高一数学上册期末考试试卷及答案解析(经典,通用)

合集下载

高一上学期期末考试数学试题(含答案)

高一上学期期末考试数学试题(含答案)

高一上学期期末考试数学试题(含答案) 高一上学期期末考试数学试题(含答案)第I卷选择题(共60分)1.sin480的值为()A。

-1133B。

-2222C。

2222D。

11332.若集合M={y|y=2,x∈R},P={x|y=x-1},则M∩P=()A。

(1,+∞)B。

[1,+∞)C。

(-∞,+∞)D。

(-∞。

+∞)3.已知幂函数通过点(2,22),则幂函数的解析式为()A。

y=2xB。

y=xC。

y=x2D。

y=x1/24.已知sinα=-1/2,且α是第二象限角,那么tanα的值等于()A。

-5/3B。

-4/3C。

4/3D。

5/35.已知点A(1,3),B(4,-1),则与向量AB同方向的单位向量为()A。

(3/5,-4/5)B。

(-3/5,4/5)C。

(-4/5,-3/5)D。

(4/5,3/5)6.设tanα,tanβ是方程x2-3x+2=0的两根,则tan(α+β)的值为()A。

-3B。

-1C。

1D。

37.已知锐角三角形ABC中,|AB|=4,|AC|=1,△ABC的面积为3,则AB·AC的值为()A。

2B。

-2C。

4D。

-48.已知函数f(x)=asin(πx+β)+bcos(πx+β),且f(4)=3,则f(2015)的值为()A。

-1B。

1C。

3D。

-39.下列函数中,图象的一部分如图所示的是()无法确定图像,无法判断正确选项)10.在斜△ABC中,sinA=-2cosB·cosC,且tanB·tanC=1-2,则角A的值为()A。

π/4B。

π/3C。

π/2D。

2π/311.已知f(x)=log2(x2-ax+3a)在区间[2,+∞)上是减函数,则实数a的取值范围是()A。

(-∞,4]B。

(-∞,4)C。

(-4,4]D。

[-4,4]12.已知函数f(x)=1+cos2x-2sin(x-π/6),其中x∈R,则下列结论中正确的是()A。

f(x)是最小正周期为π的偶函数B。

高一数学上册期末试题(含答案)

高一数学上册期末试题(含答案)

