函数的单调性练习题含答案

合集下载

函数的单调性与奇偶性-练习题-基础

函数的单调性与奇偶性-练习题-基础

1 函数单调性(一) (一)选择题 1.函数xx f 3)(=在下列区间上不是..减函数的是( ) A .(0,+∞) B .(-∞,0) C .(-∞,0)∪(0,+∞) D .(1,+∞) 2.下列函数中,在区间(1,+∞)上为增函数的是( ) A .y =-3x +1B .x y 2=C .y =x 2-4x +5D .y =|x -1|+23.设函数y =(2a -1)x 在R 上是减函数,则有 A .21≥a B .21≤a C .21>a D .21<a ~4.若函数f (x )在区间[1,3)上是增函数,在区间[3,5]上也是增函数,则函数f (x )在区间[1,5]上( )A .必是增函数B .不一定是增函数C .必是减函数D .是增函数或减函数 (二)填空题5.函数f (x )=2x 2-mx +3在[-2,+∞)上为增函数,在(-∞,-2)上为减函数,则m =______.6.若函数xax f =)(在(1,+∞)上为增函数,则实数a 的取值范围是______. 7.函数f (x )=1-|2-x |的单调递减区间是______,单调递增区间是______. 8.函数f (x )在(0,+∞)上为减函数,那么f (a 2-a +1)与)43(f 的大小关系是______。

*9.若函数f (x )=|x -a |+2在x ∈[0,+∞)上为增函数,则实数a 的取值范围是______. -(三)解答题10.函数f (x ),x ∈(a ,b )∪(b ,c )的图象如图所示,有三个同学对此函数的单调性作出如下的判断:甲说f (x )在定义域上是增函数;乙说f (x )在定义域上不是增函数,但有增区间, 丙说f (x )的增区间有两个,分别为(a ,b )和(b ,c ) 请你判断他们的说法是否正确,并说明理由。

;11.已知函数.21)(-=xx f (1)求f (x )的定义域;(2)证明函数f (x )在(0,+∞)上为减函数.12.已知函数||1)(x x f =. (1)用分段函数的形式写出f (x )的解析式;&(2)画出函数f (x )的图象,并根据图象写出函数f (x )的单调区间及单调性.2 函数单调性(二) (一)选择题1.一次函数f (x )的图象过点A (0,3)和B (4,1),则f (x )的单调性为( )(A .增函数B .减函数C .先减后增D .先增后减 2.已知函数y =f (x )在R 上是增函数,且f (2m +1)>f (3m -4),则m 的取值范围是( ) A .(-∞,5)B .(5,+∞)C .),53(+∞D .)53,(-∞3.函数f (x )在区间(-2,3)上是增函数,则下列一定是y =f (x )+5的递增区间的是( )A .(3,8)B .(-2,3)C .(-3,-2)D .(0,5) 4.已知函数f (x )在其定义域D 上是单调函数,其值域为M ,则下列说法中 ①若x 0∈D ,则有唯一的f (x 0)∈M ②若f (x 0)∈M ,则有唯一的x 0∈D !③对任意实数a ,至少存在一个x 0∈D ,使得f (x 0)=a ④对任意实数a ,至多存在一个x 0∈D ,使得f (x 0)=a 错误的个数是( ) A .1个 B .2个 C .3个 D .4个 (二)填空题 5.已知函数f (x )=3x +b 在区间[-1,2]上的函数值恒为正,则b 的取值范围是_____. 6.函数])2,1[(12∈-=x xx y 的值域是______. *7.已知函数f (x )的定义域为R ,且对任意两个不相等的实数x ,y ,都有0)()(<--yx y f x f 成立,则f (x )在R 上的单调性为________(填增函数或减函数或非单调函数). -8.若函数y =ax 和x by -=在区间(0,+∞)上都是减函数,则函数1+=x ab y 在(-∞,+∞)上的单调性是______(填增函数或减函数或非单调函数).9.若函数⎩⎨⎧<-≥+=)1(1)1(1)(2x ax x x x f 在R 上是单调递增函数,则a 的取值范围是______.(三)解答题10.某同学在求函数]4,1[,)(∈+=x x x x f 的值域时,计算出f (1)=2,f (4)=6,就直接得值域为[2,6].他的答案对吗,他这么做的理由是什么11.用max{a ,b }表示实数a ,b 中较大的一个,对于函数f (x )=2x ,xx g 1)(=,记F (x )=max{f (x ),g (x )},试画出函数F (x )的图象,并根据图象写出函数F (x )的单调区间.|*12.已知函数f (x )在其定义域内是单调函数,证明:方程f (x )=0至多有一个实数根.3 函数的奇偶性·(一)选择题1.下列函数中:①y =x 2(x ∈[-1,1]) ; ②y =|x |; ;1)(xx x f +=③ ④y =x 3(x ∈R ) 奇函数的个数是( ) A .1个 B .2个 C .3个 D .4个 2.对于定义域为R 的任意奇函数f (x )一定有( ) A .f (x )-f (-x )>0 B .f (x )-f (-x )≤0 C .f (x )·f (-x )<0 D .f (x )·f (-x )≤0¥3.函数⎩⎨⎧<+≥-=)0(1)0(1)(x x x x x fA .是奇函数不是偶函数B .是偶函数不是奇函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数 4.下面四个结论中,正确命题的个数是( ) ①偶函数的图象一定与y 轴相交 ②奇函数的图象一定通过原点 ③偶函数的图象关于y 轴对称④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R )。

