新泰市第一中学老校区新泰中学高二数学上学期第一次月考试题
山东省泰安市新泰一中高二数学上学期12月月考试卷 理(

2015-2016学年山东省泰安市新泰一中高二(上)12月月考数学试卷(理科)一、选择题:(本大题共10小题,每小题5分,共60分.在每题给出的四个选项中,只有一个是符合题目要求的.)1.在△ABC中,a=2,b=2,B=,则A等于()A.B.C.或D.或2.准线方程为x=2的抛物线的标准方程是()A.y2=﹣4x B.y2=8x C.y2=4x D.y2=﹣8x3.设p:x<﹣1或x>1,q:x<﹣2或x>1,则¬p是¬q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.设a1,a2,a3,a4成等比数列,其公比为2,则的值为()A.B.C.D.15.若<<0,则下列不等式①a+b<ab;②|a|>|b|;③a<b;④+>2中,正确的不等式有()A.0个B.1个C.2个D.3个6.在R上定义运算,若成立,则x的取值范围是()A.(﹣4,1)B.(﹣1,4)C.(﹣∞,﹣4)∪(1,+∞) D.(﹣∞,﹣1)∪(4,+∞)7.如图,A1B1C1﹣ABC是直三棱柱,∠BCA=90°,点D1、F1分别是A1B1、A1C1的中点,若BC=CA=CC1,则BD1与AF1所成角的余弦值是()A. B.C.D.8.如图:在平行六面体ABCD﹣A1B1C1D1中,M为A1C1与B1D1的交点.若,,,则下列向量中与相等的向量是()A.B. C. D.9.已知点M是抛物线y2=4x的一点,F为抛物线的焦点,A在圆C:(x﹣4)2+(y﹣1)2=1上,则|MA|+|MF|的最小值为()A.2 B.3 C.4 D.510.如图F1,F2分别是椭圆的两个焦点,A和B是以O为圆心,以|OF1|为半径的圆与该左半椭圆的两个交点,且△F2AB是等边三角形,则椭圆的离心率为()A.B.C.D.二、填空题:(本大题5小题,每小题5分,共25分)11.与曲线共焦点并且与曲线共渐近线的双曲线方程为.12.在△ABC中,若三边长分别为a=7,b=3,c=8,则△ABC面积等于.13.设x,y满足约束条件,若z=,则实数z的取值范围为.14.若直线ax+2by﹣2=0(a,b>0)始终平分圆x2+y2﹣4x﹣2y﹣8=0的周长,则的最小值为.15.下列四个命题中①命题“若x2﹣3x﹣4=0,则x=4”的逆否命题为“若x≠4,则x2﹣3x﹣4≠0”②“x=4”是“x2﹣3x﹣4=0”的充分条件③命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为真命题④命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0.则m≠0且n≠0”⑤对空间任意一点O,若满足,则P,A,B,C四点一定共面.其中真命题的为(将你认为是真命题的序号都填上)三、解答题:(本大题共6题,满分75分.解答须写出文字说明、证明过程和演算步骤)16.已知函数f(x)=x2﹣ax+a.设p:方程f(x)=0有实数根;q:函数f(x)在区间上是增函数.若p或q为真命题,p且q为假命题,求实数a的取值范围.17.△ABC中,角A,B,C的对分别为a,b,c,且a(1+cosC)+c(1+cosA)=3b.(1)求证:a,b,c成等差数列;(2)求cosB的最小值.18.如图,PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2,又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.(Ⅰ)求证:平面PAC⊥平面ABC;(Ⅱ)求二面角M﹣AC﹣B的大小;(Ⅲ)求三棱锥P﹣MAC的体积.19.已知{a n}是等比数列,公比q>1,前n项和为,.(1)求数列{a n},{b n}的通项公式;(2)设数列{b n b n+1}的前n项和为T n,求证.20.某家公司每月生产两种布料A和B,所有原料是三种不同颜色的羊毛,下表给出了生产每匹每种布料所需的羊毛量,以及可供使用的每种颜色的羊毛的总量.已知生产每匹布料A、B 的利润分别为120元、80元.那么如何安排生产才能够产生最大的利润?最大的利润是多少?羊毛颜色每匹需要/kg 供应量/kg布料A 布料B红 4 4 1400绿 6 3 1800黄 2 6 180021.已知F1,F2是椭圆+=1(a>b>0)的两个焦点,O为坐标原点,点P(﹣1,)在椭圆上,且•=0,⊙O是以F1F2为直径的圆,直线l:y=kx+m与⊙O相切,并且与椭圆交于不同的两点A,B(1)求椭圆的标准方程;(2)当•=λ,且满足≤λ≤时,求弦长|AB|的取值范围.2015-2016学年山东省泰安市新泰一中高二(上)12月月考数学试卷(理科)参考答案与试题解析一、选择题:(本大题共10小题,每小题5分,共60分.在每题给出的四个选项中,只有一个是符合题目要求的.)1.在△ABC中,a=2,b=2,B=,则A等于()A.B.C.或D.或【考点】正弦定理.【专题】解三角形.【分析】由条件利用正弦定理求得sinA的值,即可求得A的值.【解答】解:△ABC中,∵a=2,b=2,B=,∴由正弦定理可得=,解得 sinA=,∴A=,或 A=,故选:C.【点评】本题主要考查正弦定理的应用,根据三角函数的值求角,属于基础题.2.准线方程为x=2的抛物线的标准方程是()A.y2=﹣4x B.y2=8x C.y2=4x D.y2=﹣8x【考点】抛物线的简单性质.【专题】计算题.【分析】由题意中,抛物线的准线方程易得该抛物线的焦点在x轴上,则设其标准方程是y2=2mx,由抛物线的性质,可得其准线方程为x=﹣,依题意,可得m的值,将m的值代入y2=2mx 中可得答案.【解答】解:根据题意,易得该抛物线的焦点在x轴上,则设其标准方程是y2=2mx,由抛物线的性质,可得其准线方程为x=﹣,则﹣=2,解可得m=﹣4,故其标准方程是y2=﹣8x;故选D.【点评】本题考查抛物线的简单性质,关键在于掌握由标准方程求准线方程的方法.3.设p:x<﹣1或x>1,q:x<﹣2或x>1,则¬p是¬q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】可先判p是q的什么条件,也可先写出¬p和¬q,直接判断¬p是¬q的什么条件.【解答】解:由题意q⇒p,反之不成立,故p是q的必要不充分条件,所以¬p是¬q的充分不必要条件.故选A【点评】本题考查充要条件的判断问题,属基本题.4.设a1,a2,a3,a4成等比数列,其公比为2,则的值为()A.B.C.D.1【考点】等比数列的性质.【专题】计算题.【分析】先利用等比数列的通项公式分别表示出a2,a3,a4,代入原式化简整理,进而利用公比求得答案.【解答】解:根据题意, ===故选A【点评】本题主要考查了等比数列通项公式的应用.考查了学生对等比数列基础知识的掌握和灵活利用.5.若<<0,则下列不等式①a+b<ab;②|a|>|b|;③a<b;④+>2中,正确的不等式有()A.0个B.1个C.2个D.3个【考点】基本不等式.【分析】由<<0,判断出a,b的符号和大小,再利用不等式的性质及重要不等式判断命题的正误.【解答】解:∵<<0,∴b<a<0,∴a+b<0<ab,故①正确.∴﹣b>﹣a>0,则|b|>|a|,故②错误.③显然错误.由于,,∴+>2=2,故④正确.综上,①④正确,②③错误,故选C.【点评】本题考查不等式的性质,基本不等式的应用,判断 b<a<0 是解题的关键.6.在R上定义运算,若成立,则x的取值范围是()A.(﹣4,1)B.(﹣1,4)C.(﹣∞,﹣4)∪(1,+∞) D.(﹣∞,﹣1)∪(4,+∞)【考点】二阶矩阵.【专题】计算题.【分析】根据定义运算,把化简得x2+3x<4,求出其解集即可.【解答】解:因为,所以,化简得;x2+3x<4即x2+3x﹣4<0即(x﹣1)(x+4)<0,解得:﹣4<x<1,故选A.【点评】考查二阶矩阵,以及一元二次不等式,考查运算的能力.7.如图,A1B1C1﹣ABC是直三棱柱,∠BCA=90°,点D1、F1分别是A1B1、A1C1的中点,若BC=CA=CC1,则BD1与AF1所成角的余弦值是()A. B.C.D.【考点】异面直线及其所成的角.【专题】计算题;压轴题.【分析】先取BC的中点D,连接D1F1,F1D,将BD1平移到F1D,则∠DF1A就是异面直线BD1与AF1所成角,在△DF1A中利用余弦定理求出此角即可.【解答】解:取BC的中点D,连接D1F1,F1D∴D1B∥DF1∴∠DF1A就是BD1与AF1所成角设BC=CA=CC1=2,则AD=,AF1=,DF1=在△DF1A中,cos∠DF1A=,故选A【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.8.如图:在平行六面体ABCD﹣A1B1C1D1中,M为A1C1与B1D1的交点.若,,,则下列向量中与相等的向量是()A.B. C. D.【考点】空间向量的基本定理及其意义.【专题】计算题.【分析】利用向量的运算法则:三角形法则、平行四边形法则表示出.【解答】解:∵====故选A【点评】本题考查利用向量的运算法则将未知的向量用已知的基底表示从而能将未知向量间的问题转化为基底间的关系解决.9.已知点M是抛物线y2=4x的一点,F为抛物线的焦点,A在圆C:(x﹣4)2+(y﹣1)2=1上,则|MA|+|MF|的最小值为()A.2 B.3 C.4 D.5【考点】圆与圆锥曲线的综合;抛物线的简单性质.