高一数学上册期末试题(含答案)一、选择题1. 已知全集U={0,1,2,3,4},集合A={1,2,3}, B={2,4},则(∁U B)∩A=()A.{0,1,2,3}B.{1,3}C.{1,2,3,4}D.{0,2,4}2. 下列函数中既不是奇函数也不是偶函数的是()A.y=x3B.y=x2C.y=xD.y=√x3. 在平面直角坐标系中,角α的顶点与原点重合,始边与x轴的非负半轴重合,终边过点P(−√3,1),则sin(π−α)=()A.−12B.12C.−√32D.√324. 已知函数f(x)=log2(x2−x),则f(x2)的定义域为()A.(−∞,−1)∪(1,+∞)B.(−∞,0)∪(1,+∞)C.(−1,1)D.(0,1)5. 已知a,b,c是实数,且a≠0,则“∀x∈R,ax2+bx+c<0”是“b2−4ac<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6. 已知a>0,b>0,a+b=1,则下列等式可能成立的是()A.a2+b2=1B.ab=1C.a2+b=12D.a2−b2=127. 某工厂有如图1所示的三种钢板,其中长方形钢板共有100张,正方形钢板共有60张,正三角形钢板共有80张.用这些钢板制作如图2所示的甲、乙两种模型的产品,要求正方形钢板全部用完,则制成的甲模型的个数最少有()A.10个B.15个C.20个D.25个8. 已知函数f(x)=ln(√sin2x+1+sinx)(x∈R),则存在非零实数x0,使得()A.f(x0)=−1B.f(x0)−f(−x0)=2C.f(f(x0))=ln(√2+1)D.f(π+x0)−f(x0)=32二、多选题9.已知θ为第二象限角,则下列结论正确的是( )A.cosθ>0B.cos (π−θ)>0C.cos (π+θ)>0D.cos (π2+θ)>0 10.已知函数f (x )=|sinx|,则下列说法正确的是( )A.f (x )的图像关于直线x =π2对称B.(π,0)是f (x )图像的一个对称中心C.f (x )的周期为πD.f (x )在区间[−π2,0]单调递减11.已知函数y =f (x )是定义在[−1,1]上的奇函数,当x >0时,f (x )=x (x −1),则下列说法正确的是( )A.函数y =f (x )有2个零点B.当x <0时, f (x )=−x (x +1)C.不等式f (x )<0的解集是(0,1)D.∀x 1,x 2∈[−1,1],都有|f (x 1)−f (x 2)|≤12 12.由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足M ∪N =Q ,M ∩N =⌀,M 中的每一个元素都小于N 中的每一个元素,则称(M,N )为戴德金分割.试判断下列选项中,可能成立的是( )A.M ={x|x <0},N ={x|x >0}是一个戴德金分割B.M 没有最大元素,N 有一个最小元素C.M 有一个最大元素,N 有一个最小元素D.M 没有最大元素,N 也没有最小元素三、填空题13.已知sinα=−35,α是第四象限角,则tan(α−π4)=________.14.当x >0时,函数f (x )=x x 2+1的最大值为________.15.将函数y =sinx 的图象上所有的点向右平行移动π6个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式为________.16. 某种候鸟每年都要随季节的变化而进行大规模的迁徙,研究候鸟的专家发现,该种鸟类的飞行速度v (单位: m/s )与其耗氧量Q 之间的关系为v =alog 2Q 10(其中a 是实数).据统计,该种鸟类在耗氧量为80个单位时,其飞行速度为 18m/s ,则a =________;若这种候鸟飞行的速度不能低于60m/s ,其耗氧量至少要________个单位.四、解答题17.已知函数f (x )=x 2−ax +4−a 2的定义域是[−2,3].(1)当a =2时,求函数f (x )的值域;(2)设p:a ∈M ,q:∀x ∈[−2,2],都有f (x )≤0,若p 是q 的充分不必要条件,写一个满足题意的集合M 并说明理由.18.已知函数f (x )是偶函数,且当x ≥0时,f(x)=log a (3−ax)(a >0且a ≠1).(1)求当x <0时的f (x )的解析式;(2)在①f (x )在(1,4)上单调递增;①在区间(−1,1)上恒有f (x )≥x 2这两个条件中任选一个补充到本题中,求g (a )=(12)a 的取值范围.(注:如果选择多个条件分别解答,则按第一个解答计分)19.已知函数f (x )=(sin x 4+cos x 4)2−2√3cos 2x 4+√3−1.(1)求函数f (x )的最小正周期及f (x )的单调递减区间;(2)将f (x )的图象先向左平移π6个单位长度,再将其横坐标缩小为原来的12,纵坐标不变得到函数g (x ),若g (x 0)=√24,x 0∈(π,5π4),求sinx 0的值.20.已知函数f (x )=3x −a 3x+1+3是奇函数.(1)求a 的值,判断f (x )的单调性并用定义证明之;(2)解不等式:log 2|f (x )|+2≤021.游客乘坐位于长沙贺龙体育场的摩天轮可近观长沙中心城区城市美景,远眺岳麓山,俯瞰橘子洲,饱览湘江风光.据工作人员介绍,该摩天轮直径约100米,摩天轮的最低处P与地面的距离为20米,设有60个座舱,游客先乘坐直升电梯到入口(入口在摩天轮距地面的最低处)处等待,当座舱到达最低处P时有序进入座舱,摩天轮逆时针方向匀速运行一周约需20分钟.以摩天轮的圆心为坐标原点,水平线为x轴建立如图所示的平面直角坐标系.(1)试将游客甲离地面的距离ℎ(t)(单位:米)表示为其坐上摩天轮的时间t(单位:分钟)的函数;(2)若游客乙在甲后的5分钟也在点P处坐上摩天轮,求在乙坐上摩天轮后的多少分钟时甲乙的离地面距离之差首次达到最大.22.若函数y=f(x)对定义域内的每一个值x1,在其定义域内都存在唯一的x2,使f(x1)f(x2)=1成立,则称该函数为“依赖函数”.(1)判断函数g(x)=sinx是否为“依赖函数”,并说明理由;(2)若函数f(x)=2x−1在定义域[m,n](n >m >0)上为“依赖函数”,求mn 的取值范围;(3)已知函数ℎ(x)=(x −a)2(a ≥43)在定义域[43,4]上为“依赖函数”.若存在实数x ∈[43,4] ,使得对任意的t ∈R ,不等式ℎ(x)≥−t 2+(s −t)x +4恒成立,求实数s 的最大值.参考答案:一、1-8 BDBA ADCD 二、9.B,C10.A,C,D11.B,C,D12.B,D三、13.−714.1215.y=sin(12x−π6)16.6,10240S有最大值为12−√34.四、17.解:(1)当a=2时,f(x)=x2−2x=(x−1)2−1,又函数的定义域是[−2,3],则其值域是[−1,8].(2)据题意使“∀x∈[−2,2],都有f(x)≤0”为真命题的充要条件是f max(x)≤0,即要{f(−2)=−a2+2a+8≤0, f(2)=−a2−2a+8≤0,其解集是{a|a≤−4或a≥4},故使p是q的充分不必要条件的集合M可以是[4,+∞).18.解:(1)当x<0时,−x>0,又f(x)是偶函数,则f(x)=f(−x)=log a(3+ax)即f(x)=log a(3+ax),x<0.(2)选条件①:由于f(x)在(1,4)上单调递增,显然a>1不合题意,则{0<a <1,3−4a ≥0,⇒0<a ≤34, 此时g (a )=(12)a 的取值范围是[√242,1), 选条件①:若0<a <1,则f (0)=log a 3<0,显然不合要求.当a >1时,f (0)=log a 3>0,而f (x )与y =x 2都是偶函数,则只需考虑x ∈[0,1)即可,此时f (x )是单调递减的,而y =x 2是单调递增的, 则{a >1,f (1)≥1,即{a >1,log a (3−a )≥1, 解得a ∈(1,32],此时g (a )=(12)a 的取值范围是[√24,12).19.解:(1)f (x )=(sin x 4+cos x 4)2−2√3cos 2x 4+√3−1=1+2sin x 4cos x 4−√3(1+cos x 2)+√3−1 =sin x 2−√3cos x 2=2sin (x 2−π3). 则f (x )的最小正周期为T =4π,由π2+2kπ≤x 2−π3≤3π2+2kπ,k ∈Z , 解得5π3+4kπ≤x ≤11π3+4kπ,k ∈Z ,所以函数f (x )的单调递减区间是[5π3+4kπ,11π3+4kπ],k ∈Z . (2)将f (x )的图象先向左平移π6个单位长度,得到函数y =2sin (x+π62−π3)=2sin (x 2−π4), 再将其横坐标缩小为原来的12,纵坐标不变得到函数g (x )=2sin (x −π4),据题意有sin(x 0−π4)=√28,且x 0−π4∈(3π4,π), 则cos (x 0−π4)=−√628, 则sinx 0=sin [(x 0−π4)+π4]=sin (x 0−π4)cos π4+cos (x 0−π4)sin π4=1−√318.20.解:(1)显然函数f (x )的定义域是R ,据题意有f (0)=0,得a =1,即f(x)=3x −13x+1+3=3x −13(3x +1),此时f(−x)=3−x −13(3−x +1)=1−3x 3(1+3x )=−f(x)满足题意. f(x)=3x −13x+1+3=3x −13(3x +1)=13−23⋅13x +1,由此可判断出f (x )是R 上的递增函数.以下用定义证明:∀x 1,x 2∈R ,且x 1<x 2,则3x 2−3x 1>0, 所以f(x 2)−f(x 1)=23(13x 1+1−13x 2+1)=23⋅3x 2−3x 1(3x 1+1)(3x 2+1)>0,即f(x)<f(x 2),故f (x )是R 上的递增函数.(2)由log 2|f (x )|+2≤0得0<|f (x )|≤14,即−14≤13−23⋅13x +1<0或0<13−23⋅13x +1≤14,即:12<13x +1≤78或18≤13x +1<12,整理得17≤3x <1或1<3x ≤7,解得−log 37≤x <0或0<x ≤log 37,即解集为[−log 37,0)∪(0,log 37].21.解:(1)据题意,游客甲绕原点按逆时针方向作角速度为2π20=π10弧度/分钟的匀速圆周运动,设经过t 分钟后甲到达Q ,则以OP 为始边,OQ 为终边的角的大小是π10t ,因为圆的半径为r =50米,由三角函数定义知点Q 的纵坐标为y =50sin(π10t −π2), 则其离地面的距离为ℎ(t)=20+50+50sin(π10t −π2) =70−50cos π10t(t ≥0).(2)由(1)可知游客乙离地面的距离:g (t )=70−50cos [π10(t −5)]=70−50sin π10t , 其中时间t 表示游客甲坐上摩天轮的时间,则甲乙的离地面距离之差为:Δℎ=ℎ(t)−g(t)=50(sin π10t −cos π10t)=50√2sin(π10t −π4), 当π10t −π4=π2+2kπ(k ∈Z ),即t =152+20k (k ∈Z )时,甲乙离地面距离之差达到最大, 所以t =152,即游客乙坐上摩天轮t −5=52分钟后, 甲乙的离地面距离之差首次达到最大.22.解:(1)对于函数g(x)=sinx 的定义域R 内存在x 1=π6,则g(x 2)=2无解, 故g(x)=sinx 不是“依赖函数”.(2)因为f (x )=2x−1在[m,n ]递增,故f(m)f(n)=1,即2m−12n−1=1, m +n =2,由n >m >0,故n =2−m >m >0,得0<m <1,从而mn =m (2−m )在m ∈(0,1)上单调递增, 故mn ∈(0,1).(3)①若43≤a <4,故ℎ(x )=(x −a )2在[43,4]上最小值为0,此时不存在x 2,舍去;①若a ≥4,故ℎ(x)=(x −a)2在[43,4]上单调递减,从而ℎ(43)⋅ℎ(4)=1,解得a =1(舍)或a =133, 从而,存在x ∈[43,4],使得对任意的t ∈R ,有不等式(x −133)2≥−t 2+(s −t )x +4恒成立, 即t 2+xt +x 2−(s +263)x +1339≥0恒成立,由Δ=x 2−4[x 2−(s +263)x +1339]≤0, 得4(s +263)x ≤3x 2+5329, 由x ∈[43,4],可得4(s +263)≤3x +5329x , 又y =3x +5329x 在x ∈[43,4]单调递减, 故当x =43时, (3x +5329x )max =1453, 从而4(s +263)≤1453, 解得s ≤4112.故实数s 的最大值为4112.。

高一数学上册期末试卷(含答案)

高一数学上册期末试卷(含答案)