高中数学中的函数单调性测试题

高中数学中的函数单调性测试题

高中数学中的函数单调性测试题在高中数学的学习中,函数的单调性是一个非常重要的概念。

它不仅在数学理论中有着广泛的应用,也是解决实际问题的有力工具。

为了帮助同学们更好地掌握这一知识点,下面为大家精心准备了一套函数单调性的测试题。

一、选择题1、函数\(f(x) = x^2 2x\)在区间\(0, 2\)上的单调性是()A 单调递增B 单调递减C 先增后减D 先减后增2、下列函数中,在区间\((\infty, 0)\)上单调递增的是()A \(f(x) = x\)B \(f(x) =\frac{1}{x}\)C \(f(x) =x^2\) D \(f(x) = x^2\)3、函数\(f(x) =\ln x\)的单调递增区间是()A \((\infty, 0)\)B \((0, +\infty)\)C \((-1, 1)\)D \((1, +\infty)\)4、已知函数\(f(x) = 2x^3 6x^2 + 7\),则函数\(f(x)\)在区间\(-1, 2\)上的单调性为()A 单调递增B 单调递减C 先增后减D 先减后增5、函数\(f(x) =\frac{x + 1}{x 1}\)的单调递减区间是()A \((\infty, 1)\)和\((1, +\infty)\)B \((\infty, 1)\)C \((1, +\infty)\)D \((\infty, -1)\)和\((-1,+\infty)\)二、填空题1、函数\(f(x) = 3 2x\)的单调递减区间为________。

2、函数\(f(x) = x +\frac{1}{x}\)的单调递增区间为________,单调递减区间为________。

3、若函数\(f(x) = x^2 2ax + 3\)在区间\(-1, 2\)上单调递增,则实数\(a\)的取值范围是________。

4、函数\(f(x) =\log_{05}(x^2 4x + 3)\)的单调递减区间是________。

(word完整版)高中数学函数的单调性练习题及其答案

(word完整版)高中数学函数的单调性练习题及其答案

函数的单调性一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212aa-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。