【专题】综合题;压轴题.【分析】先根据抛物线方程求得准线方程,过点M作MN⊥准线,垂足为N,根据抛物线定义可得|MN|=|MF|,问题转化为求|MA|+|MN|的最小值,根据A在圆C上,判断出当N,M,C三点共线时,|MA|+|MN|有最小值,进而求得答案.【解答】解:抛物线y2=4x的准线方程为:x=﹣1过点M作MN⊥准线,垂足为N∵点M是抛物线y2=4x的一点,F为抛物线的焦点∴|MN|=|MF|∴|MA|+|MF|=|MA|+|MN|∵A在圆C:(x﹣4)2+(y﹣1)2=1,圆心C(4,1),半径r=1∴当N,M,C三点共线时,|MA|+|MF|最小∴(|MA|+|MF|)min=(|MA|+|MN|)min=|CN|﹣r=5﹣1=4∴(|MA|+|MF|)min=4故选C.【点评】本题的考点是圆与圆锥曲线的综合,考查抛物线的简单性质,考查距离和的最小.解题的关键是利用化归和转化的思想,将问题转化为当N,M,C三点共线时,|MA|+|MF|最小.10.如图F1,F2分别是椭圆的两个焦点,A和B是以O为圆心,以|OF1|为半径的圆与该左半椭圆的两个交点,且△F2AB是等边三角形,则椭圆的离心率为()A.B.C.D.【考点】圆锥曲线的共同特征.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由题设条件知,把A代入椭圆,得,整理,得e4﹣8e2+4=0,由此能够求出椭圆的离心率.【解答】解:由题意知,把A代入椭圆,得,∴(a2﹣c2)c2+3a2c2=4a2(a2﹣c2),整理,得e4﹣8e2+4=0,∴,∵0<e<1,∴.故选D.【点评】本题考查椭圆的性质和应用,解题时要认真审题,注意公式的灵活运用.二、填空题:(本大题5小题,每小题5分,共25分)11.与曲线共焦点并且与曲线共渐近线的双曲线方程为.【考点】双曲线的标准方程.【分析】先求出椭圆的焦点坐标,双曲线的渐近线方程,然后设双曲线的标准方程为,则根据此时双曲线的渐近线方程为y=±x,且有c2=a2+b2,可解得a、b,故双曲线方程得之.【解答】解:由题意知椭圆焦点在y轴上,且c==5,双曲线的渐近线方程为y=±x,设欲求双曲线方程为,则,解得a=4,b=3,所以欲求双曲线方程为.故答案为.【点评】本题主要考查焦点在不同坐标轴上的双曲线的标准方程与性质,同时考查椭圆的标准方程及简单性质.12.在△ABC中,若三边长分别为a=7,b=3,c=8,则△ABC面积等于.【考点】余弦定理.【专题】计算题.【分析】利用余弦定理求得cosC=,再利用同角三角函数的基本关系求得 sinC=,代入△ABC的面积公式进行运算.【解答】解:在△ABC中,若三边长分别为a=7,b=3,c=8,由余弦定理可得64=49+9﹣2×7×3 cosC,∴cosC=,∴sinC=,∴S△ABC==,故答案为.【点评】本题考查余弦定理的应用,同角三角函数的基本关系,求出sinC=,是解题的关键.13.设x,y满足约束条件,若z=,则实数z的取值范围为.【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式对应的平面区域,利用线性规划的知识,利用z的几何意义即可求出z 的取值范围.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).z=的几何意义为阴影部分的动点(x,y)到定点P(﹣1,3)连线的斜率的取值范围.由图象可知当点位于B时,直线的斜率最大,当点位于O时,直线的斜率最小,由,解得,即B(4,6),∴BP的斜率k=,OP的斜率k=,∴﹣3.故答案为:.【点评】本题主要考查线性规划的应用,利用z的几何意义是解决本题的关键,利用数形结合是解决线性规划问题中的基本方法.14.若直线ax+2by﹣2=0(a,b>0)始终平分圆x2+y2﹣4x﹣2y﹣8=0的周长,则的最小值为 4 .【考点】基本不等式;直线与圆相交的性质.【专题】计算题.【分析】求出圆心坐标代入直线方程得到a,b的关系a+b=1;将乘以a+b展开,利用基本不等式,检验等号能否取得,求出函数的最小值.【解答】解:因为直线平分圆,所以直线过圆心圆心坐标为(2,1)∴a+b=1∴=当且仅当取等号故答案为4【点评】本题考查直线平分圆时直线过圆心、考查利用基本不等式求函数的最值需注意:一正、二定、三相等.15.下列四个命题中①命题“若x2﹣3x﹣4=0,则x=4”的逆否命题为“若x≠4,则x2﹣3x﹣4≠0”②“x=4”是“x2﹣3x﹣4=0”的充分条件③命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为真命题④命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0.则m≠0且n≠0”⑤对空间任意一点O,若满足,则P,A,B,C四点一定共面.其中真命题的为①②⑤(将你认为是真命题的序号都填上)【考点】命题的真假判断与应用.【专题】综合题;对应思想;综合法;简易逻辑.【分析】直接写出命题的逆否命题判断①;由充分必要条件的判定方法判断②;举例说明③错误;写出命题的否命题判断④;由空间中四点共面的条件判断⑤.【解答】解:①命题“若x2﹣3x﹣4=0,则x=4”的逆否命题为“若x≠4,则x2﹣3x﹣4≠0”,故①正确;②x=4⇒x2﹣3x﹣4=0;由x2﹣3x﹣4=0,解得:x=﹣1或x=4.∴“x=4”是“x2﹣3x﹣4=0”的充分不必要条件,故②正确;③命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为“若方程x2+x﹣m=0有实根,则m>0”,是假命题,如m=0时,方程x2+x﹣m=0有实根;④命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0.则m≠0或n≠0”,故④错误;⑤∵,∴对空间任意一点O,若满足,则P,A,B,C四点一定共面,故⑤正确.故答案为:①②⑤.【点评】本题考查命题的真假判断与应用,考查了命题的否命题和逆否命题,训练了充分必要条件的判定方法,考查利用向量法判断空间中四点共面的条件,属中档题.三、解答题:(本大题共6题,满分75分.解答须写出文字说明、证明过程和演算步骤)16.已知函数f(x)=x2﹣ax+a.设p:方程f(x)=0有实数根;q:函数f(x)在区间上是增函数.若p或q为真命题,p且q为假命题,求实数a的取值范围.【考点】复合命题的真假.【专题】函数思想;综合法;简易逻辑.【分析】首先考虑命题p,q均为真命题,求出a的取值范围,再根据p,q中一真一假,分别求出a的取值范围,最后求并集.【解答】解:若p真,即方程f(x)=0有实数根,则△=a2﹣4a≥0⇔a≤0,或a≥4;…(2分)若q真,即函数f(x)在区间上是增函数,则区间在对称轴的右边即≤1⇒a≤2…(3分)因为p和q有且只有一个正确,所以p,q中一真一假.若p真q假,则⇒a≥4;若p假q真,则⇒0<a≤2.…(7分)所以实数a的取值范围为(0,2]∪分析易得答案.【解答】解:(1)依题意,由•=0,可得PF1⊥F1F2,∴c=1,将点p坐标代入椭圆方程可得+=1,又由a2=b2+c2,解得a2=2,b2=1,c2=1,∴椭圆的方程为+y2=1.(2)直线l:y=kx+m与⊙x2+y2=1相切,则=1,即m2=k2+1,由直线l与椭圆交于不同的两点A、B,设A(x1,y1),B(x2,y2),由,得(1+2k2)x2+4kmx+2m2﹣2=0,△=(4km)2﹣4×(1+2k2)(2m2﹣2)>0,化简可得2k2>1+m2,x1+x2=﹣,x1•x2=,y1•y2=(kx1+m)(kx2+m)=k2x1•x2+km(x1+x2)+m2==,=x1•x2+y1•y2==,≤≤,解可得≤k2≤1,(9分)|AB|==2设u=k4+k2(≤k2≤1),则≤u≤2,|AB|=2=2,u∈分析易得,≤|AB|≤.(13分)【点评】本题考查直线与椭圆的位置关系,解此类题目,一般要联系直线与圆锥曲线的方程,得到一元二次方程,利用根与系数的关系来求解.。
新泰市高级中学2018-2019学年高二上学期第一次月考试卷数学

