问题.在解决问题的过程中需要学生具备解方程的技能和较强的运算能力.存在的问题函数的概念较为抽象,掌握其本质——任给一x值都有唯一的y值和其对应,还需要一段时间消化;对一次函数的解析式中k≠0容易忽略,对一次函数与方程、不等式关系的理解和运用还需要进一步强化.应对策略(1)注意引导学生对相关概念、性质的理解;(2)通过呈现不同的题目,引导学生主动辨别概念和隐含条件;(3)通过解题反思和分享,引导学生熟练利用一次函数及其性质解决问题;(4)通过练习思考,逐步积累学习的经验,加深对相关概念和性质的理解.教学难点一次函数的图象及性质的综合应用.教学支持条件分析函数概念之中体现的是“变化与对应”的思想,教学中可以充分利用信息技术手段,用思维导图帮助学生完善本章的知识体系,运用几何画板、Geogebra等动态几何软件画出函数图象、利用其中的电子表格功能分析数量关系。
一次函数数学教案优秀5篇
一次函数数学教案优秀5篇一次函数数学教案(精选篇1)教学目标1.知识与技能能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.2.过程与方法经历探索一次函数的应用问题,发展抽象思维.3.情感、态度与价值观培养变量与对应的,形成良好的函数观点,体会一次函数的应用价值.重、难点与关键1.重点:一次函数的应用.2.难点:一次函数的应用.3.关键:从数形结合分析思路入手,提升应用思维.教学方法采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.教学过程一、范例点击,应用所学例5小芳以米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:•分)变化的函数关系式,并画出函数图象.y=例6A城有肥料吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D•两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,•怎样调运总运费最少?解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(-x)吨.B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨.y与x的关系式为:y=•20x+25(-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤).由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D•乡吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.拓展:若A城有肥料300吨,B城有肥料吨,其他条件不变,又应怎样调运?二、随堂练习,巩固深化课本P119练习.三、课堂,发展潜能由学生自我本节课的表现.四、布置作业,专题突破课本P120习题14.2第9,10,11题.板书设计14.2.2一次函数(4)1、一次函数的应用例:练习:一次函数数学教案(精选篇2)一、课程标准要求:①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。
一次函数复习课教案
中考第一轮复习课一次函数复习课 教案一、教学目标:1、一次函数的代数与几何意义。
一次函数的定义、图象和性质。
2、一次函数解析式的确定。
3、体会一次方程、一次不等式与一次函数的内在联系。
4、在具体问题中培养学生分析解决问题的能力。
二、重难点重点:一次函数的图象与性质;一次函数解析式的确定。
难点:一次函数与方程、不等式的联系;一次函数在实际问题中的应用。
三、教学方法:以题带概念进行重点知识复习,渗透待定系数法、数形结合、分类讨论等数学思想方法。
四、教学过程点明主题,分类复习。
本节课我们对一次函数的基础知识进行复习。
(一)一次函数的定义例1、已知y 是x 的一次函数,且满足,请求出k 的值。
312+=+-k k kxy 分析解决问题:由一次函数的定义可得,解得k =1。
0112≠=+-k k k 且通过例1回顾总结一次函数的定义:一般的,如果,)是常数,、(0≠+=k b k b kx y 那么y 叫做x 的一次函数,特别的,当b =0时,y 叫做x 的正比例函数。
(二)一次函数的图象和性质例2、请在给定的平面直角坐标系中作出一次函数与的图象,331-=x y 332+-=x y 并回答问题(1)一次函数的图象是一条______________。
(2)由图象可知,随x 的增大而___________,直线经过_________象限;1y 331-=x y 随x 的增大而______________,直线经过__________象限。
2y 332+-=x y (3)直线与y 轴的交点坐标为(__________),直线与y 轴交331-=x y 332+-=x y点坐标为(_________)。
(4)直线与x 轴的交点坐标为(__________),直线与x 轴交331-=x y 332+-=x y 点坐标为(_________)。