高中数学 分段函数的单调性-含解析

高中数学 分段函数的单调性-含解析

高I 练习案 分段函数的单调性分段函数的单调性,确保两段单调的基础上,分隔点处要保证单调的连续性。

例1:设函数f (x )=⎩⎪⎨⎪⎧ x 2+1x ,x ≥1,ax ,x <1是单调函数.则a 的取值范围是________;若f (x )的值域是R ,则a =________.变式1:已知函数f (x )=⎩⎪⎨⎪⎧ (a -3)x +5,x ≤1,2a x,x >1是R 上的减函数,则实数a 的取值范围是________.变式2:已知函数f (x )=⎩⎪⎨⎪⎧ -x +3a ,x ≥0,x 2-ax +1,x <0是(-∞,+∞)上的减函数,则实数a 的取值范围是( )A .[0,13]B .(0,13) C .(0,13] D .[0,13) 例2:已知f (x )=⎩⎪⎨⎪⎧ a x x >1,⎝ ⎛⎭⎪⎫4-a 2x +2 x ≤1是R 上的增函数,则实数a 的取值范围为________.变式1:已知f (x )=⎩⎪⎨⎪⎧ 3a -1x +4a ,x <1,log a x ,x ≥1是(-∞,+∞)上的减函数,则实数a 的取值范围是( )A .(0,1)B.⎝ ⎛⎭⎪⎫0,13C.⎣⎢⎡⎭⎪⎫17,13D.⎣⎢⎡⎭⎪⎫17,1 变式2:已知函数f (x )=⎩⎪⎨⎪⎧ x 2+12a -2,x ≤1,a x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.高I 练习案 分段函数的单调性参考答案例1:答案 (0,2] 2解析 当x ≥1时,f (x )=x 2+1x =x +1x ,则f ′(x )=1-1x2≥0恒成立,∴f (x )在[1,+∞)上单调递增,∴f (x )min =f (1)=2,当x <1时,f (x )=ax ,由于f (x )是单调函数,∴f (x )=ax 在(-∞,1)上也单调递增,且ax ≤2恒成立, ∴⎩⎪⎨⎪⎧ a >0,a ≤2,故a 的取值范围为(0,2],∵当x ≥1时,f (x )≥2,由f (x )的值域是R ,可得当x =1时,ax =2,故a =2.变式1:0<a ≤2 解析 依题意得实数a 满足⎩⎪⎨⎪⎧ a -3<0,2a >0,(a -3)+5≥2a ,解得0<a ≤2.变式2:A 解析 当x <0时,函数f (x )=x 2-ax +1是减函数,解得a ≥0,当x ≥0时,函数f (x )=-x +3a 是减函数,分段点0处的值应满足1≥3a ,解得a ≤13,∴0≤a ≤13.例2:因为f (x )是R 上的增函数,所以可得⎩⎪⎨⎪⎧ a >1,4-a 2>0,a ≥4-a 2+2,解得4≤a <8.变式1:答案 C 解析 由f (x )是减函数,得⎩⎪⎨⎪⎧ 3a -1<0,0<a <1.3a -1×1+4a ≥log a 1,∴17≤a <13,∴实数a 的取值范围是⎣⎢⎡⎭⎪⎫17,13. 变式2:答案 (1,2]解析 由题意,得12+12a -2≤0,则a ≤2,又y =a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.。

函数的单调性练习题(含标准答案)

函数的单调性练习题(含标准答案)

函数的单调性练习题(含答案)————————————————————————————————作者:————————————————————————————————日期:2- - 3函数的单调性练习一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞- -4C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.- -520.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为 单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.- - 6参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则- -7f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27.- - 8(2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。

2022届高考数学 函数的单调性练习题(含答案)

2022届高考数学  函数的单调性练习题(含答案)

