可交换矩阵的性质与求法(1)
自考复习专题:线性代数第2章

第二部分矩阵本章概述矩阵是线性代数的重要内容,也是研究线性方程组和其它各章的主要工具。
主要讨论矩阵的各种运算的概念和性质。
在自学考试中,所占比例是各章之最。
按考试大纲的规定,第二章占26分左右。
而由于第三,四,五,六各章的讨论中都必须以矩阵作为主要工具,故加上试题中必须应用矩阵运算解决的题目的比例就要占到50分以上了。
以改版后的三次考试为例,看下表按考试大纲所占分数07.4 07.7 07.10 直接考矩阵这一章的26分左右31分34分38分加上其它章中必须用矩阵运算的所占分数51分53分67分由此矩阵这一章的重要性可见一般。
2.1 线性方程组和矩阵的定义2.1.1 线性方程组n元线性方程组的一般形式为特别若,称这样的方程组为齐次方程组。
称数表为该线性方程组的系数矩阵;称数表为该线性方程组的增广矩阵。
事实上,给定了线性方程组,就惟一地确定了它的增广矩阵;反过来,只要给定一个m×(n+1)阶矩阵,就能惟一地确定一个以它为增广矩阵的n个未知数,m个方程的线性方程组。
例1 写出下面线性方程组的系数矩阵和增广矩阵【答疑编号12020101】例2 写出以下面矩阵为增广矩阵的线性方程组【答疑编号12020102】2.1.2 矩阵的概念一、矩阵的定义定义2.1.1 我们称由mn个数排成的m行n列的数表为m×n阶矩阵,也可记为为矩阵A第i行,第j列的元素。
注意:矩阵和行列式的区别。
二、几类特殊的矩阵1.所有元素都为零的矩阵称为零矩阵,记为O。
例如都是零矩阵。
2.若A的行数m=1,则称为行矩阵,也称为n维行向量。
若A的列数n=1,则称为列矩阵,也称为m维列向量。
3.若矩阵A的行数=列数=n,则称矩阵A为n阶方阵,或简称A为n阶阵。
如n个未知数,n个方程的线性方程组的系数矩阵。
4.称n阶方阵为n阶对角阵。
特别若上述对角阵中,,称矩阵为数量矩阵,如果其中λ=1,上述数量阵为,称为n阶单位阵。
5.上(下)三角阵称形如的矩阵为上(下)三角矩阵。
线性代数习题册参考解答

第一章 行列式1、求下列排列的逆序数,并确定它们的奇偶性。
(1)1347265;(2)321)1( -n n 。
【解】(1)62130000)1347265(=++++++=τ,偶排列;(2)2)1()1(210]321)1([-=-++++=-n n n n n τ。
当14,4+=k k n 时,2),14(22)1(-=-k k k n n 当34,24++=k k n 时,4)(12(2)1(+=-k n n 排列。
■2、用行列式定义计算x x x xx f 111231112)(=中4x 和3x 的系数,并说明理由。
含4x 2;含有3x ,(4,4)的元素乘积项,而10=+,故3x 的系数为1-611612031102251611311061202251611301160212152323112241324--=---=--=↔↔++-r r c c r r r r r r D9300003003110225123242-=--=--r r r r 。
■4、求84443633224211124=D 。
【解】性质(三角化法)+行和相等的行列式:211112111121111224844436332242111243212432434r r r r r r r D +++÷÷÷===1201010*********12014,3,2==-=r r k k 。
■5、求x x m x D n -=111mD n n c c c nn-=+++ (21mm m x ni i c x c nk k k ---=∑=-=0101001)(1,,3,2111))((-=--=∑n ni i m m x 。
■6、求nn a a a D1001011110211=+,其中021≠n a a a 。
【解】箭形行列式(爪形行列式):利用对角线上元素将第一行(或列)中元素1化为零。
线性代数ch1-2

,
B
B11
B1r
As1 Asr
Bs1 Bsr
其中Aij与Bij的行数相同, 列数相同, 那么
A
B
A11
B11
A1r
B1r
.