新泰市高级中学2018-2019学年高二上学期第一次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.函数f(x)是以2为周期的偶函数,且当x∈(0,1)时,f(x)=x+1,则函数f(x)在(1,2)上的解析式为()A.f(x)=3﹣x B.f(x)=x﹣3 C.f(x)=1﹣x D.f(x)=x+12.已知集合A={0,1,2},则集合B={x﹣y|x∈A,y∈A}中元素的个数是()A.1 B.3 C.5 D.93.已知函数f(x)=2x,则f′(x)=()A.2x B.2x ln2 C.2x+ln2 D.4.已知平面α∩β=l,m是α内不同于l的直线,那么下列命题中错误的是()A.若m∥β,则m∥l B.若m∥l,则m∥βC.若m⊥β,则m⊥l D.若m⊥l,则m⊥β5.设全集U=M∪N=﹛1,2,3,4,5﹜,M∩∁U N=﹛2,4﹜,则N=()A.{1,2,3} B.{1,3,5} C.{1,4,5} D.{2,3,4}6.某程序框图如图所示,该程序运行后输出的S的值是()A.﹣3 B.﹣C.D.27.如图,四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,D为四面体OABC外一点.给出下列命题.①不存在点D,使四面体ABCD有三个面是直角三角形②不存在点D,使四面体ABCD是正三棱锥③存在点D,使CD与AB垂直并且相等④存在无数个点D,使点O在四面体ABCD的外接球面上其中真命题的序号是()A .①②B .②③C .③D .③④8. 若直线l的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( ) A .l ∥α B .l ⊥αC .l ⊂αD .l 与α相交但不垂直9. 已知命题:()(0x p f x a a =>且1)a ≠是单调增函数;命题5:(,)44q x ππ∀∈,sin cos x x >.则下列命题为真命题的是( )A .p q ∧B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧ 10.命题“设a 、b 、c ∈R ,若ac 2>bc 2则a >b ”以及它的逆命题、否命题、逆否命题中,真命题的个数为( ) A .0 B .1C .2D .311.设f (x )是定义在R 上的恒不为零的函数,对任意实数x ,y ∈R ,都有f (x )•f (y )=f (x+y ),若a 1=,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是( ) A .[,2) B .[,2] C .[,1) D .[,1]12.设n S 是等差数列{}n a 的前项和,若5359a a =,则95SS =( ) A .1 B .2 C .3 D .4二、填空题13.设m 是实数,若x ∈R 时,不等式|x ﹣m|﹣|x ﹣1|≤1恒成立,则m 的取值范围是 .14.已知双曲线的标准方程为,则该双曲线的焦点坐标为, 渐近线方程为 .15.在(1+x )(x 2+)6的展开式中,x 3的系数是 .16.在ABC ∆中,角A B C 、、的对边分别为a b c 、、,若1cos 2c B a b ⋅=+,ABC ∆的面积12S c =, 则边c 的最小值为_______.【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.17.将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是.18.【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=lnx-mx(m∈R)在区间[1,e]上取得最小值4,则m=________.三、解答题19.某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:x 2 4 5 6 8y 30 40 60 50 70(1)画出散点图;(2)求线性回归方程;(3)预测当广告费支出7(百万元)时的销售额.20.已知函数f(x)=sin2x+(1﹣2sin2x).(Ⅰ)求f(x)的单调减区间;(Ⅱ)当x∈[﹣,]时,求f(x)的值域.21.某游乐场有A、B两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为.(1)求游戏A 被闯关成功的人数多于游戏B 被闯关成功的人数的概率; (2)记游戏A 、B 被闯关总人数为ξ,求ξ的分布列和期望.22.A={x|x 2﹣3x+2=0},B={x|ax ﹣2=0},若B ⊆A ,求a .23.(本小题满分10分)选修4-1:几何证明选讲如图,直线PA 与圆O 相切于点A ,PBC 是过点O 的割线,CPE APE ∠=∠,点H 是线段ED 的中 点.(1)证明:D F E A 、、、四点共圆; (2)证明:PC PB PF ⋅=2.24.【淮安市淮海中学2018届高三上第一次调研】已知函数()133x x af x b+-+=+.(1)当1a b ==时,求满足()3xf x =的x 的取值;(2)若函数()f x 是定义在R 上的奇函数①存在t R ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围;②若函数()g x 满足()()()12333xx f x g x -⎡⎤⋅+=-⎣⎦,若对任意x R ∈,不等式()()211g x m g x ≥⋅-恒成立,求实数m 的最大值.新泰市高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:∵x∈(0,1)时,f(x)=x+1,f(x)是以2为周期的偶函数,∴x∈(1,2),(x﹣2)∈(﹣1,0),f(x)=f(x﹣2)=f(2﹣x)=2﹣x+1=3﹣x,故选A.2.【答案】C【解析】解:∵A={0,1,2},B={x﹣y|x∈A,y∈A},∴当x=0,y分别取0,1,2时,x﹣y的值分别为0,﹣1,﹣2;当x=1,y分别取0,1,2时,x﹣y的值分别为1,0,﹣1;当x=2,y分别取0,1,2时,x﹣y的值分别为2,1,0;∴B={﹣2,﹣1,0,1,2},∴集合B={x﹣y|x∈A,y∈A}中元素的个数是5个.故选C.3.【答案】B【解析】解:f(x)=2x,则f'(x)=2x ln2,故选:B.【点评】本题考查了导数运算法则,属于基础题.4.【答案】D【解析】【分析】由题设条件,平面α∩β=l,m是α内不同于l的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;综上D选项中的命题是错误的故选D5.【答案】B【解析】解:∵全集U=M∪N=﹛1,2,3,4,5﹜,M∩C u N=﹛2,4﹜,∴集合M,N对应的韦恩图为所以N={1,3,5}故选B6.【答案】B【解析】解:由程序框图得:第一次运行S==﹣3,i=2;第二次运行S==﹣,i=3;第三次运行S==,i=4;第四次运行S==2,i=5;第五次运行S==﹣3,i=6,…S的值是成周期变化的,且周期为4,当i=2015时,程序运行了2014次,2014=4×503+2,∴输出S=﹣.故选:B.【点评】本题考查了循环结构的程序框图,根据程序的运行功能判断输出S值的周期性变化规律是关键.7.【答案】D【解析】【分析】对于①可构造四棱锥CABD与四面体OABC一样进行判定;对于②,使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥;对于③取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD 与AB垂直并且相等,对于④先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r,可判定④的真假.【解答】解:∵四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,∴AC=BC=,AB=当四棱锥CABD与四面体OABC一样时,即取CD=3,AD=BD=2此时点D,使四面体ABCD有三个面是直角三角形,故①不正确使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥,故②不正确;取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,故③正确;先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r即可∴存在无数个点D,使点O在四面体ABCD的外接球面上,故④正确故选D8.【答案】B【解析】解:∵=(1,0,2),=(﹣2,0,4),∴=﹣2,∴∥,因此l⊥α.故选:B.9.【答案】D【解析】考点:1、指数函数与三角函数的性质;2、真值表的应用.10.【答案】C【解析】解:命题“设a、b、c∈R,若ac2>bc2,则c2>0,则a>b”为真命题;故其逆否命题也为真命题;其逆命题为“设a、b、c∈R,若a>b,则ac2>bc2”在c=0时不成立,故为假命题故其否命题也为假命题故原命题及其逆命题、否命题、逆否命题中,真命题的个数为2个故选C【点评】本题考查的知识点是四种命题的真假判断,不等式的基本性质,其中熟练掌握互为逆否的两个命题真假性相同,是解答的关键.11.【答案】C【解析】解:∵对任意x,y∈R,都有f(x)•f(y)=f(x+y),∴令x=n,y=1,得f(n)•f(1)=f(n+1),即==f(1)=,∴数列{a n}是以为首项,以为等比的等比数列,∴a n=f(n)=()n,∴S n==1﹣()n∈[,1).故选C.【点评】本题主要考查了等比数列的求和问题,解题的关键是根据对任意x,y∈R,都有f(x)•f(y)=f(x+y)得到数列{a n}是等比数列,属中档题.12.【答案】A【解析】1111]试题分析:199515539()9215()52a aS aa aS a+===+.故选A.111]考点:等差数列的前项和.二、填空题13.【答案】[0,2].【解析】解:∵|x﹣m|﹣|x﹣1|≤|(x﹣m)﹣(x﹣1)|=|m﹣1|,故由不等式|x﹣m|﹣|x﹣1|≤1恒成立,可得|m﹣1|≤1,∴﹣1≤m﹣1≤1,求得0≤m≤2,故答案为:[0,2].【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题.14.【答案】(±,0)y=±2x.【解析】解:双曲线的a=2,b=4,c==2,可得焦点的坐标为(±,0),渐近线方程为y=±x,即为y=±2x.