粉末冶金与硬质合金成型工艺介绍

合集下载

粉末冶金的成型方法

粉末冶金的成型方法

粉末冶金的成型方法粉末冶金可是个超有趣的领域呢。

那它的成型方法呀,有好几种哦。

一种是压制成型。

就像是把粉末当作一群听话的小团子,用模具把它们紧紧地压在一起。

这个过程就像给小团子们安排了一个个小房间,让它们规规矩矩地待在里面。

压力要刚刚好,太大了小团子们可能会不高兴,被压得太实,可能会有一些小问题;压力太小呢,小团子们又会太松散,成型就不好看啦。

这种方法简单直接,在很多粉末冶金的小物件制作中经常用到呢。

还有一种是注射成型。

这个就有点像给粉末穿上一件特殊的“胶水衣服”,让它们变得软软的,像个小面团一样。

然后再把这个软软的混合体注射到模具里。

这就好比把打扮好的小面团放进一个个特制的小盒子里。

不过注射成型对粉末和“胶水衣服”的搭配要求很高哦,就像搭配衣服一样,要合适才行。

这种方法可以做出形状很复杂的零件,就像魔法一样,能把那些奇奇怪怪的设计变成实实在在的东西。

等静压成型也很厉害呢。

把粉末放在一个有弹性的模具里,然后从各个方向给它们施加压力。

这就像给粉末们来了个全方位的拥抱,让它们均匀地受到压力。

粉末们在这个温柔又强大的压力下,就会乖乖地成型啦。

这种方法对于一些大型的或者对密度要求比较均匀的制品特别有用。

松装烧结成型也有它的独特之处。

粉末就那么松松地放在一起,然后直接进行烧结。

这个过程就像是粉末们自己手拉手,在高温的作用下变得亲密无间,最后形成一个整体。

不过这种方法做出来的东西可能密度没有前面几种方法那么高,但是在一些对密度要求不是特别高的情况下,也是一种很经济实惠的方法呢。

粉末冶金的这些成型方法各有各的妙处,就像不同性格的小伙伴,在不同的场合发挥着自己独特的作用。

硬质合金成分

硬质合金成分

硬质合金成分硬质合金是一种由金属和非金属元素组成的复合材料,具有高硬度、高强度和耐磨性等优良性能。

它广泛应用于机械加工、矿山工程、石油钻探和航空航天等领域。

本文将从硬质合金的成分、制备工艺和应用领域三个方面进行介绍。

一、硬质合金的成分硬质合金的主要成分是金属钨(W)和钴(Co),以及少量的其他金属和非金属元素。

钨是硬质合金的主要组成部分,具有高熔点、高硬度和高密度的特点,是使硬质合金具有优异性能的关键因素之一。

钴是硬质合金的结合相,具有良好的结合性和塑性,能够将钨颗粒牢固地固定在一起。

此外,硬质合金中还可以加入一些其他金属元素,如钛(Ti)、铌(Nb)等,以及非金属元素,如碳(C)和氮(N)。

这些元素的加入可以进一步改善硬质合金的性能,提高其硬度和耐磨性。

二、硬质合金的制备工艺硬质合金的制备主要包括粉末冶金和烧结两个过程。

首先,将金属粉末和非金属粉末按一定比例混合,并加入一定量的粘结剂。

然后,通过球磨机等设备对混合粉末进行混合和粉碎,使粉末颗粒更加均匀细小。

接下来,将混合粉末压制成坯体,通常使用等静压或注射成型等方法。

最后,将坯体进行高温烧结处理,使金属粉末颗粒相互结合,并与粘结相形成致密的合金体。

烧结温度和时间的控制对硬质合金的性能有重要影响,过高的温度和过长的时间会导致晶粒长大,从而降低硬质合金的硬度和强度。

三、硬质合金的应用领域硬质合金具有高硬度、高耐磨性和高强度的特点,因此在机械加工领域得到广泛应用。

它可以用于制造刀具、切割工具、钻头、铣刀和刨刀等,能够在高速切削和重负荷加工条件下保持较长的使用寿命。

此外,硬质合金还可以用于制造矿山工具,如岩钻头、钻孔钻头和矿用刀具等,能够在恶劣的矿石破碎环境中保持较好的工作性能。