As1 Bs1 Asr Bsr
2
设
A
A11
A1r
,
为
数,
那
末
As1 Asr
A
A11
A1r
.
As1 Asr
3 设A为m l矩阵, B为l n矩阵,分块成
(2)只有当第一个矩阵的列数等于第二个 矩阵的行数时,两个矩阵才能相乘,且矩阵相乘 不满足交换律,消去律.
(3)矩阵的数乘运算是该数乘以矩阵中每 一个元素.
(4) 对角阵,对称阵都是方阵,方阵才有幂方。
思考题
设A与B为n阶方阵,问等式
A2 B2 A BA B
成立的充要条件是什么?
思考题解答
a 0,
b 1,
c
1,
d 2.
BA
2 1 0 1 0 1 2 1 1 0, 1 01 2 1 2 1 0 0 1
所以
A1 0 1. 1 2
例3 设三阶矩阵A, B满足关系 :
o 1 2
A1BA 6A BA,且A
14
求B.
o
1 7
2
解
依题意,显然A可逆,且
2 1
2
1
2 1
2 1
2 1
2
1
2 1
2 1
2 1
2
, An
A当n为 奇 数 I当n为 偶 数
1 2
1
2 1
,
可交换矩阵的性质及应用

可交换矩阵的性质及应用
孟献青;张英;乔世东
【期刊名称】《山西大同大学学报(自然科学版)》
【年(卷),期】2013(029)002
【摘要】如果矩阵的乘积满足交换律,则称矩阵是可交换的.文章研究了可交换矩阵的性质,并给出了可交换矩阵的一些应用.
【总页数】3页(P6-8)
【作者】孟献青;张英;乔世东
【作者单位】山西大同大学数学与计算机科学学院,山西大同 037009;山西大同大学数学与计算机科学学院,山西大同 037009;山西大同大学数学与计算机科学学院,山西大同 037009
【正文语种】中文
【中图分类】R742.1
【相关文献】
1.可交换矩阵空间上矩阵函数的一些性质 [J], 马翠云
2.线性变换及矩阵可交换的性质与应用 [J], 曾梅兰
3.矩阵可交换的条件及可交换矩阵的性质 [J], 戴立辉;颜七笙;刘龙章
4.与矩阵A可交换的全体矩阵的性质 [J], 丁晓业;李红菊;何健
5.可交换矩阵和反可交换矩阵的几个性质 [J], 贾经纬; 唐俊
因版权原因,仅展示原文概要,查看原文内容请购买。
矩阵的运算

第四章矩阵§1 概念§2 矩阵的运算教学目的:使学生学会矩阵的加、减、乘法运算及运算条件。
教学重点:矩阵的乘法课时:4教学方式:讲练结合教学内容:一、回忆矩阵的概念并举例二、矩阵的运算:(一)加法1、条件:两个矩阵的行数、列数分别相等。
2、法则:对应元素相加3、性质:(1)结合律(2)交换律(3)零矩阵(4)负矩阵注:可用负矩阵定义矩阵的减法(二)数乘1、法则:用这个数乘以矩阵的每一个元素2、性质:(1)lA=(+)k+kAAl(2)kB=+)k+(kABA(3)A()(=k)kllA(4)A⋅1A=(5))(kB A B kA AB k ==)()((三)乘法1、条件:第一个矩阵的列数等于第二个矩阵的行数,其结果矩阵的行数与第一个矩阵的行数相同,列数与第二个矩阵的列数相同。
2、法则:第一个矩阵的第i 行与第二个矩阵的第j 列的对应元素相乘后再相加即为乘积矩阵的第i 行第j 列的元素。
问:如果矩阵A 与矩阵B 可以相乘,那么矩阵B 与矩阵A 是否可以相乘?不一定。
即使矩阵A 与矩阵B 可以相乘,矩阵B 与矩阵A 也可以相乘,那么其结果是否相同?不一定。
例:333443101726210765121113121430415003112101⨯⨯⨯⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫⎝⎛---=AB 444334267321426471165231415003112101121113121430⨯⨯⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛--=BA从而交换律不成立。
3、性质:(1)结合律(2)关于加法的左、右分配律成立 4、特殊矩阵:(1)n 级单位矩阵:主对角线上是1,其余元素全部为0的矩阵。
它与任何可以与之相乘的矩阵的乘积都是那个矩阵本身。
(2)n 级数量矩阵:即主对角线上是同一个数k ,其余元素全部为0的矩阵。
与任何可以与之相乘的矩阵的乘积都等于数k 乘以该矩阵。
《线性代数》课件-第3章 矩阵