故答案为:(±,0),y=±2x.【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题.15.【答案】20.【解析】解:(1+x)(x2+)6的展开式中,x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;又(x2+)6的展开式中,通项公式为T r+1=•x12﹣3r,令12﹣3r=3,解得r=3,满足题意;令12﹣3r=2,解得r=,不合题意,舍去;所以展开式中x3的系数是=20.故答案为:20.16.【答案】117.【答案】.【解析】解:设剪成的小正三角形的边长为x,则:S==,(0<x<1)令3﹣x=t,t∈(2,3),∴S===,当且仅当t=即t=2时等号成立;故答案为:.18.【答案】-3e【解析】f ′(x )=1x +2m x =2x m x ,令f ′(x )=0,则x =-m ,且当x<-m 时,f ′(x )<0,f (x )单调递减,当x>-m 时,f ′(x )>0,f (x )单调递增.若-m ≤1,即m ≥-1时,f (x )min =f (1)=-m ≤1,不可能等于4;若1<-m ≤e ,即-e ≤m<-1时,f (x )min =f (-m )=ln (-m )+1,令ln (-m )+1=4,得m =-e 3(-e ,-1);若-m>e ,即m<-e 时,f (x )min =f (e )=1-m e ,令1-me=4,得m =-3e ,符合题意.综上所述,m =-3e.三、解答题19.【答案】【解析】解:(1)(2)设回归方程为=bx+a则b=﹣5/﹣5=1380﹣5×5×50/145﹣5×52=6.5故回归方程为=6.5x+17.5(3)当x=7时, =6.5×7+17.5=63,所以当广告费支出7(百万元)时,销售额约为63(百万元).【点评】本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,这是解答正确的主要环节.20.【答案】【解析】解:(Ⅰ)f(x)=sin2x+(1﹣2sin2x)=sin2x+cos2x=2(sin2x+cos2x)=2sin(2x+),由2kπ+≤2x+≤2kπ+(k∈Z)得:kπ+≤x≤kπ+(k∈Z),故f(x)的单调减区间为:[kπ+,kπ+](k∈Z);(Ⅱ)当x∈[﹣,]时,(2x+)∈[0,],2sin(2x+)∈[0,2],所以,f(x)的值域为[0,2].21.【答案】【解析】解:(1).(2)ξ可取0,1,2,3,4,P(ξ=0)=(1﹣)2(1﹣)2=;P(ξ=1)=()(1﹣)()2+(1﹣)2=;P(ξ=2)=++=;P(ξ=3)==;P(ξ=4)==.∴ξ的分布列为:Eξ=0×+1×+2×+3×+4×=.【点评】本题主要考查n次独立重复实验中恰好发生k次的概率,等可能事件的概率,体现了分类讨论的数学思想,属于中档题.22.【答案】【解析】解:解:集合A={x|x2﹣3x+2=0}={1,2}∵B⊆A,∴(1)B=∅时,a=0 (2)当B={1}时,a=2 (3))当B={2}时,a=1故a 值为:2或1或0.23.【答案】(1)证明见解析;(2)证明见解析. 【解析】1111]试题解析:解:(1)∵PA 是切线,AB 是弦,∴C BAP ∠=∠,CPE APD ∠=∠, ∴CPE C APD BAP ∠+∠=∠+∠,∵CPE C AED APD BAP ADE ∠+∠=∠∠+∠=∠, ∴AED ADE ∠=∠,即ADE ∆是等腰三角形又点H 是线段ED 的中点,∴ AH 是线段ED 垂直平分线,即ED AH ⊥又由CPE APE ∠=∠可知PH 是线段AF 的垂直平分线,∴AF 与ED 互相垂直且平分, ∴四边形AEFD 是正方形,则D F E A 、、、四点共圆. (5分) (2由割线定理得PC PB PA ⋅=2,由(1)知PH 是线段AF 的垂直平分线,∴PF PA =,从而PC PB PF ⋅=2(10分)考点:与圆有关的比例线段.24.【答案】(1)1x =-(2)①()1,-+∞,②6【解析】试题解析:(1)由题意,131331x xx +-+=+,化简得()2332310x x ⋅+⋅-= 解得()13133x x=-=舍或,所以1x =-(2)因为()f x 是奇函数,所以()()0f x f x -+=,所以1133033x x x x a ab b-++-+-++=++ 化简并变形得:()()333260x xa b ab --++-=要使上式对任意的x 成立,则30260a b ab -=-=且 解得:11{{ 33a a b b ==-==-或,因为()f x 的定义域是R ,所以1{ 3a b =-=-舍去 所以1,3a b ==,所以()13133x x f x +-+=+①()131********x x x f x +-+⎛⎫==-+ ⎪++⎝⎭对任意1212,,x x R x x ∈<有:()()()()211212121222333313133131x x x x x x f x f x ⎛⎫-⎛⎫⎪-=-= ⎪ ⎪++++⎝⎭⎝⎭因为12x x <,所以21330x x->,所以()()12f x f x >,因此()f x 在R 上递减.因为()()2222f t t f t k -<-,所以2222t t t k ->-,即220t t k +-<在时有解所以440t ∆=+>,解得:1t >-,所以的取值范围为()1,-+∞②因为()()()12333x xf xg x -⎡⎤⋅+=-⎣⎦,所以()()3323x x g x f x --=-即()33xxg x -=+所以()()222233332x x x xg x --=+=+-不等式()()211g x m g x ≥⋅-恒成立, 即()()23323311x xx x m --+-≥⋅+-,即:93333x xx xm --≤+++恒成立令33,2x x t t -=+≥,则9m t t≤+在2t ≥时恒成立令()9h t t t =+,()29'1h t t=-,()2,3t ∈时,()'0h t <,所以()h t 在()2,3上单调递减()3,t ∈+∞时,()'0h t >,所以()h t 在()3,+∞上单调递增所以()()min 36h t h ==,所以6m ≤ 所以,实数m 的最大值为6考点:利用函数性质解不等式,不等式恒成立问题【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题。
山东省新泰市第一中学2015-2016学年高二数学12月月考试题 理

新泰一中2014级高二上学期第二次大单元测试数学试题(理倾)2015年12月注意事项:1、 本试卷分选择题和非选择题两部分,满分150分,时间120分钟.2、 答题前,考生务必将密封线内的项目填写清楚.答选择题前先将自己的姓名、考号、考试科目用2B 铅笔涂写在答题卡上.3、 选择题的每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.4、 非选择题要写在答题纸对应的区域内,超出部分无效,严禁在试题或草稿纸上答题.第Ⅰ卷(选择题,共50分)一、选择题:(本大题共12小题,每小题5分,共60分.在每题给出的四个选项中,只有一个是符合题目要求的.)1.在ABC ∆中,4a b B π===,则A 等于( )A .6π B .3π C .6π或56π D .3π或23π2.准线方程为2x =的抛物线的标准方程是( )A.24y x =-B. 28y x =-C. 24y x =D. 28y x = 3.设:11p x x <->或; :21q x x <->或,则p q ⌝⌝是的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件 4.设4321,,,a a a a 成等比数列,其公比为2,则432122a a a a ++的值为( )A .41 B .21 C .81D .1 5. 若110,a b <<,则下列不等式(1)a b ab +<,(2)a b >,(3)a b <,(4)2b a a b+>中,正确的个数为 ( )A .1个B .2个C .3个D .4个6.在R 上定义运算a c ad bc b d =-,若32012x x x <-成立,则x 的取值范围是( ) A .(4,1)-B .(1,4)-C .(,4)(1,)-∞-+∞D .(,1)(4,)-∞-+∞7. 如图,111ABC A B C -是直三棱柱,90BCA ∠=o,点11,D F 分别是1111A B A C 、的中点,若1BC CA CC ==,则11BD AF 与所成角的余弦值是( )A .1530B .21C .1030D .10158. 如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点,若=,=,AA =1则下列向量中与BM 相等的向量是 ( )A. c b a ++-2121 B .++2121C .c b a +--2121 D .c b a +-2121 9. 已知点M 是抛物线24y x =上的一点,F 为抛物线的焦点,点A 在圆22:(4)(1)1C x y -+-=上,则MA MF +的最小值为( )A. 2B. 3C. 4D. 5 10. 