在石油钻探领域,硬质合金可以用于制造钻头和钻具,能够在高温高压和强磨蚀的地层中稳定地进行钻井作业。

此外,硬质合金还被应用于航空航天领域,用于制造发动机零部件、导弹零部件和航天器零部件等,能够在高温和高应力条件下保持稳定的工作性能。

粉末冶金工艺介绍

粉末冶金工艺介绍

粉末冶金工艺介绍嘿,你可知道粉末冶金这门神奇的工艺?它就像是一个魔法盒子,能变出各种各样让人惊叹的东西呢!粉末冶金啊,简单来说,就是把金属粉末当成主角,让它们在特定的条件下大显身手。

想象一下,那些小小的金属粉末,就像一群小精灵,汇聚在一起,经过一系列奇妙的过程,最后变成了坚固又实用的物件。

先来说说粉末的制备吧。

这就好比是为魔法表演准备道具,得精心挑选和制作。

可以通过各种方法,比如雾化啦、还原啦等等,把大块的金属变成细细的粉末。

这些粉末啊,细腻得就像面粉一样,但可别小瞧它们哦,它们蕴含着巨大的能量呢!然后呢,就是把这些粉末进行成型啦。

这就像是搭积木一样,要把粉末按照设计好的形状堆起来。

可以用压制的方法,给粉末施加压力,让它们乖乖地变成我们想要的形状。

或者用一些特殊的模具,把粉末灌进去,就像做蛋糕一样。

成型之后,可不能就这么结束啦,还得进行烧结呢。

这就像是给这些粉末物件来一场“高温派对”。

在高温的环境下,粉末颗粒之间会相互连接、融合,变得更加紧密、坚固。

这时候啊,那些原本松散的粉末就真正变成了一个整体,具有了各种优秀的性能。

粉末冶金工艺有好多好多的优点呢!它可以制造出形状复杂的零件,那些用传统方法很难做出来的奇奇怪怪的形状,它都能轻松搞定。

而且它还很节约材料呢,不会像其他工艺那样产生很多废料。

这多环保呀,对吧?你想想看,我们生活中的好多东西都可能是通过粉末冶金工艺制造出来的呢。

比如汽车上的一些零件,小小的却起着大作用。

还有各种工具、机械部件等等。

它就像一个默默奉献的幕后英雄,虽然我们可能不太注意到它,但它却在我们的生活中无处不在。

而且啊,随着技术的不断进步,粉末冶金工艺也在不断发展和创新呢。

它就像是一个不断成长的孩子,越来越厉害,能做出更多更好的东西。

哎呀呀,粉末冶金工艺真的是太有趣、太神奇啦!它就像是一个充满魔力的世界,等待着我们去探索和发现。

下次你再看到一个金属物件的时候,不妨想一想,它是不是通过粉末冶金工艺制造出来的呢?说不定你会对它有新的认识和感受哦!怎么样,是不是对粉末冶金工艺更感兴趣了呢?。

粉末冶金工艺简介

粉末冶金工艺简介

粉末冶金工艺简介粉末冶金工艺简介粉末冶金工艺是一种新型的金属制造工艺,它以粉末状的金属材料为原材料,利用热成型和冶金工艺,实现金属制品非切削加工的目的。

此类金属材料更具灵活性,也更加高效。

粉末冶金工艺属于加工性技术,主要是将金属粉末及其他填充物、胶结剂和外加剂制成规定形态的产品。

金属粉末原料可用零件制造法和冶金合金技术来生产,包括合金粉末、精炼粉末和高纯度粉末等,胶结剂主要为各类塑料或助剂,外加剂一般是粉料及浮质料,为了满足不同的要求,开发出多种特殊的粉末冶金新型工艺,如压型粉末冶金(Powder Metallurgy,缩写为PM)、气喷涂粉末冶金(Aerosol Department Powder Metallurgy,缩写为ADPM)、繁杂条纹粉末冶金(Varieties line Powder Metallurgy,缩写为VPM)、三维成型粉末冶金(Three-dimensional shape Powder Metallurgy,简称3DSPM),以及静电烧结粉末冶金等。