§3.1 矩阵的运算(1)第三章矩阵矩阵的加法定义1111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b a b a b a b +++⎡⎤⎢⎥+++⎢⎥+=⎢⎥⎢⎥+++⎣⎦A B 设有两个 矩阵 和 n m ⨯[]ij a =A [],ij b =B 那么矩阵与 的和 A B 记作 规定为,+A B 只有当两个矩阵是同型矩阵时,才能进行加法运算.(可加的条件)注矩阵的加法235178190, 645, 368321-⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦设矩阵矩阵则A B 213758169405336281+-++⎡⎤⎢⎥=+-++⎢⎥⎢⎥+++⎣⎦3413755.689⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦对应元相加例1+A B矩阵的加法;+=+A B B A ()()++=++A B C A B C ;+=+=;A OO A A 矩阵加法的运算律 [],ij a =A 设矩阵 (交换律)(结合律)(加法单位元)(1)(2) (3) (4) 规定 [],ija -=-A 称之为 的负矩阵.A ()(),+-=-+=A A A A O ().-=+-A B A B (加法逆元)规定矩阵的减法为:+=+⇒=.A B A C B C (5) 加法消去律成立,即数量乘法111212122211[].n nij m n m m mn ka ka ka kaka ka k ka ka ka ka ⨯⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦A 规定数 k 与矩阵 A 的数量乘积为定义2数量乘法()();k l kl =A A ()k l k l +=+A A A ;()k k k +=+.A B A B 数量乘法的运算规律(1) (2)(3)矩阵的加法和数量乘法统称为矩阵的线性运算 .设为A , B 为矩阵,k, l 为数: m n ⨯矩阵的乘法(矩阵与矩阵相乘)定义3设 是一个 矩阵, m n ⨯[]ij a =A 记作 C =AB.[]ij b =B 是一个 矩阵, n s ⨯规定矩阵 与 的乘积是一个 的矩阵 A Bm s ⨯[],ij c =C 其中 11221nij i j i j in nj ikkjk c a b a b a b ab ==+++=∑()1,2,;1,2,,,i m j s ==矩阵的乘法1212[,,,]j j i i in nj b b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1122i j i j in nj a b a b a b =+++1n ik kj ij k a b c ===∑行乘列法则可乘条件:左矩阵的列数=右矩阵的行数11211300514-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦设,A 034121.311121⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦B 例20311212113031051412⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦-⎣⎦C AB .⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦5-61022-17乘积矩阵的“型” ? A m n ⨯B n s ⨯C m s⨯=1111⎡⎤=⎢⎥--⎣⎦设,A 例300,00⎡⎤=⎢⎥⎣⎦AB 22,22⎡⎤=⎢⎥--⎣⎦BA .BA AB ≠故1111-⎡⎤=⎢⎥-⎣⎦,B 则矩阵的乘法(1)矩阵乘法一般不满足交换律; 若 ,则称矩阵 与是乘法可交换的. =AB BA A B 定义3=AB O ⇒;==或A O B O (2) ()≠-=若而A O A B C O,⇒=B C.注意:(),+=+A B C AB AC ();+=+B C A BA CA ()()()k k k ==AB A B A B (其中 k 为数);n m ;m n m n m n ⨯⨯⨯==A E E A A 矩阵的乘法()();=AB C A BC 矩阵乘法的运算规律 (1) (2) (3) (4) (结合律) (左分配律)(右分配律)(乘法单位元)11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩,,,11121121222212n n m m mn n a a a x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111122121122221122n n n n m m mn n a x a x a x a x a x a x a x a x a x ⎡⎤+++⎢⎥+++⎢⎥⎢⎥⎢⎥+++⎢⎥⎣⎦12m b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦=AX =β⇔=(矩阵形式)AX β ==00(齐次线性方程当时组的矩阵形式),AX β .