(5)直线与直线的交点坐标为(__________),根据图象回答,331-=x y 332+-=x y 当x_____________时,。
《一次函数的图象和性质》复习课教学设计
《一次函数图象与性质》复习课教学设计北流市六麻镇第二初级中学黄祖奕教学目标1.结合具体情境体会和理解一次函数的意义。
2.能根据已知条件确定一次函数的表达式。
3.会画一次函数的图象,能结合图象讨论这些函数的增减变化。
4.用函数的观点加深对已经学习过的方程、不等式等内容的认识,构建和发展相互联系的知识体系。
学情分析:学生虽已系统学习了一次函数的基础知识,但由于函数中的概念和性质较为抽象,知识点多,学生在以前的学习过程中往往单纯地依赖模仿与记忆,只有通过创设引人入胜的问题情景,从学生已有的知识实际出发,引导学生探索、回想、思考、归纳、应用与拓展,从而形成技能,发展思维,感受数学来源于生活又回归生活实际,才能有效学习。
教学重点:1.构建本章知识框架.2.一次函数图象的特征,一次函数图象的应用3.应用一次函数知识解决现实生活中的问题,进一步理解数形结合思想教学难点:在理解的基础上结合数学思想分析、解决问题。
教学过程一:创设情境,导入课题黄老师今天早上起床,从宿舍匀速跑步到操场上锻炼身体,然后又匀速跑步回到宿舍。
请同学们用所学过的函数图象知识把老师宿舍到操场的距离与时间的关系表示出来。
二:一次函数的定义:形如y=kx+b(k ,b 为常数,k≠0)的函数叫做一次函数。
当b=0时,函数y=kx(k ≠0)叫做正比例函数,正比例函数是特殊的一次函数。
巩固练习:下列函数属于一次函数的是( ) ①y=kx+b ② y=x 2+2 ③y= ④ y=x+3 ⑤y=x 三:函数的图象(1)正比例函数y=kx(k ≠0)的图象是一条直线,作图是过点(0,0)(1,k )画一条直线。
(2)一次函数y=kx+b(k,b 为常数,b ≠0)的图象是一条直线,作图是过点(0,b )( ,0)画一条直线,这两点就是直线与y 轴、x 轴交点坐标四:一次函数的图象与性质 请同学们在下面的直角坐标系中画出不同的一次函数图象。
①这些图象依据 分类,分别位于 象限。
一次函数的概念教学设计6篇
一次函数的概念教学设计6篇教学目标1、经受一般规律的探究过程,进展学生的抽象思维力量。
2、理解一次函数和正比例函数的概念,能依据所给条件写出简洁的一次函数表达式,进展学生的数学应用力量。
教学重点1、一次函数、正比例函数的概念及两者之间的关系。
2、会依据已知信息写出一次函数的表达式。
教学难点一次函数学问的运用教学方法教师引导学生自学法教具预备弹簧一根、课件教学过程一、创设问题情境,引入新课1、简洁复习函数的概念(设在某一变化过程中有两个变量X和Y,假如,那么我们称Y是X的函数,其中X是自变量,Y是因变量)2、演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么?3、汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?二、新课学习1、做一做。
让学生做书上157页上面两个题目,使学生在探究一般规律的过程中,进展抽象思维力量。
2、一次函数、正比例函数的概念学习争论:刚刚写出的两个关系式y=3+0.5x、y=100—0.18x在形式上有什么一样之处?让学生分析出他们的共同点:①左边都是因变量,右边都是含自变量的代数式;②自变量X与因变量Y的次数都是1;③从形式上看,形式都为y=kx+b,K,b为常数。
问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。
问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。
并接着引导学生比拟一次函数与正比例函数的关系(用集合的方法比拟):一次函包括正比例函数,正比例函数是一次函数的特别状况。
3、例题学习例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进展口答。
例题2是培育学生依据题意列出简洁一次函数关系式及利用一次函数解决实际问题的力量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标数学一次函数复习课教案
新课标数学一次函数复习课教案
一、课程标准要求:
①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。
②会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k0)探索并理解其性质(h0或b0时,图象的变化情况)。
③理解正比例函数。
④能根据一次函数的图象求二元一次方程组的近似解。
⑤能用一次函数解决实际问题。
二、识方法回顾:
1.已知直线y=2x+m不经过第二象限,那么实数m的取值范围是_.
2.一次函数y=kx+b 的图象经过P(1,0)和Q(0,1)两点,则k= ,b= .
3.正比例函数的图象与直线y= - 3(2)x+4平行,则该正比例函数的解析式为 ____ .
4.函数y= - 2(3)x的图象是一条过原点(0,0)及点(2, )的直线,这条直线经过第 _____象限,y随的增大而 .