函数的单调性一、单选题1.函数()f x = )A .(,1]-∞B .[3,)+∞C .(,1]-∞-D .[1,)+∞2.已知2(2)ln f x xx -=-,则()f x 的单调增区间为( ) A .(2,)-+∞B .(2,0)-C .(0,)+∞D .(0,2)3.函数213()log (6)f x x x =--的单调递增区间是( ) A .1,2⎡⎫-+∞⎪⎢⎣⎭B .1,22⎡⎫-⎪⎢⎣⎭C .1,2⎛⎤-∞- ⎥⎝⎦D . 13,2⎛⎤--⎥⎝⎦4.已知()y f x =在区间I 上是严格增函数,且12,x x I ∈,则12x x <是()()12f x f x ≤( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件5.设函数()ln 31ln 31f x x x =++-,则()f x ( ) A .是偶函数,且在1,3⎛⎫-∞- ⎪⎝⎭单调递增B .是奇函数,且在11,33⎛⎫- ⎪⎝⎭单调递减C .是偶函数,且在1,3⎛+∞⎫ ⎪⎝⎭单调递增 D .是奇函数,且在1,3⎛⎫-∞- ⎪⎝⎭单调递减6.设函数()11xa f xb a -=+-(0a >,1a ≠),则函数()f x 的单调性( ) A .与a 有关,且与b 有关 B .与a 无关,且与b 有关C .与a 有关,且与b 无关D .与a 无关,且与b 无关7.定义在R 上的奇函数()f x 在[0,)+∞是减函数,且(2)1f -=,则满足1(2)1f x -≤-≤的x 的取值范围是( ) A .[-2,2]B .[-2,1]C .[1,3]-D .[0,4]8.若2222log log 41a a a b b b -+=-++,则( )A .2a b >B .2a b <C .21a b >+D .21b a >+9.已知()(0)1x x f x =>+,则()f x 的最小值是( )A .4B .5C .6D .810.已知函数()()22log 14f x x x =+≤≤,则函数()()22y f x f x =+⎡⎤⎣⎦的最大值为( ) A .6 B .13 C .22 D .3311.已知x ,y ∈R ,且x y >,则下列说法是正确的是( )A .11x y<B .--+<+x yy x e e e e C .11022x y⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭D .22x y >12.已知函数()f x 在R 上是减函数,且满足()()f x f x -=-,若31log 10a f ⎛⎫=- ⎪⎝⎭,()3log 9.1b f =,()0.82c f =,则a ,b ,c 的大小关系为( )A .a b c >>B .c b a >>C .b a c >>D .c a b >>13.已知函数f (x )=221,143,1x x x x x ⎧-+<⎨-+≥⎩,在(0,3)a -上单调递减,则实数a 的取值范围是( )A .[3,4]B .[3,5]C .(3,4]D .(]3,514.已知()cos2sin f x x a x =-在区间,62ππ⎛⎫⎪⎝⎭上是增函数,则实数a 的取值范围为( ) A .[2,)-+∞ B .(2,)-+∞C .(,4)-∞-D .(,4]-∞-二、填空题15.函数243y x x =-++,[]0,3x ∈的单调递增区间是_____.16.已知函数()f x 的定义域为R ,对任意实数,x y 满足:()()()12f x y f x f y +=++,且102f ⎛⎫=⎪⎝⎭,当12x >时,()0f x >.给出以下结论:①()102f =-;②()312f -=-;③()f x 为R 上的减函数;④()12f x +为奇函数;⑤()1f x +为偶函数.其中正确结论的序号是________.17.设()21,0f x x x =⎨--<⎩,0.50.7a -=,0.5log 0.7b =,0.7log 5c =,则比较()f a ,f b ,()f c 的大小关系_______.18.若函数()22()log 3f x x ax =++在区间(3,)+∞上单调递增,实数a 的取值范围是________. 三、解答题19.已知函数()21xf x x=+,[]1,1x ∈-. (1)用单调性的定义证明函数()y f x =在区间[]1,1-上是单调递增; (2)求关于x 的不等式()()1f x f x -<的解集.20.已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,比较()x f b 与()x f c 的大小关系21.