根据工艺技术来看,粉末冶金工艺可大致分为热成形工艺和冶金工艺。

热成形工艺为主要工艺,主要将粉末制品编码成所需形态的部品。

常见的有压型工艺、固溶工艺以及超声波热缩封装等。

冶金工艺主要是将热成形了的产品经过熔炼处理,形成熔炼凝固体,以提高产品性能。

熔炼处理采用的热成形主要有一步熔炼法、二步熔炼法、分步熔炼法和完全冶炼法等。

粉末冶金工艺具有许多优势,如产品质量稳定,冲压电阻比其他工艺低;禁止注射缩径范围大,不同部件可在同一模具内一起冲压生产;零件内径精度高,接触口边界容易形成不规则的特征;冲压速度快,无需粒级改变;热成形过程温度较低,工艺条件比较灵活,节约能源。

总的来说,粉末冶金工艺是一种灵活、高效、节能的金属加工技术,可以用于多种行业,并可以制造出材料质量稳定、性能可靠、智能化高度的金属零件。

粉末冶金

粉末冶金

下图是一些典型粉末冶金产品的照片
二. 粉末冶金工艺过程
制取原料粉末配料混合压制成形 制品 烧结 其它处理加工 制品
三. 制取粉末的方法
原料粉末一般由专门的工厂或车间生产,直接 向用户提供粉末产品。粉末冶金用的粉末种类很多, 从材质来看,有金属粉末、合金粉末、金属化合物 粉末等;从粉末的粒度来看,从粒度为500-1000m 的粗粉末到粒度小于0.1m(100nm)的超细(纳米) 粉末都有。不同材质和不同粒度的粉末所采用的制 粉方法是不同的。
(1) 粘结阶段 ——形成烧结颈
烧结初期,粉末颗粒间的原始接触点或面转变 成晶体结合,即通过形核、长大的结晶过程形成烧 结颈。在此阶段,颗粒内部的晶粒不发生变化,颗 粒外形也基本未变,整个烧结体尚未发生收缩 (图a), 密度增加极少;但烧结体的强度和导电性由于颗粒 结合面增大而有明显增加。
(2) 烧结颈长大阶段
4. 后处理
为了进一步提高粉末冶金制品的性能和形状、 尺寸精度,往往需要对烧结后的坯件再进行后处 理(如:切削加工、锻造、轧制、焊接、热处理、 浸渗处理等)。
粉末锻造:
目的是为了把粉末预成形坯件锻造成致密、 无裂纹、符合形状尺寸要求的零件。
它是将传统的粉末冶金和精密模锻结合起来 的一种新工艺,因此兼有粉末冶金和精密模锻二 者的优点。
熔浸烧结
是液相烧结的特例,它是多孔骨架的固相烧结 与低熔点金属浸透骨架后的液相烧结同时存在。
按烧结方式又可分为:
气体(或填料)保护烧结、真空烧结,
连续烧结、间歇烧结,
加压(包括热等静压)烧结、无压烧结,
活化烧结,
电阻烧结、电火花烧结等。
2. 烧结的基本过程
粉末的等温烧结过程,按时间大致可以分成 三个阶段:

粉末冶金成形

粉末冶金成形
致密化
通过烧结过程中的物质迁移和相变,使烧结体内部孔隙减小或消失, 提高其密度和性能。
致密化程度
与烧结温度、时间、气氛等因素有关,需根据产品要求进行控制。
03 粉末冶金成形的关键技术
粉末注射成形技术
定义
粉末注射成形是一种将金属粉末与有机粘结 剂混合,通过注射机注入模具中成形,然后 脱脂和烧结的工艺。
能源领域
粉末冶金技术在风力发电、核能等领 域中用于制造高性能的零部件。
粉末冶金成形的优缺点
材料利用率高,减少材料 浪费;
可生产出形状复杂、精度 高的制品;
优点
01
03 02
粉末冶金成形的优缺点
01
可通过控制成分和工艺参数制备高性能材料;
02
适用于大规模生产。
缺点
03
粉末冶金成形的优缺点
生产过程中易产生粉尘污染; 制品内部可能存在孔隙和缺陷; 部分材料制备成本较高。
等静压成形技术
定义
等静压成形技术是一种利用液体介质传递压力,使金属粉末在各 个方向上均匀受压而成形的工艺。
优点
可生产高精度、高密度、高性能的产品,适用于大规模生产。
应用领域
广泛应用于陶瓷、粉末冶金等领域。
04 粉末冶金成形的材料性能
材料力学性能
硬度
抗拉强度
粉末冶金制品的硬度通常较高,可达到 HRC60以上,这主要得益于其致密的结构 和合金元素的固溶强化作用。
粉末冶金制品具有较高的抗拉强度,通常 在1000MPa以上,这与其致密的结构和晶 粒细化有关。
疲劳性能
韧性
由于其良好的力学性能,粉末冶金制品在 循环载荷下表现出良好的疲劳性能。
粉末冶金制品的韧性与其成分、显微组织 和热处理状态有关,通过合理的工艺控制 可以提高其韧性。

粉末冶金的主要成形方法

粉末冶金的主要成形方法

热压加热方式
1-碳管;2-粉末压坯;3-阴模;4-冲头
轧制成形 轧制ຫໍສະໝຸດ 形是将金属粉末通过一个特制的漏斗喂入 转动的轧辊缝中,可轧出具有一定厚度的、长度 连续的、且强度适宜的板带坯料。这些坯料经预 烧结、烧结,又经轧制加工和热处理等工序,可 制成有一定孔隙率的或致密的粉末冶金板带材。 与模压成形相比,粉末轧制法的优点是制品的长 度可不受限制、轧制制品密度较为均匀。但是, 由轧制法生产的带材厚度受轧辊直径的限制,一 般不超过10mm,宽度也受到轧辊宽度的限制。轧制 成形只能制取形状较简单的板带及直径与厚度比 值很大的衬套。
粉末轧制成形
温压成形
温压成形的基本工艺过程是将专用金属或合金粉末与聚合 物润滑剂混合后,采用特制的粉末加热系统、粉末输送系 统和模具加热系统,升温到75~150℃,压制成压坯,再 经预烧、烧结、整形等工序,可获得密度高至7.2~ 7.5g/cm3的铁基粉末冶金件。
温压成形的工艺流程
温压装置及其温度分布系统示意图
温压成形
温压成形可以显著提高压坯密度的机理一般归于在加热状态下, 粉末的屈服强度降低(如下图)和润滑剂作用增强。在材料达到 同等密度的前提下,温压成形工艺的生产成本比粉末锻造低75 %,比“复压/复烧”低25%,比渗铜低15%;在零件达到同 等力学性能和加工精度的前提下,温压成形工艺的生产成本比 现行热、冷机械加工工艺低50%~80%,生产效率提高10~30 倍。
粉末冶金的主要成形方法
粉末成形是将松散的粉末体加工成具有一定尺寸、形状、 密度和强度的压坯的工艺过程,它可分为普通模压成形和 非模压成形两大类。普通模压成形是将金属粉末或混合粉 末装在压模内,通过压力机加压成形,这种传统的成形方 法在粉末冶金生产中占主导地位;非模压成形主要有等静 压成形、连续轧制成形、喷射成形、注射成形等。

粉末冶金成型技术

粉末冶金成型技术

粉末冶金成型技术Ⅰ、粉末冶金成型技术1、粉末冶金成型技术(Powder Metallurgy)是一种较新的金属制造工艺,它通过将金属粉末或粉体团结成模具内所需形状,从而生产出广泛应用的金属零件。