5.已知一次函数y= - 2(1)x+2当x= 时,y=0;当x 时y 当x 时y0.
6.把直线y= - 2(3)x -2向平移个单位,得到直线y= - 2(3)(x+4)
7.一次函数y=kx+b过点(-2,5),且它的图象与y轴的交点和直线y=-2(1)x+3与y轴的交点关于x轴对称,那么一次函数的解析式是 .
8. 直线y=kx+b经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,则其解析式为 .
三、典型例题讲解:
例1 已知一次函数y=-2x-6。
(1)当x=-4时,则y= ,
当y=-2时,则x=
(2)画出函数图象;
(3)不等式-2x-60解集是_____,
不等式-2x-60解集是_____;
(4)函数图像与坐标轴围成的三角形的面积为
(5)若直线y=3x+4和直线y=-2x-6交于点A,则点A的坐标______;
(6)如果y 的取值范围-42,则x的取值范围__________;
(7)如果x的取值范围-33,则y的最大值是________,最小值是_______.
例2 在边长为的正方形ABCD的边BC上,有一点P从B点运动到C点,设PB=x,四边形APCD的面积为y,写出y与自变量x的'函数关系式,并且在直角坐标系中画出它的图象.
例3 已知一次函数y=x+m和y=-x+n的图象交于点A(-2,0)且与y轴的交点分别为B、C两点,求△ABC的面积.
例4 某单位要印刷产品说明书,甲印刷厂提出:每份说明书收1元印刷费,另收1500元制版费;乙印刷厂提出:每份说明书收2.5元印刷费,不收制版费。
(1)分别写出两个印刷厂的收费y甲、y乙(元)与印刷数量x(份)之间的函数关系式;
(2)在同一坐标系中作出它们的图像;
(3)根据图像回答问题:
①印刷800份说明书时,选择哪家印刷厂比较合算?
②该单位准备拿出3000元用于印刷说明书,找哪家印刷厂印制的说明书多一些?
四、探究实践:
【问题1】已知:一次函数的图象经过点(2,1)和点(-1,-3).
(1)求此一次函数的解析式;
(2)求此一次函数与x轴、y•轴的交点坐标以及该函数图象与两坐标轴所围成的三角形的面积;
(3)若一条直线与此一次函数图象相交于(-2,a)点,且与y轴交点的纵坐标是5,•求这条直线的解析式;
(4)求这两条直线与x轴所围成的三角形面积.
【问题2】有一卖报人,从报社批进某种证券报是每份1.5元,卖
出的价格是每份2元,卖不掉的报纸以每份1元的价格退回报社,在30天的时间里有20天每天可卖出150份,其余10天只能卖出100份,但这30天每天从报社批进的份数必须相同.•设卖报人每天从报社批出x份报纸,月利润为y元.
(1)写出y与x的函数关系式;
(2)画出此函数的图象;
(3)此卖报人应该每天从报社批进多少份报纸时才能使月利润最高?最高利润是多少?
五、巩固练习:
1.直线y=kx+b经过一、二、四象限,则直线y=-bx+k不经过第____象限.
2.已知等腰三角形周长为20,写出底边长y关于腰长x的函数解析式(x为自变量),并写出自变量取值范围,画出函数图象.
3.已知A(8,0)及在第一象限的动点P(x,y),且x+y=10,设△OPA的面积为S.(1)求S关于x的函数解析式;(2)求x的取值范围;(3)求S=12时P点坐标;(4)画出函数S的图象.
4.某果品公司欲请汽车运输公司或火车货运站将60吨水果从A地运到B地。
已知汽车和火车从A地到B地的运输路程均为s千米。
这两家运输单位在运输过程中,除都要收取运输途中每吨每小时5元的冷藏费外,要收取的其它费用及有关运输资料由下表给出:运输工具
行驶速度(千米/小时)
运费单价(元/吨千米)
装卸总费用(元)
汽车
50
2
3000
火车
80
1.7
4620
说明:1元/吨千米表示每吨每千米1元
(1) 请分别写出这两家运输单位运送这批水果所要收取的总费用y1(元)和y2(元)(用含s的式子表示);
(2) 为减少费用,你认为果品公司应选择哪家运输单位运送这批水果更为合算?
六、小结本节我们主要是学习了哪些内容?
七、教学反思。