已知()y f x =是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-+. (1)求0x <时,函数()f x 的解析式;(2)若函数()f x 在区间[1,2]a --上单调递增,求实数a 的取值范围. (3)解不等式()2f x x ≥+.22.定义在()0,∞+上的函数()f x 对于任意的*,x y R ∈,总有()()()f x f y f xy +=,且当1x >时,()0f x <且()1f e =-. (1)求()1f 的值;(2)判断函数在()0,∞+上的单调性,并证明;(3)求函数()f x 在21,e e ⎡⎤⎢⎥⎣⎦上的最大值与最小值.答案解析1.【解析】由题意,可得2230x x --≥,解得1x ≤-或3x ≥,所以函数()f x =(][),13,-∞-⋃+∞,二次函数223y x x =--的对称轴为1x =,且在(][),13,-∞-⋃+∞上的单调递增区间为[3,)+∞,根据复合函数的单调性,可知函数()f x =[3,)+∞.故选:B.2.【解析】因为对数函数ln y x =在()0,∞+上是增函数,反比例函数2y x=-在()0,∞+上也是增函数, 所以2ln y x x=-在定义域()0,∞+上单调递增; 又()f x 是由(2)f x -向左平移两个单位得到,所以()f x 的单调增区间为(2,)-+∞.故选:A. 3.【解析】由题意知()f x 的定义域为()3,2-.令26t x x =--+, 则函数t 在13,2⎛⎤-- ⎥⎝⎦上递增在1,22⎡⎫-⎪⎢⎣⎭上递减.又13log y =在其定义域上递减.故由复合函数的单调性知原函数的递增区间是1,22⎡⎫-⎪⎢⎣⎭,故选:B 4.【解析】由()y f x =在区间I 上是严格增函数, ∴12,x x I ∈,12x x <时,2121()()0f x f x x x ->-,∴21()()0f x f x ->,即21()()f x f x >,故12x x <是()()12f x f x ≤充分非必要条件.故选:A.5.【解析】由310310x x ⎧+>⎪⎨->⎪⎩得:13x ≠±,()f x ∴定义域为1111,,,3333⎛⎫⎛⎫⎛⎫-∞--+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 又()()ln 31ln 31ln 31ln 31f x x x x x f x -=-++--=-++=,()f x ∴为定义域内的偶函数,可排除BD ;当1,3x ⎛⎫∈-∞- ⎪⎝⎭时,()()()()2ln 31ln 31ln 91f x x x x =--+-+=-,291t x =-在1,3⎛⎫-∞- ⎪⎝⎭上单调递减,ln y t =单调递增,()f x ∴在1,3⎛⎫-∞- ⎪⎝⎭上单调递减,可排除A ;()f x 为偶函数且在1,3⎛⎫-∞- ⎪⎝⎭上单调递减,()f x ∴在1,3⎛+∞⎫⎪⎝⎭上单调递增,C 正确.故选:C.6.【解析】函数()11x a f x b a -=+-(0a >,1a ≠), 当01a <<时,()11xa f xb a -=+-单调递减. 当1a >时,()11xa f xb a -=+-单调递减. 则0a >且1a ≠,b R ∈,()11xa f xb a -=+-的单调性都为单调递减. 所以函数()11xa f xb a -=+-(0a >,1a ≠)的单调性与a b ,无关.故选:D 7.【解析】因为函数()f x 在R 上的奇函数,且(2)1f -=,所以()2(2)1f f =--=-, 又因为()f x 在[0,)+∞是减函数,所以()f x 在R 上是减函数,因为1(2)1f x -≤-≤, 所以()()21(2)12f f x f =-≤-≤=-,则222x -≤-≤,解得04x ≤≤,故选:D 8.【解析】根据题意,可知,0a >,0b >,∵22log 41b b b -++()22log 1(2)b b b =+-+()222log log 22(2)b b b b =+-++22log (2)2(2)b b b b -=++,∴222222log log (2)2(2)log (2)2(2)a a a b b b b b b b -+=-++>-+,令()()22()lo ,g 0f x x x xx =-∈++∞,即()()2f a f b >,∵211ln 2(2ln 2)()12ln 2ln 2x x f x x x x -⋅+⋅'=-+=⋅⋅, 令2()(2ln 2)ln 21g x x x =⋅-⋅+,∵0ln 21<<, ∴2(ln 2)8ln 2ln 2(ln 28)0∆=-=⋅-<,即对于任意的x ,恒有()0()0g x f x '>⇒>,∴()f x 在()0,∞+上单调递增, ∴2a b >.