如图F 1,F 2分别是椭圆22221(0,0)x y a b a b +=>>的两个焦点,A 和B 是以O 为圆心,以1OF 为半径的圆与该左半椭圆的两个交点,且2F AB ∆是等边三角形,则椭圆的离心率为( )A2 B .12C21第Ⅱ卷(共90分)二、填空题: (本大题5小题,每小题5分,共25分)11.与曲线1492422=+y x 共焦点,与曲线1643622=-y x 共渐近线的双曲线方程为 12. 在△ABC 中,若三边长分别为8,3,7===c b a ,则△ABC 面积等于C1313. 设,x y 满足约束条件36020,0,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩若z=31y x -+,则实数z 的取值范围为___ _____14.若直线)0,0(022>>=-+b a by ax 始终过圆082422=---+y x y x 的圆心, 则ba 11+的最小值是 15. 下列四个命题中①命题“若23404x x x --==,则”的逆否命题为“若24,340x x x ≠--≠则” ②“4x =”是“2340x x --=”的充分条件③命题“若200m x x m >+-=,则方程有实根”的逆命题为真命题④命题“若2200=0m n m n +==,则且”的否命题是“若220.m n +≠则0m ≠且0n ≠” ⑤对空间任意一点O ,若满足311488OP OA OB OC =++,则,,,P A B C 四点一定共面. 其中真命题的为 (将你认为是真命题的序号都填上)三、解答题:(本大题共6题,满分75分.解答须写出文字说明、证明过程和演算步骤) 16.(本题12分)已知函数a ax x x f +-=2)(.设:p 方程0)(=x f 有实数根;:q 函数)(x f 在区间]2,1[上是增函数.若p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围. 17.(本题12分)cb a C B A ABC ,,,,,的对分别为角中∆,且b Ac C a 3)c o s 1()c o s 1(=+++.(1)求证:c b a ,,成等差数列; (2)求B cos 的最小值.18.(本题12分)如图,PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC=2,又AC =1,∠ACB =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60°. (1)求证:平面PAC ⊥平面ABC ; (2)求二面角B AC M --的大小; (3)求三棱锥MAC P -的体积.19.(本题12分)已知{}n a 是等比数列,公比1q >,前n 项和为3427,,4,2n S S a a ==且211{}:,log n n n b b n a +=+数列满足(1)求数列{},{}n n a b 的通项公式; (2)设数列1{}n n b b +的前n 项和为n T ,求证11(*).32n T n N ≤<∈20.(本题13分)某家公司每月生产两种布料A 和B ,所有原料是三种不同颜色的羊毛,下.的利润?最大的利润是多少?21.(本题14分)已知21F ,F 是椭圆22221(0)x y a b a b+=>>的两个焦点,O 为坐标原点,点)22,1(-P 在椭圆上,且0211=⋅F F PF ,⊙O 是以21F F 为直径的圆,直线l :m kx y +=与⊙O 相切,并且与椭圆交于不同的两点.,B A(I )求椭圆的标准方程; (II )当λ=⋅OB OA ,且满足4332≤≤λ时,求弦长|AB|的取值范围.5新泰一中2014级高二上学期第二次大单元检测 数学试题(理倾)(参考答案)一、选择题:1—5:DBBAB 6—10:ACACD二、填空题:11.191622=-x y 11. 36 13. 33,5⎡⎤-⎢⎥⎣⎦14. 4 15. ① ② ⑤三、解答题: 16.……………………2分 ……………………4分……………………7分 ……………………10分 ……………………12分17.解:(1)证明:由正弦定理得sinA(1+cosC)+sinC(1+cosA)=3sinB ⇒sinA +sinC +sinAcosC +cosAsinC =3sinB ⇒sinA +sinC +sin(A +C)=3sinB ⇒sinA +sinC =2sinB.由正弦定理知a +c =2b ,所以a ,b ,c 成等差数列. …………………………6分(2)cos B =a 2+c 2-b22ac=a 2+c 2-a +c222ac=3a 2+3c 2-2ac 8ac =38·a 2+c 2ac -14≥34-14=12, 所以当a =c 时,(cos B )min =12. …………………………12分18.解: (1)∵,,PC AB PC BC AB BC B ⊥⊥=∴PC ABC ⊥平面, 又∵PC PAC ⊂平面∴ PAC ABC ⊥平面平面 ………………3分(2)在平面ABC 内,过C 作CD CB ⊥,建立空间直角坐标系C xyz -(如图)由题意有1,02A ⎫-⎪⎪⎝⎭,设()()000,0,0P z z >, 则()()000310,1,,,,,0,0,2M z AM z CP z ⎛⎫=-= ⎪⎪⎝⎭由直线AM 与直线PC 所成的解为060,得0cos 60AM CP AM CP ⋅=⋅⋅,即200z z =,解得01z =∴()310,0,1,,02CM CA ⎛⎫==- ⎪⎪⎝⎭,设平面MAC 的一个法向量为{}111,,n x y z =,则11110102y z y z +=⎧-=,取11x =,得{1,3,n = 平面ABC 的法向量取为()0,0,1m =设m 与n 所成的角为θ,则3cos 7mn m nθ⋅-==⋅显然,二面角M AC B --的平面角为锐角, 故二面角M AC B --的平面角大小为………………9分(3)由(Ⅱ)知,PCMN 为正方形∴011sin1203212P MAC A PCM A MNC M ACN V V V V AC CN MN ----====⨯⋅⋅⋅=……12分19.解: ----------------4分-----------------------------------------5分-----------------------6分(2)设 ------8分7= ----------------------------10分因为 ,所以----------12分20.解:设每月生产布料A 、B 分别为x 匹、y 匹,利润为Z 元,那么441400,631800,261800,0,0.x y x y x y x y +≤⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩ ① 目标函数为 12080z x y =+ ………4分作出二元一次不等式①所表示的平面区域(阴影部分)即可行域………8分把120z =32-,在轴上的截距为180z ,随z变化的一族平行直线。
高二数学第一次月考试题

高二数学第一次月考试题高二数学第一次月考试题第一部分:选择题(每小题5分,共计50分)1.设函数f(x) = 2x + 3,g(x) = x^2 - 4x + 1,则f(g(2))的值为() A.-3 B. 3 C. 7 D. 112.已知函数f(x) = x^2 - 2x - 3,则方程f(x) = 0的根为() A. 1和-3B. 3和-1C. 1和3D. -1和33.若两个正整数x和y满足x^2 - y^2 = 48,则x - y的值为() A. 4 B.6 C. 8 D. 124.已知函数f(x) = 2x + 5,g(x) = 3x - 1,则f(g(x))的值为() A. 6x+ 14 B. 6x - 4 C. 6x + 4 D. 6x - 145.若函数f(x) = x^2 + kx + 8与函数g(x) = 2x^2 - 3x - 4相等,则k的值为() A. -4 B. -2 C. 2 D. 46.若两个正整数x和y满足x + y = 7,x - y = 3,则x的值为() A. 5B. 4C. 3D. 27.已知函数f(x) = x^2 - 2x - 3,g(x) = x + 1,则f(g(2))的值为() A.6 B. 3 C. 0 D. -38.若函数f(x) = x^2 - 5x + 6与函数g(x) = x - 2相等,则x的值为()A. 6B. 4C. 2D. 19.若两个正整数x和y满足x^2 + y^2 = 34,x - y = 2,则x + y的值为() A. 8 B. 9 C. 10 D. 1110.设函数f(x) = 2x + 3,g(x) = x^2 - 2x + 1,则f(g(1))的值为() A.-1 B. 1 C. 3 D. 5第二部分:填空题(每小题5分,共计50分)1.函数f(x) = x^2 - 4x - 3的图像开口向上,顶点的坐标为()。
新泰一中北校高二上学期第一次阶段性考试-数学试题

四、解答题:本大题共 6 个小题,共 70 分.解答应写出文字说明、证明过程或演算 步骤
17.(本题满分 10 分)如图在平行六面体 ABCD A1B1C1D1 中,以顶点 A 为端点的三
条棱长都是1,且它们彼此的夹角都是 60 , M 为 A1C1 与 B1D1 的交点.若 AB a , AD b , AA1 c ,
方程为_________.