其原理是金属粉末经高压热压成型而形成零件。

2、粉末冶金成型技术能够制造出具有较高精度、更小体积的零件,是传统金属制造技术无法达到的高精度和大精度的紧凑零件。

同时,由于具有良好的耐磨性,它还可以制造可耐高速摩擦的零件。

3、粉末冶金成型技术使用金属粉末来制造零件,因此可以制造出大规模和复杂零件。

它制造出的产品可以达到更高的均匀度、更高的精度和更强的密度,这些特点比其他技术都有优势。

II、工艺流程1、把金属粉末混合成易流动的糊状物:在粉末冶金成型过程中,首先将金属粉末混合成易流动的糊状物,然后将其成型成所需的各类结构。

2、金属流成型:将调制好的金属流放入到模具中,然后将其投射成型,采用精确的高压成型,以形成模具内期望的形状。

3、表面处理:一些金属零件可能需要再进行表面处理,比如镀铬、电镀和热处理,以满足零件性能的需求,增强其耐蚀性、耐磨性等。

4、热处理:热处理是利用复杂的热处理技术,通过改变零件的温度来改变其组织和性能,以获得期望的性能和表面光洁度。

III、优点1、体积小:由于采用精密模具来进行流体压力成型,可以制造出具有较小体积和精确尺寸的部件;2、准确精度:粉末冶金成型可以根据模具进行长宽比、曲率与折弯处理,以达到较高的精度,组装时也相对容易;3、节能降耗:比传统金属加工手段更加节省能源耗费,而且粉末冶金可以减少冶炼及清理成本,从而降低成本;4、结构复杂:粉末冶金制造的零件可以根据设计形状进行复杂的结构设计,可在一个工件上制造气隙空间及护套,从而更加省时。

IV、缺点1、成本高:粉末冶金技术的设备耗费较高,使得生产成本比其他工艺高很多;2、尺寸大小限制:模具的设计尺寸受生产设备的尺寸限制,影响着大小尺寸和深度尺寸的生产;3、生产周期长:由于加工方法比其他工艺复杂,因此所需的生产周期也变得更长;4、表面光洁度差:因为运用压力成型,而非切削加工,因此物件的表面光洁度不是非常理想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

粉末冶金与硬质合金是两种不同的成型工艺,分别适用于不同的应用领域。

以下是这两种工艺的介绍:
粉末冶金是一种将金属粉末与适量的粘合剂均匀混合后,经压制成形、烧结而成的材料。

这种工艺可以用于制造各种硬质材料,如硬质合金、磁性材料、高温合金等。

粉末冶金工艺的主要优点是能够制造出单一成分的致密材料,而且工艺过程易于控制,材料性能易于控制和优化。

此外,粉末冶金工艺还可以实现材料的批量生产,具有较高的生产效率。

硬质合金是一种由硬质相和粘合相组成的合金,通常采用粉末冶金工艺制备。

制备硬质合金的关键步骤是将碳化钨(硬质相)与钴等金属或非金属元素混合,经过粉末冶金工艺制备成硬质合金粉末,再经过成型和烧结制备成硬质合金材料。

硬质合金具有很高的硬度、强度和耐磨性,广泛应用于刀具、模具、耐磨零件等领域。

在硬质合金成型工艺中,通常采用粉末冶金工艺中的压制、成型和烧结等方法。

具体来说,制备硬质合金粉末时,需要将各种金属或非金属元素混合均匀,经过球磨、筛分等工序制备成粉末。

然后,将制备好的粉末进行成型,制成所需的形状和尺寸。

接下来,将成型后的硬质合金坯料进行烧结,使其形成致密的硬质合金材料。

在压制过程中,需要控制压力、温度和时间等工艺参数,以确保材料的致密性和性能。

除了上述介绍的粉末冶金和硬质合金成型工艺外,还有其他一些成型工艺,如挤压、注射成型、等静压等。

这些工艺可以根据不同的材料特性和应用需求选择使用。

在选择成型工艺时,需要考虑到材料的性能要求、制造成本、生产效率等因素。

此外,在应用这些成型工艺时,也需要对材料的缺陷进行控制和管理,以提高材料的质量和性能。

以上信息仅供参考,如有需要可以咨询相关人士了解。

相关文档
最新文档