故选:A.9.【解析】令1,(0)t x x =+>,所以()1,1x t t =->;所以()236(0)1x x x x f x ++=>+转化为()()()231116t t y t t-+-+>=; 即()()()21316411y t t t t tt =++-+-+=>,又函数y 在()1,2上单调递减,在区间()2,+∞上单调递增, 所以当2t =时,y 取到最小值,最小值为5; 即当1x =时,()f x 取到最小值,最小值为5. 故选:B. 10.【解析】()22log f x x =+,22222[()]()(log )6log 6y f x f x x x ∴=+=++,14x ≤≤,∴21414x x ⎧⎨⎩, 22222[()]()(log )6log 6y f x f x x x ∴=+=++,的定义域是{}|12x x .令2log x t =,因为12x ,所以01t ,则上式变为266y t t =++,01t ,266y t t =++在[]0,1上是增函数,当1t =时,y 取最大值13,故选:B .11.【解析】A :当2x =,3y =-时,11x y>,∴A 错误, B :设x x y e e -=-,则函数为R 上的增函数,∵x y >,∴x x y y e e e e --->-,即y x y x e e e e --+>+,∴B 错误.C :∵12x y ⎛⎫= ⎪⎝⎭为R 上的减函数,x y >,∴1122x y ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即11022x y⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭,∴C 正确,D :当2x =,3y =-时,22x y <,∴D 错误. 故选:C .12.【解析】33331log log 10log 9.1log 9210-=>>=,0.822<, 即:0.8331log log 9.1210->>,又()f x 是定义在R 上的减函数, ()()0.8331log log 9.1210f f f ⎛⎫∴-<< ⎪⎝⎭又()f x 为奇函数,3311log log 1010f f⎛⎫⎛⎫∴-=- ⎪ ⎪⎝⎭⎝⎭,()()0.8331log log 9.1210f f f ⎛⎫∴-<< ⎪⎝⎭,即:c b a >>. 13.【解析】函数221,1()43,1x x f x x x x ⎧-+<=⎨-+≥⎩,画出函数()f x 的大致图象,如图所示:函数()f x 在(0,3)a -上单调递减,∴由图象可知:032a <-≤,解得:35a <≤, 故实数a 的取值范围是:(]3,5.故选:D.14.【解析】()cos2sin f x x a x =- =22sin 1x asinx --+, 令sinx t =,由,62x ππ⎛⎫∈⎪⎝⎭,可得1,12t ⎛⎫∈ ⎪⎝⎭,则: ()cos2sin f x x a x =-在区间,62ππ⎛⎫⎪⎝⎭上是增函数,等价于221y t at =--+在1,12⎛⎫⎪⎝⎭是增函数,只需对称轴:14a -≥,解得4a ≤-.故选:D.15.【解析】243y x x =-++的图象开口向下,又243y x x =-++的对称轴为42(1)2x =-=-⨯,()f x ∴的单调递增区间是[]0,2.16.【解析】由题意和,x y 的任意性,取0x y ==代入()()()12f x y f x f y +=++, 可得()()()01020=++f f f ,即1(0)2f =-,故①正确; 取12x =, 12y 代入可得()1110222⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭f f f ,即1110222⎛⎫-=+-+ ⎪⎝⎭f ,解得112⎛⎫-=- ⎪⎝⎭f ; 再令12x y ==-代入可得()111122232122⎛⎫⎛⎫=-+-+=-+=- ⎪ ⎪⎝⎭-⎝⎭f f f ,故②正确;令y x =-代入可得11(0)()()22-==+-+f f x f x ,即11()()022++-+=f x f x ,故1()2+f x 为奇函数,④正确;取1y =-代入可得()()()1112-=+-+f x f x f ,即()()()111102---=+=-<f x f x f ,即()()1f x f x -<,故()f x 为R 上减函数,③错误;⑤错误,因为11()1()22+=++f x f x ,由④可知1()()2=+g x f x 为奇函数,故11()()2()22-+--=-g x g x g x 不恒为0,故函数()1f x +不是偶函数.