高一数学上册期末试卷(含答案)高一数学上册期末试卷(含答案)第Ⅰ卷一.选择题(本大题共12小题,每小题5分,共60分)1.如果集合A={x|ax2-2x-1=0}只有一个元素则a的值是( )A.0B.0或1C.-1D.0或-12. 的值为( )A. B. C. D.3.若tan α=2,tan β=3,且α,β∈0,π2,则α+β的值为( )A.π6B.π4C.3π4D.5π44.已知,则 ( )A. B. C. D. 或5.设则( )A B C D6.若x∈[0,1],则函数y=x+2-1-x的值域是( )A.[2-1,3-1]B.[1,3 ]C.[2-1,3 ]D.[0,2-1]7若,则 ( )A. B. C.- D.8.若函数图象的两条相邻的对称轴之间的距离为,且该函数图象关于点成中心对称,,则 ( )A. B. C. D.9.已知函数的值域为R,则实数的范围是( )A. B. C. D.10.将函数y=3sin2x+π3的图像向右平移π2个单位长度,所得图像对应的函数( )A.在区间π12,7π12上单调递减B.在区间π12,7π12上单调递增C在区间-π6,π3上单调递减 D在区间-π6,π3上单调递增11.函数的值域为( )A.[1,5]B.[1,2]C.[2,5]D.[5,3]12.设是定义在上的偶函数,对,都有,且当时,,若在区间内关于的方程恰有3个不同的实数根,则的取值范围是( )A. B. C. D.第II卷(非选择题,共70分)二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题纸上)13.已知则的值为------14.3tan 12°-34cos212°-2sin 12°=________.15.已知 ,试求y= 的`值域—16.设(x)=asin 2x+bcos 2x,其中a,b∈R,ab≠0.若f(x)≤fπ6对一切x∈R恒成立,则以下结论正确的是_____(写出所有正确结论的编号).① ;② ≥ ;③f(x)的单调递增区间是kπ+π6,kπ+2π3(k∈Z);④f(x)既不是奇函数也不是偶函数;17.(本题满分8分)已知:,,,,求18.(本题满分10分)已知函数,且(Ⅰ)求的值; (Ⅱ)判断并证明函数在区间上的单调性.19.(本题满分10分)已知函数 ((1)若是最小正周期为的偶函数,求和的值;(2)若在上是增函数,求的最大值.20(本题满分12分)已知函数,,( )(1)当≤ ≤ 时,求的最大值;(2)若对任意的,总存在,使成立,求实数的取值范围;(3)问取何值时,方程在上有两解?21.(附加题)(本题满分10分)已知函数(1)求函数的零点;(2)若实数t满足,求的取值范围.高一数学参考答案一.选择题:DBCBA CCCCB AC二.填空题:13. 0 14. 15. 16. ①②④ .17.解:,,∴ ,∴ = = = ......8分18.【解答】解:(Ⅰ)∵ ,,由,∴ ,又∵a,b∈N*,∴b=1,a=1;………………3分(Ⅱ)由(1)得,函数在(﹣1,+∞)单调递增.证明:任取x1,x2且﹣1<x1<x2,< p="">= ,∵﹣1<x1<x2,< p="">∴ ,∴ ,即f(x1)<f(x2),< p="">故函数在(﹣1,+∞)上单调递增.………………10分19.解:(1)由 =2 (∵ …………又是最小正周期为的偶函数,∴ ,即,…………3分且,即……6分,∴ 为所求;…………………………………………………5分(2)因为在上是增函数,∴ ,…………………………………………7分∵ ,∴ ,∴ ,于是,∴ ,即的最大值为,………此时……10分20.试题分析:(1) 设,则∴ ∴当时,……4分(2)当∴ 值域为当时,则有①当时,值域为②当时,值域为而依据题意有的值域是值域的子集则或∴ 或 8分(3) 化为在上有两解,令则t∈ 在上解的情况如下:①当在上只有一个解或相等解,有两解或∴ 或②当时,有惟一解③当时,有惟一解故或……12分21.(1) 的零点分别为和 2分(2)由题意,当时,,同理,当时,,,所以函数是在R上的偶函数,…5分所以,由,.………………时,为增函数,,即 .………10分。

高一数学期末考试试题及答案

高一数学期末考试试题及答案

高一数学期末考试试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是一次函数?A. y = 2x + 3B. y = x^2 + 1C. y = 1/xD. y = √x2. 如果一个数列是等差数列,且a_3 = 7,a_5 = 13,那么这个数列的公差d是多少?A. 2B. 3C. 4D. 53. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B。

A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}4. 函数f(x) = x^2 - 4x + 6的最小值是多少?A. 2B. 3C. 4D. 55. 已知sinθ + cosθ = 1,且0 < θ < π/2,求θ的值。

B. π/3C. π/6D. 5π/66. 下列哪个选项不是一元二次方程的解法?A. 配方法B. 因式分解法C. 公式法D. 比例法7. 一个长方体的长、宽、高分别是8cm、6cm和5cm,其体积是多少立方厘米?A. 240B. 180C. 120D. 1008. 已知点A(2, 3)和点B(5, 6),线段AB的中点M的坐标是多少?A. (3, 4)B. (4, 5)C. (3.5, 4.5)D. (2.5, 4.5)9. 函数y = |x - 1|的图像关于哪条直线对称?A. x = 1B. x = -1C. y = xD. y = -x10. 已知等比数列的首项a_1 = 2,公比q = 3,求第5项a_5。

B. 243C. 486D. 729二、填空题(每题4分,共20分)11. 函数f(x) = x^3 - 6x^2 + 9x + 2的极大值点是_________。

12. 已知数列1, 4, 7, 10, ..., 到第n项的和为S_n,则S_n = (n^2 + n)/2。

13. 根据题目所给的函数f(x) = 2x - 1,若f(a) = 7,则a =_______。

高一数学上册期末试卷(附答案)

高一数学上册期末试卷(附答案)

高一数学上册期末试卷(附答案)高一数学期末考试试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.函数的定义域为( )A.( ,1)B.( ,∞)C.(1,+∞ )D.( ,1)∪( 1,+∞)2.以正方体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC1中点坐标为( )A.( ,1,1)B.(1,,1)C.(1,1, )D.( ,,1)3.若,,,则与的位置关系为( )A.相交B.平行或异面C.异面D.平行4.如果直线同时平行于直线,则的值为( )A. B.C. D.5.设,则的大小关系是( )A. B. C. D.6.空间四边形ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则直线EF与CD所成的角为( )A.45°B.30°C.60°D.90°7.如果函数在区间上是单调递增的,则实数的取值范围是( )A. B. C. D.8.圆:和圆:交于A,B两点,则AB的垂直平分线的方程是( )A. B.C. D.9.已知,则直线与圆的位置关系是( )A.相交但不过圆心B.过圆心C.相切D.相离10.某三棱锥的三视图如右图所示,则该三棱锥的表面积是( )A.28+65B.60+125C.56+125D.30+6511.若曲线与曲线有四个不同的交点,则实数m的取值范围是( )A. B.C. D.12.已知直线与函数的图象恰好有3个不同的公共点,则实数m 的取值范围是( )A. B.C. D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若是奇函数,则 .14.已知,则 .15.已知过球面上三点A,B,C的截面到球心O的距离等于球半径的一半,且AB=BC=CA=3 cm,则球的体积是 .16.如图,将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D-ABC中,给出下列三种说法:①△DBC是等边三角形;②AC⊥BD;③三棱锥D-ABC的体积是26.其中正确的序号是________(写出所有正确说法的序号).三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题10分)根据下列条件,求直线的方程:(1)已知直线过点P(-2,2)且与两坐标轴所围成的三角形面积为1;(2)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.18.(本小题12分)已知且,若函数在区间的最大值为10,求的值.19.(本小题12分)定义在上的函数满足 ,且 .若是上的减函数,求实数的取值范围.20.(本小题12分)如图,在直三棱柱(侧棱垂直于底面的三棱柱) 中,,分别是棱上的点(点不同于点 ),且为的中点.求证:(1)平面平面 ;(2)直线平面 .21.(本小题12分)如图所示,边长为2的等边△PCD所在的平面垂直于矩形A BCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.22.(本小题12分)已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.高一数学期末考试试题答案一、选择题ACBAD BDCAD BC二、填空题13. 14.13 15. 16.①②三、解答题17.(本小题10分)(1)x+2y-2=0或2x+y+2=0.(2)3x-y+2=0.18.(本小题12分)当0当x=-1时,函数f(x)取得最大值,则由2a-1-5=10,得a=215,当a>1时,f(x)在[-1,2]上是增函数,当x=2时,函数取得最大值,则由2a2-5=10,得a=302或a=-302(舍),综上所述,a=215或302.19.(本小题12分)由f(1-a)+f(1-2a)<0,得f(1-a)<-f(1-2a).∵f(-x)=-f(x),x∈(-1,1),∴f(1-a)又∵f(x)是(-1,1)上的减函数,∴-1<1-a<1,-1<1-2a<1,1-a>2a-1,解得0故实数a的取值范围是0,23.20.(本小题12分)(1)∵ 是直三棱柱,∴ 平面。

人教版高一数学上册期末考试试卷及答案

人教版高一数学上册期末考试试卷及答案

人教版高一数学上册期末考试试卷及答案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!人教版高一数学上册期末考试试卷及答案人教版高一数学上册期末考试试卷及答案(含解析)这个学期马上就要结束了,我们也应该做好期末考试的准备了,那么关于高一数学期末试卷怎么做呢?以下是本店铺准备的一些人教版高一数学上册期末考试试卷及答案,仅供参考。

2023-2024学年山东省东营市高一上册期末数学试题(含解析)

2023-2024学年山东省东营市高一上册期末数学试题(含解析)