15.已知圆 C : x2 2x y2 4 y 0, AB 是圆 C 上的一条动直径,点 P 是直线 x y 8
上的动点,则 PA PB 的最小值是____.
试卷第 3页,总 6 页
16.如图,四棱锥 P ABCD 中, ABCD 是矩形,PA 平面 ABCD ,PA AB 1, BC 2 ,四棱锥外接球的球心为 O ,点 E 是棱 AD 上的一个动点.给出如下命题:① 直线 PB 与直线 CE 所成的角中最小的角为 45 ;② BE 与 PC 一定不垂直;③三棱锥 E BCO 的体积为定值;④ CE PE 的最小值为 2 2 .其中正确命题的序号是
动点,则下列结论正确结论的是( )
A. DB1 面 ACD1
B.面 A1C1B // 面 ACD1
试卷第 2页,总 6 页
C.点 F 到面 ACD1 的距离为定值 3 3
D.直线 AE 与面 BB1D1D 所成角的正弦
1
值为定值
3
11.瑞士数学家欧拉(LeonhardEuler)1765 年在其所著的《三角形的几何学》一书中
试卷第 5页,总 6 页
22.(本题满分 12 分)如图,在三棱柱 ABC A1B1C1 中, AA1 平面 ABC, AA1 AC BC 2 , ACB 90 , D, E 分别是 A1B1, CC1 的中点
新泰市高中2019-2020学年高二上学期第一次月考试卷数学

新泰市高中2019-2020学年高二上学期第一次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知函数f(x)=Asin(ωx+φ)(a>0,ω>0,|φ|<)的部分图象如图所示,则f(x)的解析式是()A.f(x)=sin(3x+)B.f(x)=sin(2x+)C.f(x)=sin(x+)D.f(x)=sin(2x+)2.函数的最小正周期不大于2,则正整数k的最小值应该是()A.10 B.11 C.12 D.133.在△ABC中,若A=2B,则a等于()A.2bsinA B.2bcosA C.2bsinB D.2bcosB4.已知点M的球坐标为(1,,),则它的直角坐标为()A.(1,,)B.(,,)C.(,,)D.(,,)5.设集合M={(x,y)|x2+y2=1,x∈R,y∈R},N={(x,y)|x2﹣y=0,x∈R,y∈R},则集合M∩N中元素的个数为()A.1 B.2 C.3 D.46.在极坐标系中,圆的圆心的极坐标系是( )。
ABCD7.设变量x,y满足约束条件,则目标函数z=4x+2y的最大值为()A.12 B.10 C.8 D.28.下列命题正确的是()A .已知实数,a b ,则“a b >”是“22a b >”的必要不充分条件B .“存在0x R ∈,使得2010x -<”的否定是“对任意x R ∈,均有210x ->”C .函数131()()2xf x x =-的零点在区间11(,)32内D .设,m n 是两条直线,,αβ是空间中两个平面,若,m n αβ⊂⊂,m n ⊥则αβ⊥9. (理)已知tan α=2,则=( )A .B .C .D .10.下列命题中错误的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形11.若直线L :047)1()12(=--+++m y m x m 圆C :25)2()1(22=-+-y x 交于B A ,两点,则弦长||AB 的最小值为( )A .58B .54C .52D .5 12.设i 是虚数单位,则复数21ii-在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限二、填空题13.设抛物线24y x =的焦点为F ,,A B 两点在抛物线上,且A ,B ,F 三点共线,过AB 的中点M 作y 轴的垂线与抛物线在第一象限内交于点P ,若32PF =,则M 点的横坐标为 . 14.长方体ABCD ﹣A 1B 1C 1D 1的棱AB=AD=4cm ,AA 1=2cm ,则点A 1到平面AB 1D 1的距离等于 cm .15.设x ,y 满足的约束条件,则z=x+2y 的最大值为 .16.已知()f x 是定义在R 上函数,()f x '是()f x 的导数,给出结论如下: ①若()()0f x f x '+>,且(0)1f =,则不等式()xf x e -<的解集为(0,)+∞;②若()()0f x f x '->,则(2015)(2014)f ef >; ③若()2()0xf x f x '+>,则1(2)4(2),n n f f n N +*<∈;④若()()0f x f x x'+>,且(0)f e =,则函数()xf x 有极小值0; ⑤若()()xe xf x f x x'+=,且(1)f e =,则函数()f x 在(0,)+∞上递增.其中所有正确结论的序号是 .17.【泰州中学2018届高三10月月考】设二次函数()2f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',对任意x R ∈,不等式()()f x f x ≥'恒成立,则222b ac +的最大值为__________.18.设全集______.三、解答题19.(本小题满分12分)已知在ABC ∆中,角C B A ,,所对的边分别为,,,c b a 且)3(s i n))(sin (sin c b C a b B A -=-+. (Ⅰ)求角A 的大小;(Ⅱ) 若2a =,ABC ∆,求c b ,.20.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为1()16t ay -=(a 为常数),如图所示.据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室。
山东省新泰市第一中学老校区新泰中学2021届高三数学上学期第一次月考试题含解析.docx

山东省新泰市第一中学老校区(新泰中学)2021届高三数学上学期第一次月考试题(含解析)一、单项选择题:1.已知集合A={X|X2-2X-3>0),集合B=(xeZ|x2 <4%},贝iJ(^A)nB=( )A. {x|0<x<3}B. { - 1, 0, 1, 2, 3}C. (0, 1, 2, 3}D. (1, 2)【答案】C【解析】【分析】首先解一元二次不等式,根据代表元所满足的条件,求得集合A和集合B,之后利用补集和交集的定义求得结果.【详解】集合人=同己2x-3>O} ={x\x>3^x<-l},B = {xeZ|x2<4x} = (4,3,2,l,0}^A = (x|-l<x<3),故(4A)c3 = {O,l,2,3}故选:C.【点睛】该题考查的是有关集合的问题,涉及到的知识点有解一元二次不等式求集合,集合的补集和交集的运算,属于简单题目.3/r2.设a = 2°5,b = log4 3 , c = cos一,则( )4A. c> a> bB. b> a> cC. a>b>cD.a>c>b【答案】C【解析】【分析】根据指数函数的单调性、对数函数的单调性以及特殊角的余弦函数值即可判断.【详解】口= 2爵>2°=1,由0 = log41 <log43<log44 = 1,即0</?<1,C— COS —---- ,旧斤以a > b > c.4 2故选:C【点睛】本题考查了利用指数函数、对数函数的单调性比较式子的大小,属于基础题.3.在△ABC 中,角4, B,。