例4cos sin ,,sin cos OP ϕϕϕϕ-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦设矩阵平面向量x A y cos ,sin ,x r y r θθ=⎧⎨=⎩于是x y ⎡⎤⎢⎥⎣⎦A cos sin sin cos x y ϕϕϕϕ-⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦cos()sin()r r θϕθϕ+⎡⎤=⎢⎥+⎣⎦例5cos cos sin sin cos sin sin cos r r r r θϕθϕθϕθϕ-⎡⎤=⎢⎥+⎣⎦,,OP r θ设的长度为幅角为则cos sin sin cos x y x y ϕϕϕϕ-⎡⎤=⎢⎥+⎣⎦111x OP y ⎡⎤==⎢⎥⎣⎦.OP ϕ这是把向量按逆(或顺)时针旋转角的旋转变换xyopp 1θϕ11cos sin ,sin cos .x x y y x y ϕϕϕϕ=-⎧⎨=+⎩(线性变换)小结(1)只有当两个矩阵是同型矩阵时,才能进行加法运算;(2) ≠=若而A O AB AC ,⇒;=B C 且矩阵相乘一般不满足交换律;(3)只有当左矩阵的列数等于右矩阵的行数时,两个矩阵才能相乘,矩阵的数乘运算与行列式的数乘运算不同; 可交换的典型例子:同阶对角阵;数量阵与任何同阶方阵. k n E ≠=若而A O BA CA ,⇒=B C.( 4 )§3.1 矩阵的运算(2)方阵的幂·矩阵多项式·迹第三章矩阵定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.一般地, (),,.AB A B A B ⨯≠∈k k k n n注2 注3时,以下结论成立:AB BA =当 (1)();AB A B =kkk222(2)()2;A B A AB B +=++22(3)()();A B A B A B +-=-,,A B ⨯∈n n11(4)()C C .A B A AB AB B --+=+++++mmm k m kkmmm例1解 ,A ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2121214=01010112.01A A ⎡⎤=⎢⎥⎣⎦设求其中为正整数mm ,()32141216,010101A A A ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()122.01A ⎡⎤=≥⎢⎥⎣⎦mm m 由此归纳出方阵的幂112(1)1212,010101A A A --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦k k k k ()122.01A ⎡⎤=≥⎢⎥⎣⎦m m m 用数学归纳法证明当 时,显然成立.2=m 假设 时成立, 1=-m k 所以对于任意的m 都有=m k 则时,方阵的幂解法二 利用二项式定理122()m m m mA EB EC B=+=+202,.00⎡⎤=⎢⎥⎣⎦B B O 其中=且这种方法适用于主对角元全相同的三角形矩阵求幂 2,=+A E B ,E B 显然与乘法可交换由二项式定理有2E B=+m 100212.010001m ⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦m1110()A A A A E --=++++m m m m n f a a a a 为方阵 A 的矩阵多项式.例如 2()524,f x x x =--12,11⎡⎤=⎢⎥-⎣⎦A 22524A A E --1412101116524211101811--⎡⎤⎡⎤⎡⎤⎡⎤=--=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎣⎦定义2A ⨯∈设n n ,称()A =f:注f g g fA A A A()()()()运算性质 定义3设A 是n 阶方阵,称A 的主对角线上所有元素之和为方阵的迹(trace ),记为11221tr .A ==+++=∑nnn ii i a a a a (1) tr()tr tr ;A B A B ⨯⨯⨯⨯+=+n n n n n n n n (2) tr()tr();A A ⨯⨯=n n n n k k (3) tr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m ntr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m n设A , B 为 n 阶方阵, 求证.AB BA E -≠n tr()tr()tr()0,--AB BA =AB BA = 证明: tr()0,n n =≠E 故 . n -≠AB BA E 例2§3.1 矩阵的运算(3)矩阵的转置·方阵的行列式第三章矩阵例 123,458A ⎡⎤=⎢⎥⎣⎦T ;A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦142538叫做 的转置矩阵, m n A ⨯m n A ⨯把矩阵的行依次变为同序数的列得到的新矩阵, 定义1T A 记作. 思考 T A A 与的关系?⨯→⨯的变化型m n n m(1) : '(,)=元的变化ij ji i j a a (2) :TA A 与的关系?