2023-2024学年山东省东营市高一上册期末数学试题一、单选题1.已知集合{}2560,{10}A x x x B x x =-+≥=-<,则A B = ()A .(,1)-∞B .(2,1)--C .(3,1)--D .(3,)+∞【正确答案】A【分析】解不等式求得集合,A B ,由此求得A B ⋂.【详解】()()256230x x x x -+=--≥,解得2x ≤或3x ≥,所以(][),23,A =-∞⋃+∞,而(),1B =-∞,所以A B = (,1)-∞.故选:A2.十名工人某天生产同一零件,生产的件数分别是:15,17,14,10,15,17,17,16,14,12,设其中位数为a ,众数为b ,第一四分位数为c ,则a ,b ,c 大小关系为()A .a b c <<B .<<c a bC .c b a <<D .a c b<<【正确答案】B【分析】根据中位数、众数、分位数的定义求解.【详解】对生产件数由小到大排序可得:10,12,14,14,15,15,16,17,17,17,所以中位数151515,2a +==众数为b =17,100.25 2.5⨯=,所以第一四分位数为第三个数,即c =14,所以<<c a b ,故选:B.3.已知函数()f x 的定义域为R ,则“()00f =”是“()f x 是奇函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】B【分析】通过反例和奇函数的性质可直接得到结论.【详解】若()2f x x =,则()00f =,此时()f x 为偶函数,充分性不成立;若()f x 为奇函数,且其定义域为R ,则()00f =恒成立,必要性成立;∴函数()f x 的定义域为R ,则“()00f =”是“()f x 是奇函数”的必要不充分条件.故选:B.4.如图是函数()f x 的图象,则下列说法不正确的是()A .()02f =-B .()f x 的定义域为[]3,2-C .()f x 的值域为[]22-,D .若()0f x =,则12x =或2【正确答案】C【分析】结合函数的图象和定义域,值域等性质进行判断即可.【详解】解:由图象知(0)2f =-正确,函数的定义域为[3-,2]正确,函数的最小值为3-,即函数的值域为[3-,2],故C 错误,若()0f x =,则12x =或2,故D 正确故选:C .5.17世纪,在研究天文学的过程中,为了简化大数运算,苏格兰数学家纳皮尔发明了对数,对数的思想方法即把乘方和乘法运算分别转化为乘法和加法运算,数学家拉普拉斯称赞“对数的发明在实效上等于把天文学家的寿命延长了许多倍”.已知lg20.3010,lg30.4771≈≈,设71249N =⨯,则N 所在的区间为()A .()131410,10B .()141510,10C .()151610,10D .()161710,10【正确答案】C【分析】根据对数的运算性质,结合题中所给的数据进行判断即可.【详解】因为712712142449,lg lg4lg9lg2lg314lg224lg3 4.21411.450415N N =⨯=+=+=+≈+≈.6644,所以()15.664415161010,10N =∈.故选:C6.方程24x x +=的根所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,4【正确答案】B构造函数()24xf x x =+-,利用零点存在定理可得出结论.【详解】构造函数()24xf x x =+-,则函数()f x 为R 上的增函数,()110f =-< ,()220f =>,则()()120f f ⋅<,因此,方程24x x +=24x x +=的根所在的区间为()1,2.故选:B.7.已知偶函数()f x 在[0,)+∞上单调递减,且2是它的一个零点,则不等式(1)0f x ->的解集为()A .(1,3)-B .(,3)(1,)-∞-+∞C .(3,1)-D .(,1)(3,)-∞-⋃+∞【正确答案】A【分析】根据函数的单调性和奇偶性解不等式.【详解】因为偶函数()f x 在[0,)+∞上单调递减,所以()f x 在(],0-∞上单调递增,又因为2是它的一个零点,所以(2)0f =,所以(2)(2)0f f -==,所以当22x -<<时()0f x >,所以由(1)0f x ->可得212x -<-<解得13x -<<,故选:A.8.设()f x 是定义在(,0)(0,)-∞+∞ 上的奇函数,对任意的12,(0,)x x ∈+∞满足()()2112120x f x x f x x x->- 且(1)2f =,则不等式()2f x x >的解集为()A .(1,0)(1,)-⋃+∞B .(1,0)(0,1)-C .,1(),)1(-∞-⋃+∞D .(,2)(2,)-∞-+∞ 【正确答案】A 【分析】设()()f x F x x=,判断出()F x 的奇偶性、单调性,由此求得不等式()2f x x >的解集.【详解】设()()f x F x x =,由于()f x 是定义在(,0)(0,)-∞+∞ 上的奇函数,所以()()()()f x f x F x F x x x--===-,所以()F x 是定义在(,0)(0,)-∞+∞ 上的偶函数.任取120x x <<,120x x -<,则:()()()()()()1221121212120f x f x x f x x f x F x F x x x x x --=-=<,()()12F x F x <,所以()F x 在()0,∞+上递增,则()F x 在(),0∞-上递减.()(1)21f f ==-,()()()11211f F F ===-,对于不等式()2f x x >,当0x >时,有()2f x x >,即()()11F x F x >⇒>;当0x <时,由()2f x x<,即()()110F x F x <-⇒-<<,综上所述,不等式()2f x x >的解集为(1,0)(1,)-⋃+∞.故选:A二、多选题9.有一组样本数据123,,,,n x x x x ,由这组数据得到新样本数据1232,2,2,,2n x x x x ++++ ,则下列结论正确的是()A .两组样本数据的样本平均数相同B .两组样本数据的样本中位数相同C .两组样本数据的样本标准差相同D .两组样本数据的样本极差相同【正确答案】CD【分析】根据一组数据的平均数、中位数、标准差和极差的定义求解.【详解】数据123,,,,n x x x x 的平均数为123nx x x x x n++++=,新数据1232,2,2,,2n x x x x ++++ 的平均数为123123222222n n x x x x x x x x nx n n++++++++++++==++ ,故A 错误;若数据123,,,,n x x x x 的中位数为i x ,则新数据1232,2,2,,2n x x x x ++++ 的中位数为2i x +,故B 错误;数据123,,,,n x x x x 的标准差为s =,新数据1232,2,2,,2n x x x x ++++ 的标准差为1s s ==,故C 正确;若数据123,,,,n x x x x 中的最大数为,m x 最小数为n x ,则极差为m n x x -,则数据1232,2,2,,2n x x x x ++++ 的极差为22m n m n x x x x +--=-,故D 正确,故选:CD.10.若a b >,则下列不等式一定成立的是()A .22lg lg a b >B .22a b--<C .11a b<D .33a b >【正确答案】BD【分析】应用特殊值23a b =>=-,判断A 、C ,根据2x y =,3y x =的单调性判断B 、D.【详解】当23a b =>=-时,则()22239<-=,而lg 4lg9<,又1123>-,∴A ,C 不正确;∵2x y =,3y x =都是R 上单调递增函数,∴B ,D 是正确的.故选:BD.11.关于x 的方程221x k xx x x-=--的解集中只含有一个元素,则k 的值可能是()A .0B .1-C .1D .3【正确答案】ABD【分析】由方程有意义可得0x ≠且1x ≠,并将方程化为220x x k +-=;根据方程解集中仅含有一个元素可分成三种情况:方程220x x k +-=有且仅有一个不为0和1的解、方程220x x k +-=有两个不等实根,其中一个根为0,另一根不为1、方程220x x k +-=有两个不等实根,其中一个根为1,另一根不为0;由此可解得k 所有可能的值.