故答案为:①②④17.【解析】当0x ≥时,()11f x x =+≥,且()f x 在[)0,+∞上单调递增, 当0x <时,()211f x x =--<-,且()f x 在(),0-∞上单调递增,()f x ∴为R 上的增函数,又()()00.50.70.70.50.50.5log 5log 10log 1log 0.7log 0.510.70.7-<==<<==<,即c b a <<,()()()f a f b f c ∴>>18.【解析】设2log u x =,则其在区间(0,)+∞上单调递增; 设23v x ax =++,其开口向上,对称轴为直线2a x =-;在区间(,)2a-∞-上单调递减、在区间(,)2a-+∞上单调递增. 由复合函数的单调性知当内外层函数的单调性都为单调递增时,复合函数才单调递增. 所以要使函数()22()log 3f x x ax =++在区间(3,)+∞上单调递增,则需32a-≤, 同时还得保证其真数大于0,即令:2(3)3330v a =++≥,解得4a ≥-. 故答案为:[)4,-+∞.19.【解析】(1)令1211x x ,则()()()()()()()()22221221121212121222222212121211()()111111x x x x x x x x x x x x f x f x x x x x x x +-+-+--=-==++++++()()()()12122212111x x x x x x --=++,∵22121211,(1)(1)0x x x x -≤<≤++>,1210x x ->,∴12())0(f x f x -<,故函数()y f x =在区间[]1,1-上是单调递增; (2)由(1)结论,及()()1f x f x -<知:111111x xx x -<⎧⎪-≤-≤⎨⎪-≤≤⎩,解得112x <≤.因此,不等式()()1f x f x -<的解集为112x x ⎧⎫<≤⎨⎬⎩⎭.20.【解析】∵(1)(1)f x f x +=-,∴函数()f x 的对称轴是1x =.故2b =,又(0)3f =,∴3c =.∴函数()f x 在(]1-∞,上递减,在[)1+∞,上递增.若0x ≥,则321x x ≥≥, ∴(3)(2)x x f f ≥;若0x <,则321x x <<,∴(3)(2)x x f f >.综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥.21.【解析】(1)设0x <,则0x ->,所以22()()2()2f x x x x x -=--+-=--又()f x 为奇函数,所以()()f x f x =--, 所以当0x <时,2()2f x x x =+,(2)作出函数()f x 的图像,如图所示:要使()f x 在[1,2]a --上单调递增,结合()f x 的图象知2121a a ->-⎧⎨-≤⎩,所以13a <≤,所以a 的取值范围是(1,3].(3)由(1)知222,0()2,0x x x f x x x x ⎧-+≥=⎨+<⎩,解不等式()2f x x ≥+,等价于2022x x x x ≥⎧⎨-+≥+⎩或2022x x x x <⎧⎨+≥+⎩,解得:∅或2x -≤ 综上可知,不等式的解集为(],2-∞-22.【解析】(1)令1x y ==,()()()()11110f f f f +=⇒=. (2)()f x 在()0,∞+单调递减,设120x x >>,令1xy x =,2x x =,则12x y x =,所以1y >,()0f y <, 得()()()()211112220⎛⎫⎛⎫+=⇒-=< ⎪ ⎪⎝⎭⎝⎭f x f f x f x x x f x f x x , 即对任意()12,0,x x ∈+∞,若12x x >,则()()12f x f x <,()f x 在()0,∞+单调递减.(3)因为()1f e =-,令x y e ==,()()()22=+=-f e f e f e , 令x e =,1y e =,()()110⎛⎫=+= ⎪⎝⎭f f e f e ,11f e ⎛⎫= ⎪⎝⎭, 因为函数单调递减,所以()max 11⎛⎫== ⎪⎝⎭f x f e ,()()2min 2==-f x f e .。