矩阵的转置()()T T 1;=A A ()()T T T 2;+=+A B A B ()()T T 3;A A =k k 注 性质(2)和(4)可推广到有限个矩阵的情形()()T T T T12122;s s '+=+A A ++A A A ++A ()()T T T T 12114.s s s -'=A A A A A A ()()T T T 4.=AB B A (倒序)矩阵的转置与其它矩阵运算的关系若矩阵A 满足 A A =T ,()n ,,,j ,i a a ji ij 21==201035.157A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦例为对称阵如注:对称矩阵为方阵,元素以主对角线为对称轴 对应相等 .例1 (对称矩阵)则称 A 为对称矩阵 .注 对任意矩阵 A,和 均是对称矩阵. T A A T AA对称矩阵的数乘、和、乘积是否为对称矩阵?思考:练习1 对任意实矩阵 A, 若 则 . T A A =O ,A =O练习2 若实对称矩阵 A 满足 则 . 2A =O ,A =O 设A ,B 为同阶实对称矩阵,则AB 为实对称矩阵当且仅当AB =BA .若矩阵A 满足 A A =-T ,013105.350A ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦例为反对称阵如注:反对称矩阵为方阵,且例2 (反对称矩阵)则称 A 为反对称矩阵 . 0-≠⎧=⎨=⎩ji ij a i j a i j证明任一 n 阶方阵 A 都可表示成一个对称矩阵与一个反对称矩阵之和. 证明: ()T T A A +T A A =+()T T A A -T A A =-22T T A A A A A -++=证毕.例3所以 为对称矩阵.T A A +T ,A A =+T ()A A =-- 所以 为反对称矩阵. T A A -方阵的行列式设 A 与 B 都是数域 上的 n 阶方阵, 则()T1;A A =()3;AB A B =()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系方阵的行列式n n n n n A O E B ⨯⨯-A B =n n nO AB E B ⨯=-2(1)n n E AB =--2(1)n n AB +=-.AB =证明: 22222A O E B ⨯⨯-111221221112212200001001a a a a b b b b =--12111111122122111221220001001a a b a b a a b b b b =--111112211112122221221112212200001001a b a b a b a b a a b b b b ++=--111112211112122221112221211222221112212200001001a b a b a b a b a b a b a b a b b b b b ++++=--222O AB E B ⨯=-设 A 与 B 都是数域 上的 n 阶方阵, 则 ()T 1;A A =()3;AB A B =(可推广到有限个) 一般的, +.A B A B ≠+特别地 ,A A =mm ()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系 其中m 为非负整数.24000200,00430034A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦设2.A 求k 22A A =k k2242443()(4(25))10.0234=⋅=⋅-=-k k k 解 例4证明奇数阶反对称矩阵的行列式为零.例5§3.2 初等矩阵第三章矩阵定义1elementary matrix 阶单位矩阵经过一次矩阵的初等变换所得到的矩阵称为阶即初等矩阵n n (),E B −−−−−→一次初等变换行或列为一个初等矩阵n 1,23100010010100.001001E B ⎡⎤⎡⎤⎢⎥⎢⎥=−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦对换行为一个初等矩阵例如初等矩阵的类型及表示方法1[()],0E ≠初等倍乘矩阵n i k k ) .0E ≠即以数乘单位矩阵的第行(或第列).n k i i i i r c 11[()]11E E ⨯⨯⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦kn n ki k k 或i ←第行初等矩阵的类型及表示方法2[()],0E +≠初等倍加矩阵n i j k k ) .0E ≠即将的某行元素的倍加到另一行(或列)上去.n k 11[())]11E E ++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i jj ir kr n n c kc k i j k 或←i 第行←j 第行[()]E >+n i j k i j 当时,为下三角 .