【详解】由已知方程得:210x x x -≠-≠⎧⎨⎩,解得:0x ≠且1x ≠;由221x k x x x x-=--得:220x x k +-=;若221x k x x x x-=--的解集中只有一个元素,则有以下三种情况:①方程220x x k +-=有且仅有一个不为0和1的解,440k ∴∆=+=,解得:1k =-,此时220x x k +-=的解为1x =-,满足题意;②方程220x x k +-=有两个不等实根,其中一个根为0,另一根不为1;由0200k +⨯-=得:=0k ,220x x ∴+=,此时方程另一根为2x =-,满足题意;③方程220x x k +-=有两个不等实根,其中一个根为1,另一根不为0;由1210k +⨯-=得:=3k ,2230x x ∴+-=,此时方程另一根为3x =-,满足题意;综上所述:1k =-或0或3.故选:ABD.12.已知函数2()21xx f x =+,下列说法正确的是()A .若2()1f a >,则0a >B .()f x 在R 上单调递增C .当120x x +>时,()()121f x f x +>D .函数()y f x =的图像关于点1,02⎛⎫⎪⎝⎭成中心对称【正确答案】ABC【分析】根据指数不等式、函数单调性、对称性等知识对选项进行分析,从而确定正确答案.【详解】A 选项,()21f a >,即221,2221,21,021aa a a aa ⨯>⨯>+>>+,A 选项正确.B 选项,1221()12111212x x x x xf x ==+=-+++-,由于121x y =+在R 上递减,所以()f x 在R 上递增,B 选项正确.C 选项,当120x x +>时,12x x >-,所以()()12f x f x >-,即12122221212112x x x x x -->=+++,所以()()1221222122221212121211x x x x x x x f x f x +=>++=++++,C 选项正确.D 选项,()()112212122x x xf x f x ---==≠-++,D 选项错误.故选:ABC三、填空题13.已知幂函数()f x x α=的图像经过点(8,2),则1()f x -=_________.【正确答案】3x 【分析】根据幂函数的的知识求得α,然后根据反函数的知识求得正确答案.【详解】依题意,幂函数()f x x α=的图像经过点(8,2),所以182,3αα==,所以()13f x x =,令13y x =,解得3x y =,交换,x y 得3y x =,所以13()f x x -=故3x 14.设两个相互独立事件A 与B ,若事件A 发生的概率为p ,B 发生的概率为1p -,则A 与B 同时发生的概率的最大值为______.【正确答案】14##0.25【分析】求出相互独立事件同时发生的概率,利用二次函数求最值.【详解】因为事件A 与B 同时发生的概率为()[]()221110,124p p p p p p ⎛⎫-=-=--+∈ ⎪⎝⎭,所以当12p =时,最大值为14.故1415.已知函数(),y f x x =∈R ,且(1)(2)()(0)3,2,2,,2,N (0)(1)(1)f f f n f n f f f n *===∈- ,写出函数()y f x =的一个解析式:________.【正确答案】()32xf x =⨯【分析】利用累乘的方法可求解函数解析式.【详解】因为(1)(2)()(0)3,2,2,,2,N (0)(1)(1)f f f n f n f f f n *===∈- ,所以(1)(2)()(0)32(0)(1)(1)n f f f n f f f f n ⨯⨯⨯=⨯- ,即()32n f n =⨯,所以函数()y f x =的一个解析式为()32x f x =⨯,故答案为:()32x f x =⨯.16.已知函数2()|2|4f x x x a a a =-+-,若函数()f x 有三个不同的零点123,,x x x ,且123x x x <<,则123111x x x ++的取值范围是_________.【正确答案】1,2⎛⎫+∞ ⎪ ⎪⎝⎭【分析】将()f x 表示为分段函数的形式,对a 进行分类讨论,求得12123,,x x x x x +,由此求得123111x x x ++的取值范围.【详解】()222224,224,2x ax a a x af x x ax a a x a ⎧-+-≥=⎨-++-<⎩,当0a >时,方程有3个不相等的实数根,()f x 在()2,a +∞上递增,所以2x a ≥时,22240x ax a a -+-=有1个根,且2x a <时,22240x ax a a -++-=有2个根,所以()222444040a a a a a ⎧+->⎪⎨-<⎪⎩,解得24a <<.由于123x x x <<,则2121232,4,2x x a x x a a x a +==-+=+,所以122123123111124x x a x x x x x x a a +++=+=+-+()24a a a =+-()()244a a a a a a -=-==--()()221111=----,)2111,311<<-<<,)22110-<-<,()2111<-()212214211+-<=-.当a<0时,当2x a >时,方程22240x ax a a -+-=的判别式()22444160a a a a ∆=--=<,所以此时不符合题意.当0a =时,()22,0,0x x f x x x ⎧≥=⎨-<⎩,不符合题意.综上所述,a 的取值范围是1,2⎛⎫++∞ ⎪ ⎪⎝⎭.故12⎛⎫+∞ ⎪ ⎪⎝⎭研究含有绝对值的函数的零点,关键点在于去绝对值,将所研究的函数表示为分段函数的形式,由此再对参数进行分类讨论,结合零点个数来求得参数的取值范围.在分类讨论时,要注意做到不重不漏.四、解答题17.求解下列问题:(1)2433641)27--⎛⎫-++ ⎪⎝⎭;(2)2log 3491lg2log 27log 8100-+-⋅.【正确答案】(1)2916(2)74-【分析】(1)根据根式、指数运算求得正确答案.(2)根据对数运算求得正确答案.【详解】(1)2433641)27--⎛⎫++ ⎪⎝⎭24333324123--⎡⎤⎛⎫⎛⎫=++⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦224123--⎛⎫=++ ⎪⎝⎭9129116416=++=.(2)2log 3491lg2log 27log 8100--⋅221233223lg10ln e 3log 3log 2-=-+-⋅2313323log 3log 2222=--+-⋅192324=--+-74=-.18.甲、乙两人想参加某项竞赛,根据以往20次的测试,将样本数据分成[50,60),[60,70),[70,80),[80,90),[90,100]五组,并整理得到如下频率分布直方图:已知甲测试成绩的中位数为75.(1)求x ,y 的值,并分别求出甲、乙两人测试成绩的平均数(假设同一组中的每个数据可用该组区间中点值代替);(2)从甲、乙两人测试成绩不足60分的试卷中随机抽取3份,求恰有2份来自乙的概率.【正确答案】(1)0.025x =;0.02y =;甲的平均分为74.5,乙的平均分为73.5;(2)35.(1)根据甲测试成绩的中位数为75,由0.0110100.04(7570)0.5y ⨯+⨯+⨯-=,求得y ,再利用各矩形的面积的和为1,求得x ,然后利用平均数公式求解.(2)易得甲测试成绩不足60分的试卷数2,乙测试成绩不足60分的试卷数3,先得到从中抽3份的基本事件数,再找出恰有2份来自乙的基本事件数,代入古典概型公式求解.【详解】(1)∵甲测试成绩的中位数为75,∴0.0110100.04(7570)0.5y ⨯+⨯+⨯-=,解得0.02y =.∴0.0110100.0410100.005101y x ⨯+⨯+⨯+⨯+⨯=,解得0.025x =.同学甲的平均分为550.0110650.0210750.0410850.02510950.0051074.5⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=.同学乙的平均分为550.01510650.02510750.0310850.0210950.011073.5⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=.(2)甲测试成绩不足60分的试卷数为200.01102⨯⨯=,设为A ,B .乙测试成绩不足60分的试卷数为200.015103⨯⨯=,设为a ,b ,c .从中抽3份的情况有(),,A B a ,(),,A B b ,(),,A B c ,(),,A a b ,(),,A a c ,(),,A b c ,(),,B a b ,(),,B a c ,(),,B b c ,(),,a b c ,共10种情况.