的对边分别为a, b, c.若tzcos A—Z?cos3 = 0,则左ABC~ 定是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰或直角三角形【答案】D【解析】【分析】根据正弦定理得到sin 2A = sin IB,计算得到答案.【详解】acos A-bcosB- 0,则sin AcosA-sinBcosB = 0 ,即sin2A = sin2B.. 71故A = B或2 A+2B = ,即A + B =一.2故选:D.【点睛】本题考查了根据正弦定理判断三角形形状,意在考查学生的应用能力.__ . 1 _ ______________________ . __ . 2 _ .4.如图,在AABC中,AN = -NC, P是BN上的一点,^AP = mAB + — AC,则实数【答案】C【解析】【分析】平面内三点A,B,C共线的充要条件为:存在实数景,使OC = AOA + ^iVB,且人+ 〃 = 1.——8 —求得AP = mAB + — AN,从而可得结果.__ . 1 ___ .【详解】由AN = -NC,可得AC = ^AN ,_ _ 2 ____ _____ Q ___所以 AP = mAB + — AC = mAB + — AN f 11 11 Q 又B,P,N 三点共线,由三点共线定理,可得:m + —= 1,3 m =—, 11故选C.【点睛】本题主要考查平面向量共线定理的应用,意在考查灵活应用所学知识解答问题的能 力,属于基础题.JT5.将函数/(x)=sin 4x + cos 4x 的图像向左平移一个单位长度后,得到g(x)的图像,若函 8数y = g(©x)在[—,一]上单调递减’则正数s 的最大值为 12 41 32 A. — B. 1 C. — D.— 2 2 3【答案】A【解析】【分析】先化简f(x)的表达式,平移后得到g(x)的解析式,再求出g (必)的解析式,然后利用 g(cox)的单调减区间列不等式组,求得刃的取值范围,进而求得正数C 的最大值.移兰个单位长度得到- + -COS 4|x + —j =- + -cos|4x + —j = ---sin4x .故 8 4 4 I 8j 4 4 I 2j 4 43 1 jr jr—sin (4^x),下面求函数的减区间:由一—+ 2k7i < 4cox -~ + ,由于刃>0故上式可化为~~8+T<x ,由于函数g(g)在-自三 上单调递减,故CO CD 一-【详解】依题意,C ;s2[+[i + c ;s2,= i + c ;22x 3 + cos4x 向左平兀kn ---- 1 -- 8 2 <_A刃 一 127i kit —+ 8 2尸 co 4解得 3 ” co < ——6K 2 1 ci CD —F 2k 2 ,所以当k = 0时,刃=上为正数刃的最大值.故选A. 2【点睛】本小题主要考查三角函数降次公式,考查三角函数图像变化的知识,考查三角函数的单调区间的求法,综合性较强,需要较强的运算能力.sin4x+cos4%是不能够直接合并起来的,需要通过运用降次公式两次,才能化简为>^位(仙:+9)+ 3的形式.求解三角函数单调区间时,要注意A是正数还是负数.6.函数/(%)=A 7sin ^在[一上的图象大致为()e+e【答案】A【解析】【分析】[0,万]时,g(x)>g(o),即x — sin x > 0 ,从而当构造函数g(x) = x — sinx ,证明当xcxe[0,勿]时,/(%)>0,排除B, C,D,即可得解.【详解】记g(x) = x—sinx, xe[-TT,7i\,g'(x) =1 - cosxZO,g(x)在[—上单调递增,又g(0)= 0,.•.当xe[0,7T]时,g(x)2g(O),即x-sinx>o, 又e x + e~x >0^.•.当 xe[Q,?v]时,/(x)>0,故排除B, C, D.故选:A.【点睛】本题考查了函数图象的判断以及利用导数证明不等式,考查了转化能力,属于中档 题.7.已知a , b 为正实数,直线y = x-a 与曲线y = \n(x + b)相切,则~ -的最小值是() a bA. 2B. 4A /2C. 4D. 2^2 【答案】C【解析】【分析】求函数的导数,由已知切线的方程,可得切线的斜率,求得切线的坐标,可得a+b = l,再 由乘1法和基本不等式,即可得到所求最小值.【详解】解:y = ln(x+b)的导数为_/ =里3,x + b由切线的方程y = x-a 可得切线的斜率为1,可得切点的横坐标为1—b,所以切点为(1-5,0), "RA y = x —a ,得。
山东省新泰市第一中学老校区(新泰中学)2020-2021学年高一上学期第一次月考数学试题含解析

A. a b 有最小值 2 2 2
B. a b 有最大值 2 2 2
C. ab 有最大值1 2
D. ab 有最小值 3 2 2
【答案】AD 【解析】
【分析】
先利用
ab
1
a
b
a
2
b
2
可求出
a
b
有最小值
2
2
2 ,再 ab
1=a
b
2 ab 可
得 ab 有最小值 3 2 2 .
【详解】由
注:资料封面,下载即可删除
新泰中学 2020 级高一上学期第一次阶段性考试数学试题
第 I 卷(选择题 共 60 分) 一、选择题(本题包括 8 小题,每小题 5 分,共 40 分,每小题只有一个选项符合 题意)
1. 下列关系式中,正确的是( )
A. {0}
B. 0 {0}
C. 0 {0}
D. 0 {0}
【答案】C 【解析】 【分析】 根据元素与集合的关系、集合与集合的关系即可作出判断.
【详解】对于 A, {0} ,故错误;
对于 B, 0 {0} ,故错误;
显然 C 正确,D 错误. 故选 C 【点睛】本题主要考查元素与集合的关系、集合与集合的关系,属于基础题.
2. 已知集合 A 0,1, 2, B 1, m.若 A B B ,则实数 m 的值是( )
故答案为:4.
【点睛】本题考查分段函数的函数值的计算,属于基础题.
15.
函数
f (x)
x2 的值域为 x2 1
.
【答案】 0,1
【解析】 【分析】 分离常数后可求函数的值域.