初等矩阵的类型及表示方法3[,],E 初等对换矩阵n i j ) E n 即对调的某两行或某两列.11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行11[()]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n i k k i ←第行1[()],0E ≠初等倍乘矩阵n i k k ) .2[()],0E +≠初等倍加矩阵n i j k k ) .11[())]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n k i j k ←i 第行←j 第行()i j <3[,],E 初等对换矩阵n i j ) 11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行注初等矩阵的转置矩阵仍为同类型的初等阵.Ti k i k=1)[()][()];E En nT+=+i j k j i kE E2)[()][()];n nTi j i j=3)[,][,].E En n初等矩阵的应用揭示: 初等矩阵与矩阵的初等变换的关系.11121314212223243132333411⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦a a a a a a a a k a a a a 111213142122232313233434⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦k a a a a a a a a a ka ka ka 111213142122232431323334111a a a a a a a a k a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111214212221323343133234a a a a a a a a a ka ka a k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦()i k A i r k ⨯相当于以数乘的第行;111211212[()]E A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦n m m m m i i in n a a a i k a ka ka a a a k i ←第行[()]E A 左以矩阵乘m i k ,[()]n E i k A 右乘而以矩阵,其结果结论: 相当于以数k 乘A 的第i 列 .()i c k ⨯。
第2章 2.2矩阵的运算

解
X 1 (B A) 2
1 2
4 4 1
6 4 2
4 2
7
4 2 2
2
3 2
2
2 2 1 1
X 1B1A 22
1 2
1
7 2
1
二、矩阵的乘法
引例 某电子集团生产三种型号的彩电,第一季
度各40万台, 20万台, 30万台, 第二季度各30万台, 10 万台, 50万台, 每万台的利润分别是400万元, 300万 元, 500万元, 第一,二季度各类产品的利润是多少 ?
对应⑴可以用矩阵形式表示为 AX B ,称为矩阵
方程。其中
a11 a12 a1n
A
a21
a22
a2n
am1 am2 amn
,X
x1 x2
xn
,
b1
B
b2
。
bm
A称为系数矩阵,A ( A | B) 称为方程组的增广矩阵 对应齐次方程组⑵可用矩阵形式表示为 AX O
-18-
例4:计算下列矩阵的乘积.
1 1 1 1
1 1
0 0
0 0
-21-
比较:
Ø在数的乘法中,若 ab = 0 a = 0 或 b = 0
在矩阵乘法中,若 AB = O A = O 或 B = O 两个非零矩阵乘积可能为O。
Ø在数的乘法中,若 ac = ad,且 a 0 c = d (消去律成立)
在矩阵乘法中, 若 AC = AD, 且 A O C = D (消去律不成立)
例1
A
1 2
0 1
2 3
,
B
1 1
3 0
4 5,
求 3A 2B
矩阵的运算及其性质

cij ai1b1 j ai2b2 j aisbsj aikbkj (i 1,2,, m;j 1,2,, n) k 1 由定义可知,矩阵 A 的列数与 B 的行数相等时,两个
矩阵才能相乘. C (cij )mn 的第 i 行第 j 列元素等于矩阵的 第 i 行与矩阵 B 的第 j 列对应元素乘积之和.
1 2
例 2.2.4
设 A 3 0
1 4
,
B
2 4
3 1
,求
AB
.
解
1 AB 3
0
2
1 4
2 4
1 2 2 4
3 1
3 2 (1) 4 0 2 4 4
1 3 21 10
3
3
(1)
1
2
0 3 41 16
5 .
8 4
2
例 2.2.5
设 A 1
2
1
,
B
1
,求
AB
,
BA
.