满足条件的有(),,A a b ,(),,A a c ,(),,A b c ,(),,B a b ,(),,B a c ,(),,B b c ,共6种情况,故恰有2份来自乙的概率为63105=.19.已知关于x 的不等式2540bx x -+>的解集为{|1x x <或}x a >(1a >).(1)求a ,b 的值;(2)当0x >,0y >,且满足1a b x y+=时,有226x y k k +>--恒成立,求k 的取值范围.【正确答案】(1)41a b =⎧⎨=⎩(2)(3,5)-【分析】(1)根据一元二次不等式的解法可得1和a 是方程2540bx x -+=的两个实数根且0b >,从而利用韦达定理建立方程组即可求解;(2)由均值不等式中“1”的灵活运用可得min ()9x y +=,从而解一元二次不等式22150k k --<即可得答案.【详解】(1)解:因为不等式2540bx x -+>的解集为{|1x x <或}x a >(1a >),所以1和a 是方程2540bx x -+=的两个实数根且0b >,所以5141a b a b ⎧+=⎪⎪⎨⎪⋅=⎪⎩,解得41a b =⎧⎨=⎩;(2)解:由(1)知411x y+=,且0x >,0y >,所以414()559y x x y x y x y x y ⎛⎫+=++=+++= ⎪⎝⎭,当且仅当4y x x y =,即63x y =⎧⎨=⎩时等号成立,依题意有2min ()26x y k k +>--,即2926k k >--,所以22150k k --<,解得35k -<<,所以k 的取值范围为(3,5)-.20.甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求乙获胜的概率;(2)求投篮结束时乙只投了2个球的概率.【正确答案】(1)1327;(2)427.【分析】(1)根据规则乙先投进,分情况讨论,求各个情况下概率和即可;(2)根据规则第四次乙先进球或第五次甲先进球,符合题意,求概率和即可.【详解】(1)记“乙获胜”为事件C ,记甲第i 次投篮投进为事件i A ,乙第i 次投篮投进为事件iB 由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知()()()()111122112233P C P A B P A B A B P A B A B A B =+⋅⋅+⋅⋅⋅⋅()()()()()()()()()()()()111122112233P A P B P A P B P A P B P A P B P A P B P A P B =++⋅22332121211332323227⎛⎫⎛⎫⎛⎫⎛⎫=⨯++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)记“投篮结束时乙只投了2个球”为事件D ,则由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知()()()112211223P D P A B A B P A B A B A =⋅⋅+⋅⋅⋅()()()()()()()()()112211223P A P B P A P B P A P B P A P B P A =+⋅22222121143232327⎛⎫⎛⎫⎛⎫⎛⎫=+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.21.提高隧道的车辆通行能力可改善附近路段高峰期间的交通状况.一般情况下,隧道内的车流速度v (单位:千米/小时)和车流密度x (单位:辆/千米)满足关系式:50,020,60,20120.140x v k x x <≤⎧⎪=⎨-<≤⎪-⎩研究表明,当隧道内的车流密度达到120辆/千米时会造成堵塞,此时车流速度为0千米/小时.(1)若车流速度v 不小于40千米/小时,求车流密度x 的取值范围;(2)隧道内的车流量y (单位时间内通过隧道的车辆数,单位:辆/小时)满足y x v =⋅.求隧道内车流量的最大值(精确到1辆/小时)及隧道内车流量达到最大时的车流密度(精确到1辆/千米).2.646=)【正确答案】(1)(1)车流速度v 不小于40千米/小时,车流密度x 的取值范围为(0,80];(2)(2)隧道内车流量的最大值为3250辆/小时,车流量最大时的车流密度87辆/千米.【分析】(1)由120x =(辆/千米)时,0v =(千米/小时)求得k ,可得v 关于x 的关系式,再由40v 求解x 的范围得结论;(2)结合(1)写出隧道内的车流量y 关于x 的函数,再由函数的单调性及基本不等式求出分段函数的最值,则答案可求.【详解】(1)解:由题意,当120x =(辆/千米)时,0v =(千米/小时),代入60140k v x=--,得060140120k =--,解得1200k =.∴50,020120060,20120140x v x x <⎧⎪=⎨-<⎪-⎩,当020x <时,5040v =,符合题意;当20120x <时,令12006040140x--,解得80x ,2080x ∴<.综上,080x <.故车流速度v 不小于40千米/小时,车流密度x 的取值范围为(0,80];(2)由题意得,50,020120060,20120140x x y x x x x <⎧⎪=⎨-<⎪-⎩,当020x <时,50y x =为增函数,20501000y ∴⨯=,等号当且仅当20x =时成立;当20120x <时,12002020(140)28006060()60[140140140x x x y x x x x x x--=-=-=+---2800280060(2060[160(140)140140x x x x=+-=-----60(16060(1603250-=-≈.当且仅当2800140140x x-=-,即14087(20x =-≈∈,120]时成立,综上,y 的最大值约为3250,此时x 约为87.故隧道内车流量的最大值为3250辆/小时,车流量最大时的车流密度87辆/千米.22.函数()()lg 93x x f x a =+-.(1)若()f x 的定义域为R ,求实数a 的取值范围;(2)当0a ≤时,若()f x 的值域为R ,求实数a 的值;(3)在(2)条件下,()g x 为定义域为R 的奇函数,且0x >时,()()109f x x g x =-,对任意的R t ∈,解关于x 的不等式()32()2|()|g x g x tx t g x +-≥.【正确答案】(1)0a ≤;(2)0a =;(3)答案详见解析.【分析】(1)由930x x a +->恒成立分离常数a ,结合指数函数、二次函数的性质求得正确答案;(2)令()93x x h x a =+-,结合()h x 的值域包含()0,∞+列不等式,由此求得正确答案;(3)先求得()g x 的解析式,由此化简不等式()32()2|()|g x g x tx t g x +-≥.对t 进行分类讨论,由此求得正确答案.【详解】(1)由题930x x a +->恒成立,则93x x a <+恒成立,由于1130,322x x >+>,所以211933024x x x ⎛⎫+=+-> ⎪⎝⎭,所以0a ≤;(2)令()93x x h x a =+-,则()h x 的值域包含()0,∞+,因为21193324x x x a a a ⎛⎫+-=+-->- ⎪⎝⎭,所以0a -≤,即0a ≥,又因为0a ≤,所以0a =;(3)当0x >时,()()1093f x x x g x =-=;若0x <,0x ->,()3x g x --=,又因为()g x 为定义域为R 的奇函数,所以当0x <时,()3xg x -=-,所以()3,00,03,0x x x g x x x -⎧>⎪==⎨⎪-<⎩,()()3g x g x =()()20g x x ≠,不等式()()()322g x g x tx t g x +-≥等价于()()()2220g x tx t g x x +-≥≠,由于()3,00,03,0x x x g x x x -⎧>⎪==⎨⎪-<⎩在()(),00,∞-+∞U 上是单调递增函数,所以原不等式等价于()2220x tx t x x +-≥≠,即:()()()200x x t x -+≥≠,当2t <-时,解集为{|2x x ≤且0x ≠或}x t ≥-;当2t =-时,解集为{}0x x ≠;当20t -<≤时,解集为{|x x t ≤-且0x ≠或}2x ≥;当0t >时,解集为{|x x t ≤-或}2x ≥.根据函数的奇偶性求函数的解析式要注意的地方有:1.如果函数的定义域为R ,则对于奇函数来说,必有()00f =,偶函数则不一定;2.当0x >时,0x -<(或当0x <时,0x ->),需要代入对应范围的解析式,结合()()=f x f x -或()()f x f x =--来求得函数的解析式.。