函数的单调性(人教A版)(含答案)

函数的单调性(人教A版)(含答案)

函数的单调性(人教A版)一、单选题(共10道,每道10分)1.函数是上的增函数,且,则( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数单调性的性质2.函数的单调递减区间为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:复合函数的单调性3.函数的单调递增区间为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:复合函数的单调性4.函数的单调递减区间为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:复合函数的单调性5.函数在区间上有,则的递减区间是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:复合函数的单调性6.已知函数,且,则实数的取值范围是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:复合函数的单调性7.已知函数,在区间上有最小值,则函数在区间上一定( )A.是减函数B.是增函数C.有最小值D.有最大值答案:B解题思路:试题难度:三颗星知识点:函数单调性的判断与证明8.已知函数.若函数的最小值恒不大于a,则a的取值范围是( )A. B.或C. D.答案:A解题思路:试题难度:三颗星知识点:函数的最值9.函数的最大值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数的最值10.已知,函数满足对任意实数,都有成立,则的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:复合函数的单调性。

高中数学函数的单调性练习题及其答案

高中数学函数的单调性练习题及其答案

函数的单调性(一)一、选择题:1.在区间(0,+∞)上不是增函数的函数是 ( ) A .y=2x +1 B .y=3x2+1 C .y=x2D .y=2x2+x +1 2.函数f(x)=4x2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f(1)等于 ( ) A .-7 B .1 C .17 D .253.函数f(x)在区间(-2,3)上是增函数,则y=f(x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5)4.函数f(x)=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f(x)在区间[a ,b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a ,b]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根6.已知函数f(x)=8+2x -x2,如果g(x)=f( 2-x2 ),那么函数g(x) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f(x)是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f(x+1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f(x)在区间(-∞,5)上单调递减,对任意实数t ,都有f(5+t)=f(5-t),那么下列式子一定成立的是 ( ) A .f(-1)<f(9)<f(13) B .f(13)<f(9)<f(-1) C .f(9)<f(-1)<f(13) D .f(13)<f(-1)<f(9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥311.已知f(x)在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( )A .f(a)+f(b)≤-f(a)+f(b)]B .f(a)+f(b)≤f(-a)+f(-b)C .f(a)+f(b)≥-f(a)+f(b)]D .f(a)+f(b)≥f(-a)+f(-b)12.定义在R 上的函数y=f(x)在(-∞,2)上是增函数,且y=f(x +2)图象的对称轴是x=0,则( )A .f(-1)<f(3)B .f (0)>f(3)C .f (-1)=f (-3)D .f(2)<f(3) 二、填空题:13.函数y=(x -1)-2的减区间是____. 14.函数y=x -2x -1+2的值域为_____. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为.16、函数f(x) = ax2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__. 三、解答题:17.f(x)是定义在( 0,+∞)上的增函数,且f(yx) = f(x)-f(y) (1)求f(1)的值.(2)若f(6)= 1,解不等式 f( x +3 )-f(x1) <2 . 18.函数f(x)=-x3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论. 19.试讨论函数f(x)=21x -在区间[-1,1]上的单调性.20.设函数f(x)=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f(x)在0,+∞)上为单调函数.21.已知f(x)是定义在(-2,2)上的减函数,并且f(m -1)-f(1-2m)>0,求实数m 的取值范围.22.已知函数f(x)=xax x ++22,x ∈[1,+∞](1)当a=21时,求函数f(x)的最小值;(2)若对任意x ∈[1,+∞),f(x)>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞,⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f(1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f[x(x +3)]<f(36), 又f(x)在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f(x)在R 上具有单调性,且是单调减函数,证明如下:设x1、x2∈(-∞,+∞), x1<x2 ,则f(x1)=-x13+1, f(x2)=-x23+1.f(x1)-f(x2)=x23-x13=(x2-x1)(x12+x1x2+x22)=(x2-x1)[(x1+22x )2+43x22].∵x1<x2,∴x2-x1>0而(x1+22x )2+43x22>0,∴f(x1)>f(x2).∴函数f(x)=-x3+1在(-∞,+∞)上是减函数.19.解析: 设x1、x2∈-1,1]且x1<x2,即-1≤x1<x2≤1.f(x1)-f(x2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x2-x1>0,222111x x -+->0,∴当x1>0,x2>0时,x1+x2>0,那么f(x1)>f(x2).当x1<0,x2<0时,x1+x2<0,那么f(x1)<f(x2).故f(x)=21x -在区间[-1,0]上是增函数,f(x)=21x -在区间[0,1]上是减函数.20.解析:任取x1、x2∈0,+)∞且x1<x2,则f(x1)-f(x2)=121+x -122+x -a(x1-x2)=1122212221+++-x x x x -a(x1-x2)=(x1-x2)(11222121++++x x x x -a)(1)当a ≥1时,∵11222121++++x x x x <1,又∵x1-x2<0,∴f(x1)-f(x2)>0,即f(x1)>f(x2) ∴a ≥1时,函数f(x)在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x1=0,x2=212aa-,满足f(x1)=f(x2)=1 ∴0<a <1时,f(x)在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x1|≥x1;122+x >x2;③从a 的范围看还须讨论0<a <1时f(x)的单调性,这也是数学严谨性的体现.21.解析: ∵f(x)在(-2,2)上是减函数∴由f(m -1)-f(1-2m)>0,得f(m -1)>f(1-2m)∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a=21时,f(x)=x +x21+2,x ∈1,+∞) 设x2>x1≥1,则f(x2)-f(x1)=x2+1122121x x x --=(x2-x1)+21212x x x x -=(x2-x1)(1-2121x x ) ∵x2>x1≥1,∴x2-x1>0,1-2121x x >0,则f(x2)>f(x1) 可知f(x)在[1,+∞)上是增函数.∴f(x)在区间[1,+∞)上的最小值为f(1)=27. (2)在区间[1,+∞)上,f(x)=xax x ++22>0恒成立⇔x2+2x +a >0恒成立设y=x2+2x+a,x∈1,+∞),由y=(x+1)2+a-1可知其在[1,+∞)上是增函数,当x=1时,ymin=3+a,于是当且仅当ymin=3+a>0时函数f(x)>0恒成立.故a>-3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的单调性练习一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x x x18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。

相关文档
最新文档