【详解】因为
f
(x)
x2 ,所以 x2 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省新泰市第一中学老校区(新泰中学)2020—2021学年高二数学上学期第一次月考试题考试时间:120分钟 满分150分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题.(共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知向量()()1,1,01,0,2a b ==-,且2ka b a b +-与互相垂直,则k 的值是( )A .75B .2C .53D .12.{},,a b c 为空间向量的一组基底,则下列各项中,能构成空间向量的基底的一组向量是A .{},,a a b a b +-B .{},,b a b a b +-C .{},,c a b a b +-D .{},,2a b a b a b +-+ 3.在空间直角坐标系O xyz -中,记点()1,2,3A 在xOz 平面内的正投影为点B ,则OB =( ) AB C D4。
已知m 是实常数,若方程x 2+y 2+2x +4y +m =0表示的曲线是圆,则m 的取值范围为( ) A .(﹣∞,20) B .(﹣∞,5) C .(5,+∞)D .(20,+∞)5.已知点P (-1,1)与点Q (3,5)关于直线l 对称,则直线l 的方程为( )A .x -y +1=0B .x -y =0C .x +y -4=0D .x +y =06、已知直线()1:21230l x a y a +-+-=,22:340l ax y a +++=,则“32a =”是“12l l //"的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7、直线2xcos α-y -3=0错误!的倾斜角的变化范围是( ) A 。
错误! B 。
错误!C.错误!D 。
错误!8.在如图3的正方体ABCD ﹣A 'B ’C ’D '中,AB =3,点M 是侧面BCC ’B ’内的动点,满足AM ⊥BD ',设AM 与平面BCC ’B '所成角为θ,则tanθ的最大值为( )A .B .B .C .D .二、多选题(共4小题,每小题5分,共20分,在每小题给出的四个选项中,至少有一个选项是符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的不得分) 9.下面四个结论正确的是A .向量(),0,0a b a b ≠≠,若a b ⊥,则0a b ⋅=B .若空间四个点P,A ,B ,C ,1344PC PA PB =+,则A ,B ,C 三点共线C .已知向量()1,1,a x =,()3,,9b x =-,若310x <,则,a b为钝角D .任意向量a ,b ,c 满足()()a b c a b c ⋅⋅=⋅⋅ 10.已知直线l :2(1)10a a x y ++-+=,其中a R ∈,下列说法正确的是( )A .当a =-1时,直线l 与直线x +y =0垂直B .若直线l 与直线x -y =0平行,则a =0C.直线l过定点(0,1)D.当a=0时,直线l在两坐标轴上的截距相等11。
下面说法中错误的是()A.经过定点P(x0,y0)的直线都可以用方程y﹣y0=k(x﹣x0)表示B.经过定点A(0,b)的直线都可以用方程y=kx+b表示C.不经过原点的直线都可以用方程表示D.经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y﹣y1)(x2﹣x1)=(x﹣x1)(y2﹣y1)表示12、如图,正方体1111-的棱长为1,E是1ABCD A B C DDD的中点,则A.直线1//⊥B C BDB C平面1A BD B.11C.三棱锥11-的体积为1C B CE3D.异面直线1B C与BD所成的角为60︒第II卷(非选择题)三、填空题(本题共4小题,每小题5分,共20分)13、已知A(1,-2,11)、B(4,2,3)、C(x,y,15)三点共线,则xy=___________.14.已知圆C 的圆心在直线230x y --=上,且过点(2,3)A -,(2,5)B --,则圆C 的标准方程为____________15、已知一个等腰三角形ABC 的一个顶点是A(4,2),底边的一个端点B(3,5),底边另一个端点C 的轨迹方程是______________________________________________________. 16、已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点M ,N 分别是棱BC ,CC 1的中点,则二面角C ﹣AM ﹣N 的余弦值为 .若动点P 在正方形BCC 1B 1(包括边界)内运动,且PA 1∥平面AMN ,则线段PA 1的长度范围是 .四、解答题(共6小题,70分)17.已知空间三点 ()()()2,0,2,1,1,2,3,0,4A B C ---, 设,a AB b AC ==.(1)求a 和b 的夹角θ的余弦值; (2)若向量()(),2k ka b a b -+互相垂直,求k 的值.18.如图,已知M 、N 分别为四面体ABCD 的面BCD 与面ACD 的重心,且G 为AM 上一点,且:1:3GM GA =,设AB a =,AC b =,AD c =,试用a ,b ,c表示BG ,BN .19、求过点(2,3)P ,且满足下列条件的直线方程: (1)倾斜角等于直线340x +=的倾斜角的二倍的直线方程;(2)在两坐标轴上截距相等的直线方程.20.已知ABC ∆的顶点(2,8)C -,直线AB 的方程为211y x =-+,AC 边上的高BH所在直线的方程为320x y ++=.(1)求顶点A 和B 的坐标;(2)求ABC ∆外接圆的一般方程.21.已知直线方程为()()221340m x m y m -++++=。
(1)证明:直线恒过定点;(2)m 为何值时,点()3,4Q 到直线的距离最大,最大值为多少? (3)若直线分别与x 轴,y 轴的负半轴交于,A B 两点,求AOB面积的最小值及此时直线的方程.22.如图所示的几何体P ABCDE -中,ABP △和AEP △均为以A 为直角顶点的等腰直角三角形,AB AE ⊥,//AB CE ,//AE CD ,24CD CE AB ===,M 为PD 的中点.(1)求证:CE PE ⊥;(2)求二面角M CE D --的大小;(3)设N 为线段PE 上的动点,使得平面//ABN 平面MCE ,求线段AN 的长.绝密★启用前新泰中学高二年级第一次阶段性数学检测试题答案1-5ACB B C 6-8CBB9AB 10.AC 11。
ABC 12、AB13、2 14 。
22(1)(2)10x y +++=15:)1553(10)2()4(22)两点,),(,去掉(-=-+-y x16、已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点M ,N 分别是棱BC ,CC 1的中点,则二面角C ﹣AM ﹣N 的余弦值为 .若动点P 在正方形BCC 1B 1(包括边界)内运动,且PA 1∥平面AMN ,则线段PA 1的长度范围是.五、解答题(共6小题,70分)17【答案】(1)10;(2)52k =-或218.【答案】BG 311444a b c =-++;BN 1133b c a =+-.19、【答案】(13330x y -+-=,(2)320x y -=或50x y +-=20.【答案】(1)(5,1)和(7,3)-;(2)2246120x y x y +-+-=..21.【解析】(1)直线方程为()()221340m x m y m -++++=, 可化为()()24230x y m x y +++-++=,对任意m 都成立,所以230240x y x y -++=⎧⎨++=⎩,解得12x y =-⎧⎨=-⎩,所以直线恒过定点()1,2--; (2)点()3,4Q 到直线的距离最大,可知点Q 与定点()1,2P --的连线的距离就是所求最大值,=423312PQ k +==+, ()()221340m x m y m -++++=的斜率为23-,可得22321m m --=-+,解得47=m 。
(3)若直线分别与x 轴,y 轴的负半轴交于,A B 两点,直线方程为()21y k x +=+,k 0<,则21,0A k ⎛⎫- ⎪⎝⎭,()0,2B k -,()121221212224222AOB k S k k k k k -⎛⎫⎛⎫=--=--=++≥+ ⎪ ⎪-⎝⎭⎝⎭△,当且仅当2k =-时取等号,面积的最小值为4。
此时直线的方程240x y ++=. 22.【解析】依题意得,ABP △和AEP △均为以A 为直角顶点的等腰直角三角形,则PA AB ⊥,PA AE ⊥,所以PA ⊥面ABCDE , 又AB AE ⊥,可以建立以A 为原点,分别以AB →,AE →,AP →的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得()0,0,0A ,()2,0,0B ,()4,2,0C ,()4,6,0D ,()0,2,0E ,()002P ,,,()2,3,1M ,(1)由题意,()4,0,0CE →=-,()0,2,2PE →=-, 因为0CE PE →→⋅=,所以CE PE ⊥.(2)()2,1,1ME →=---,()2,1,1MC →=--, 设(),,n x y z →=为平面MEC 的法向量,则0n ME n MC ⎧⋅=⎨⋅=⎩,即2020x y z x y z ---=⎧⎨--=⎩,不妨令1y =,可得()0,1,1n →=-,平面DEC 的一个法向量()0,0,2AP →=,因此有cos ,2n AP n AP n AP →→→→→→⋅==-,由图可得二面角M CE D --为锐二面角,所以二面角M CE D --的大小为45︒.(3)(方法一)设[]()0,1PN PE λλ→→=∈,(),,N x y z ,所以()(),,20,2,2x y z λ-=-,因此()0,2,22N λλ-,令AN n →→⊥,即0AN n →→⋅=, 解得12λ=,即N 为PE 的中点,因为//AB 平面MCE ,//AN 平面MCE ,AB AN A =,所以当N 为PE 的中点时,平面//ABN 平面MCE ,此时即()0,1,1N,AN →==所以线段AN.(方法二)设[]()0,1PN PE λλ→→=∈,(),,N x y z ,所以()(),,20,2,2x y z λ-=-,因此()0,2,22N λλ-,设(),,m x y z →=为平面ABN 的法向量,则00m AB m AN ⎧⋅=⎨⋅=⎩,即()402220x y z λλ=⎧⎨+-=⎩, 不妨令1y λ=-,可得()0,1,m λλ→=-,因为平面//ABN 平面MCE ,所以//m n →→,解得:12λ=,此时即()0,1,1N ,AN →== 所以线段AN.【点睛】本题考查利用空间向量法证明线线垂直,以及利用空间向量法求出二面角和线段长,还涉及空间中线面的判定定理和性质,考查运算求解能力以及化归与转化思想,是中档题。