高一数学必修一期末考试试题(含答案)

高一数学必修一期末考试试题(含答案)

(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
离开家的距离 离开家的距离
离开家的距离
离开家的距离
O
(1)
时间
O
(2)
时间
O
(3)
2
C、 y log 2
1 x
11.下表显示出函数值 y 随自变量 x 变化的一组数据,判断它最可能的函数模型是(

x y
4 15
ห้องสมุดไป่ตู้
5 17
6 19
7 21
8 23
9 25
10 27
A.一次函数模型
B.二次函数模型
-2-
C.指数函数模型
D.对数函数模型 ( )
12、下列所给 4 个图象中,与所给 3 件事吻合最好的顺序为
-4-
(本小题满分 12 分) 20、
4 x 2 ( x 0) 已知函数 f x 2( x 0) , 1 2 x( x 0)
(1)画出函数 f x 图像; (2)求 f a 2 1 (a R ), f f 3 的值; (3)当 4 x 3 时,求 f x 取值的集合.
2.已知集合 A {x | x 2 1 0} ,则下列式子表示正确的有( ①1 A A.1 个 ② {1} A B.2 个 ③ A C.3 个 )
④ {1,1} A D.4 个
3.若 f : A B 能构成映射,下列说法正确的有 ( (1)A 中的任一元素在 B 中必须有像且唯一; (2)A 中的多个元素可以在 B 中有相同的像; (3)B 中的多个元素可以在 A 中有相同的原像; (4)像的集合就是集合 B. A、1 个 B、2 个 C、3 个
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学上册期末考试试卷及答案解析一、单选题 1.设全集2,1,0,1,2U,集合{}{}0,1,21,2A =-,B=,则()U A B =( )A .{}01, B .{}0,1,2 C .{}1,1,2- D .{}0,1,1,2-2.“5x >”是“3x >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3.下列命题中正确的( ) ①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2}; ④集合{x |4<x <5}可以用列举法表示. A .只有①和④ B .只有②和③ C .只有②D .以上语句都不对 4.下列命题中,既是全称量词命题又是真命题的是( ) A .矩形的两条对角线垂直 B .对任意a ,b ∈R ,都有a 2 + b 2≥ 2(a ﹣b ﹣1) C .∃x ∈R , |x | + x = 0 D .至少有一个x ∈Z ,使得x 2 ≤2成立5.已知02x <<,则y = )A .2B .4C .5D .66.若110a b <<,则下列结论不正确的是( ) A .22a b <B .1ba <C .2b aa b +>D .2ab b <7.命题p :“2R,240x ax ax ∃∈+-≥”为假命题的一个充分不必要条件是( ) A .40aB .40a -≤<C .30a -≤≤D .40a -≤≤8.集合{1,2,4}A =,{}2B x x A =∈,将集合A ,B 分别用如图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为4的是( ) A .B .C .D .二、多选题9.已知集合222{2,1,4},{0,2}A a a a B a a =+-=--,5A ∈,则a 为( ) A .2B .2-C .5D .1-10.若正实数,a b 满足1a b +=,则下列说法正确的是( ) A .ab 有最小值14 B C .1122a b a b +++有最小值43D .22a b +有最小值1211.下列命题为真命题的是( ). A .若a b >,则11b a >B .若0a b >>,0c d <<,则abd c < C .若0a b >>,且0c <,则22cc a b > D .若a b >,且11a b>,则0ab < 12.若“x M x x ∀∈>,”为真命题,“3x M x ∃∈>,”为假命题,则集合M 可以是( )A .()5-∞-,B .(]31--,C .()3+∞,D .[]03,三、填空题13.若命题2:0,30p x x ax ∀≥-+>,则其否定为p ⌝:__________________.14.已知:282p x -≤-≤,:1q x >,:2r a x a <<.若r 是p 的必要不充分条件,且r 是q 的充分不必要条件,则实数a 的取值范围为______. 15.设集合{}{}21,2,R (1)0A B x x a x a ==∈-++=,若集合C = A B ,且C 的子集有4个,则实数a 的取值集合为______________. 16.若a ∈R ,0b >,3a b +=,则当=a ______时,1||3||a a b +取得最小值.四、解答题17.求解下列问题:(1)已知0b a <<,比较1a 与1b 的大小; (2)比较()()37x x ++和()()46x x ++的大小.18.已知集合{|15}A x x =<≤,{}|04B x x =<<,{}|121C x m x m =+<<-. (1)求A B ,R ()A B ⋃: (2)若BC C =,求实数m 的取值范围.19.已知不等式20x ax b -+<的解集为{}17x x <<. (1)求实数,a b 的值.(2)求不等式101ax bx +>-的解集.20.已知0,0x y >>,且280x y xy +-=,求(1)xy 的最小值; (2)x y +的最小值. 21.22.“绿水青山就是金山银山”,为了保护环境,某工厂在政府部门的鼓励下进行技术改进,把二氧化碳化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为2401600y x x =-+,3050x ≤≤,已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)当处理量为多少吨时,每吨的平均处理成本最少?(2)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?参考答案:1.A 【分析】先求出UB ,再根据交集的定义可求()U A B ∩.【详解】{}2,0,1UB =-,故(){}0,1UAB =,故选:A.2.A 【分析】根据集合与充分必要条件的关系,判断选项. 【详解】{}5x x > {}3x x >,所以“5x >”是“3x >”的充分不必要条件. 故选:A3.C 【分析】由集合的表示方法判断①,④;由集合中元素的特点判断②,③.【详解】①{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确; ③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示. 故选:C .4.B 【分析】根据全称量词和特称量词命题的定义判断,全称量词命题要为真命题必须对所以的成立,对选项逐一判断即可.【详解】A 选项为全称量词命题,却是假命题,矩形的两条对角线相等,并不垂直,故A 错误.C,D 选项是特称量词命题,故错误. B 选项是全称量词命题,用反证法证明, 因为()()2222222110a b a b a b +-++=-++≥所以对,a b ∀∈R ,()2221a b a b +--≥,故B 正确.故选:B. 5.【答案】A 【分析】设直角三角形的两个直角边为x ,y ,由此可得2225x y +=,又面积1=2S xy ,利用基本不等式可求面积的最大值. 【详解】设直角三角形的两个直角边为x ,y ,则2225x y +=, 又1=2S xy由基本不等式可得221125=2224x y S xy ⎛⎫+≤= ⎪⎝⎭(当且仅当x =y 立) 故选:A.6.B 【分析】由110a b <<得出0b a <<,再利用不等式的基本性质和基本不等式来判断各选项中不等式的正误. 【详解】110a b<<,0b a ∴<<,0b a ∴->->,22a b ∴<,A 选项正确;1b b a a-=>-,B 选项错误;由基本不等式可得2baa b +≥=,当且仅当1b a =时等号成立,1b a >,则等号不成立,所以2baa b +>,C 选项正确;0b a <<,2b ab ∴>,D选项正确.故选:B.【点睛】本题考查不等式正误的判断,涉及不等式的基本性质和基本不等式,考查推理能力,属于基础题.7.C 【分析】由题意,p ⌝为真命题,进而可得p ⌝为真命题时的充要条件,再根据充分与必要条件的性质判断选项即可. 【详解】命题2:R,240p x ax ax ∃∈+-≥为假命题,即命题2:R,240p x ax ax ⌝∀∈+-<为真命题.首先,0a =时,40-<恒成立,符合题意; 其次0a ≠时,则0a <且2(2)160a a ∆=+<,即40a ,综上可知,40a .结合选项可得,{}{}3040a a a a -≤≤⊆-<≤,即:30a -≤≤是40a 的一个充分不必要条件. 故选:C8.C 【分析】记U A B =⋃,然后分析每个选项对应的集合的运算并求解出结果进行判断即可.【详解】因为{}1,2,4A =,{}2B x x A=∈,所以{}2,B =--,记{}2,U AB ==--,对于A 选项,其表示(){}4U A B =,不满足;对于B 选项,其表示(){}2,U A B =--,不满足;对于C 选项,其表示(){2,U A B =--,满足;对于D 选项,其表示{}1,2A B =,不满足;故选:C.9.BC 【分析】结合元素与集合的关系,集合元素的互异性来求得a 的值.【详解】依题意5A ∈,当215a+=时,2a =或2a =-,若2a =-,则{}{}2,5,12,0,4A B ==,符合题意;若2a =,则220a a --=,对于集合B ,不满足集合元素的互异性,所以2a =不符合.当245a a -=时,1a =-或5a =,若1a =-,则212a +=,对于集合A ,不满足集合元素的互异性,所以1a =-不符合.若5a =,则{}{}2,26,5,0,18A B ==,符合题意. 综上所述,a 的值为2-或5. 故选:BC10.BCD 【分析】由已知结合基本不等式及其变形形式分别检验各选项即可判断.【详解】由正实数,a b 满足1a b +=,则2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以ab 的最大值为14,故A 选项错误;由()222a b a b =+++=12a b ==时,,故B 选项正确;由11111(33)22322a b a b a b a b a b ⎛⎫+=++ ⎪++++⎝⎭111[(2)(2)]3221222322a b a b a b a b a b a b a b a b ⎛⎫=++++ ⎪++⎝⎭++⎛⎫=++ ⎪++⎝⎭14233⎛≥+= ⎝,当且仅当12a b ==时,等号成立,所以1122a b a b +++有最小值43,故C 选项正确;由222222()1()2()2222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以22a b +有最小值12,故D 选项正确. 故选:BCD.11.BCD 【解析】举反例说明选项A 错误;利用不等式的性质证明出选项B ,C 正确;利用作差法证明出选项D 正确.【详解】选项A :当取1a =,1b =-时,11b a <,∴本命题是假命题. 选项B :已知0a b >>,0cd <<,所以110dc->->,∴abd c ->-,故abd c <,∴本命题是真命题. 选项C :222211000a b a b a b >>⇒>>⇒<<,∵0c <,∴22cca b >,∴本命题是真命题. 选项D :111100b aa b a b ab->⇒->⇒>, ∵a b >,∴0b a -<,∴0ab <,∴本命题是真命题. 故选:BCD【点睛】本题考查不等式的性质,考查命题的真假,属于基础题. 12.AB 【解析】根据假命题的否定为真命题可知3x M x ∀∈≤,,又x M x x ∀∈>,,求出命题成立的条件,求交集即可知M 满足的条件.【详解】3x M x ∃∈>,为假命题,3x M x ∴∀∈≤,为真命题,可得(,3]M ⊆-∞,又x M x x ∀∈>,为真命题, 可得(,0)M ⊆-∞, 所以(,0)M ⊆-∞,故选:AB【点睛】本题主要考查了含量词命题的真假,集合的包含关系,属于中档题.13.20,30x x ax ∃≥-+≤【分析】直接利用存在量词写出其否定即可. 【详解】因为命题2:0,30p x x ax ∀≥-+>, 所以其否定p ⌝:20,30x x ax ∃≥-+≤.故答案为:20,30x x ax ∃≥-+≤.14.()5,6【分析】根据充分与必要条件,可得p ,q ,r 中集合的包含关系,再根据区间端点列式求解即可.【详解】易得:610p x ≤≤.记p ,q ,r 中x 的取值构成的集合分别为A ,B ,C ,由于r 是p 的必要不充分条件,r 是q 的充分不必要条件,则AC ,CB ,则016210a a a >⎧⎪≤<⎨⎪>⎩,解得56a <<,即实数a 的取值范围是()5,6.故答案为:()5,615.{}1,2【分析】先求出集合B 中的元素,再由C 的子集有4个,可知集合C 中只有2个元素,然后分1,2a a ==和1a ≠且2a ≠三种情况求解即可.【详解】由2(1)0x a x a -++=,得1x =或x a =, 因为集合C = A B ,且C 的子集有4个, 所以集合C 中只有2个元素, ①当1a =时,{}1B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以1a =满足题意,②当2a =时,{}1,2B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以2a =满足题意, ③当1a ≠且2a ≠时,{}1,B a =, 因为{}1,2A =,所以{}1,2,A B a =,即{}1,2,C a =,不合题意,综上,1a =或2a =,所以实数a 的取值集合为{}1,2, 故答案为:{}1,216.32-【分析】由题知3a <,进而分0<<3a 和0a <两种情况,结合基本不等式求解即可.【详解】解:因为3a b +=,0b >,所以30b a =->,即3a <.当0<<3a 时,11173||99999a ab a b a a b a b a b ++=+=++≥+, 当且仅当34a =时取等号,所以当34a =时,13a a b+取得最小值79;当0a <时,11139999a a b a b a a ba b a b ++=--=---≥-+59=, 当且仅当32a =-时取等号,所以当32a =-时,13a a b+取得最小值59.综上所述,当32a =-时,13a a b+取得最小值.故答案为:32-17.(1)11a b <(2)()()()()3746x x x x ++<++【分析】(1)利用差比较法比较大小. (2)利用差比较法比较大小.(1)11110,0,0,0,b a b a ab b a a b ab a b-<<>-<-=<<.(2)()()()()()()()()4630,737634x x x x x x x x ++=-<-+<+++++.18.(1){|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或;(2)52m ≤. 【分析】(1)由并集的定义及补集的定义进行计算即可; (2)BC C =等价于C B ⊆,按B =∅和B ≠∅讨论,分别列出不等式,解出实数m 的取值范围. (1)∵集合{|15}A x x =<≤,{}|04B x x =<<, ∴{|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或.(2) 因为BC C =,所以C B ⊆,当B =∅时,则121m m +≥-,即2m ≤;当B ≠∅时,则12110214m m m m +<-⎧⎪+≥⎨⎪-≤⎩,解得522m <≤;综上,实数m 的取值范围为52m ≤.19.(1)8,7a b ==;(2)11(,)(,)87-∞-⋃+∞【分析】(1)由解集得到方程20x ax b -+=的根,利用韦达定理可求,a b .(2)利用(1)中的结果并把分式不等式转化为一元二次不等式可求解集.【详解】(1)因为不等式20x ax b -+<的解集是{}17x x <<. 所以20x ax b -+=的解是1和7.故1771ab +=⎧⎨⨯=⎩,解得 87a b =⎧⎨=⎩. (2)由101ax bx +>-得81071x x +>-,即()()81710x x +->, 解得18x <-或17x >,故原不等式的解集为11(,)(,)87-∞-⋃+∞. 20.(1)64;(2)18.【解析】(1)由280x y xy +-=,得到821x y +=,利用基本不等式,即可求解. (2)由280x y xy +-=,得821x y +=,根据8282()()10y xx y x y x y x y +=++=++,结合不等式,即可求解.【详解】(1)由280x y xy +-=,可得821x y +=,又由0,0x y >>,可得821x y =+≥,当且仅当82x y =,即4x y =时,等号成立,即64xy ≥, 所以xy 的最小值为64. (2)由280x y xy +-=,得821x y +=,因为0,0x y >>,可得8282()()101018y x x y x y x y x y +=++=++≥+, 当且仅当82y xx y =,即12,6x y ==时等号成立,所以x y +的最小值为18.【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”:(1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 21.(1)[0,254] (2){}|2a a <【分析】(1)首先求解集合A ,再求二次函数的值域;(2)首先将不等式,参变分离得2452x x a x -+-<-,转化为求函数的最值,即可求解. (1)2230x x --≤等价于()()2310x x -⋅+≤,.解得312x -≤≤所以3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭. ∴二次函数223253424y x x x ⎛⎫=-++=--+ ⎪⎝⎭, 函数在区间31,2⎡⎤-⎢⎥⎣⎦单调递增,所以当32x =时,y 取最大值为254, 当1x =-时,y 取最小值为0,所以二次函数234y x x =-++.x A ∈的值域是[0,254]. (2)由(1)知3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭ ∵()24520x a x a +-+->恒成立. 即24520x ax x a +-+->恒成立.∴()2245x a x x -⋅>-+-恒成立. .∵312x -≤≤.∴20x -<.()()222214545122222x x x x x a x x x x x-+-+--+∴<===-+----∵20x ->,∴()1222x x-+≥-.. 当且仅当122x x -=-且312x -≤≤时,即1x =时,等号成立,. ∴2a <,故a 的取值范围为{}|2a a < 22.(1)31a b ==, (2)32a -≤<-或45a <≤ (3)53a ≥-【分析】(1)根据二次函数与对应不等式和方程的关系,利用根与系数的关系,即可求出a 、b 的值;(2)由()1f x b <-得()23220x a x a -+++<,令()()2322h x x a x a =-+++,求出()0h x <解集中恰有3个整数时a 的取值范围即可.(3)由()f x b ≥在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立,化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,,()2111t t g t t t t+-==-+,求出()g t 的最大值,进一步求出实数a 的取值范围;(1)解:因为函数()()2321f x x a x a b =-++++,a ,b R ∈,又()0f x >的解集为{2|x x <或4}x >,所以2,4方程()23210x a x a b -++++=的两根,由()2432421a a b ⎧+=+⎨⨯=++⎩, 解得31;a b ==, (2)由()1f x b <-得()23220x a x a -+++<, 令()()2322h x x a x a =-+++,则()()()()12h x x a x =-+-,知()20h =,故()0h x <解集中的3个整数只能是3,4,5或1-,0,1;①若解集中的3个整数是3,4,5,则516a <+≤,得45a <≤;②解集中的3个整数是1-,0,1;则211a -≤+<-,得32a -≤<-;综上,由①②知,实数a 的取值范围为32a -≤<-或45a <≤. (3)因为函数()()2321f x x a x a b =-++++,a ,b R ∈,由()f x b 在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立, 化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,, 设()2111t t g t t t t +-==-+,因为在()g t 在[]53--,上单调递增, 即()153133g t --+=--,所以53a ≥-. 23.(1)40吨(2)不会获利,700万元【分析】(1)根据已知条件,结合基本不等式的公式,即可求解.(2)当3050x ≤≤时,该工厂获利S ,则()2220401600(30)700S x x x x =--+=---,再结合二次函数的性质,即可求解. (1)由题意可得,二氧化碳的平均处理成本1600()40yP x x x x==+-,3050x ≤≤,当3050x ≤≤时,1600()404040P x x x =+-≥=, 当且仅当1600x x=,即40x =等号成立, 故()P x 取得最小值为(40)40P =,故当处理量为40吨时,每吨的平均处理成本最少. (2)当3050x ≤≤时,该工厂获利S , 则()2220401600(30)700S x xx x =--+=---,当3050x ≤≤时,max 7000S =-<,故该工厂不会获利,国家至少需要补贴700万元,该工厂不会亏损.。

相关文档
最新文档