大连理工大学出版社
目录
1.矩阵的加(减)法运算 2.矩阵的数乘运算 3.矩阵的乘法运算 4.矩阵的转置 5.方阵的行列式
1. 矩阵的加(减)法运算
定义 2.2.1 设 A (aij ), B (bij ) 都是 m n 矩 阵(此时称这两个矩阵为同型矩阵).若
aij bij (i 1,2,, m; j 1,2,, n) ,则称矩阵 A 与 B 相 等,记作 A B .
a11 a12 a1n
a11 a21 am1
, A
a21
a22
a2n
AT
a12
a22
am
2
.
am1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南平师专学报
年第期
自然科学
版
可交换矩阵的性质与求法
姜
景
莲
满足乘法交换律的方阵称为可交换矩阵高等代数中
可交换矩阵具有一些特殊
的性
质对于给定的方阵求与可交换的矩阵要运用若当标准形和矩阵方程的理论
一可交
换矩阵的特殊运算性质
若
矩阵任是可交换的则满足
平方差方式
一一一
完全平方和差公式
士
士
矩阵积的乘幂
公式
矩阵乘法的左右分配律也可以合二为一即若和可交换则
二二
一
此外可以得到一些
结论
若为五阶对称方阵且则也是阶对称
方
阵
若为阶对合方阵且一则也是阶对合
方阵
若为阶幂等矩阵且一。则也是幂等
的
任
若则至少有一个公共的特征向
量
二可交换矩阵的
求法
若一,…,其中
…
则与任意同阶方阵可
交换
若,…。护其中
…
则与可交换的矩阵一定是对角矩
阵
一般地对于任意方阵任可化为若当标准
型
,
入
一
’
其中
入
入
,
一
“
‘”’‘
气
’
入
入
…
一
工
吧’为阶单位方阵吧
’
二
‘
…
即存在可逆矩阵使入‘这样和与可交换的矩阵应
满
足
即
入‘入
一
‘
把等式两边同时左乘’右乘得
到
入
‘
一
‘
入
则’与入可交换的矩阵记作
父
‘
可由以下定理求得
定
理
设
飞
入
,
竹
,
耗
块
一
…
则矩阵方程入,入的一般解有以下结构把写成分块矩
阵
、
一
甲其中呻为,。
矩阵块
①
若入护饰则,为零
矩阵
②
若礼护饰则够为任意的下上三角形
矩
阵
证
明
把写成与准对角形矩阵入相对应的分块矩
阵
,
此处、为,,阶矩
阵
块
则按照分块矩阵的乘法规则方程入一入可表示成,个矩阵方程
凡
‘’‘
气
,
。。
入
,
‘,,‘
,
,
。
一
…
设
‘,一‘
殊
,
二
,
即
入
。一凡〕。一、
一
担
,
……
。
…
可能出现两种
情
形
①当凡护朴时将等式两边同乘以标一凡而在等式
右边将
朴一凡甲用
沉
、
一
,
代入重复这一步骤一次得到以下关系式
入。一入
犷
,
二
习一比
,
压
一
又
二
,二,,
……
在式中取,一则式右端的和式中每一个项至少满足以下关系式的
一
个
口
。
由有或
石
一
。
凡
并标
叩
一
②当礼一林时
式
变为
凡
,
甲
……
设,二玩玩,,则方程与以下方程
同
解
专专
‘
其
中
二…一
…
,
,
中位于与对角线平等的每一条线上的元素彼此相等且
七仁,一认,一仁
,
屯
,
,
当
,
时
廿
一
甲
,
。
雄
喘味
︸
一
两
卜
四
险
其中,命…矛”为任意参数
当
,
时
皿
当
,
时
一
军
二
,
,
‘
,
中任意参数的个数等于数与,中较小的一个
三
实例
已
知阶方阵的若当标准型
为
,
凡
入
一
入
入
一
人
入
一
入
入
入
凡
孟裤轰
即存在可逆使
一
入
’
则的初等因子为
入一入
入
一入,入一从,沃一
入
设与入可交换的矩
阵
一
‘
,
‘
一
一
入
其中‘,为矩阵块的分块方法与入相
同
则
入
并
从
。
一‘‘二
,
一一
其它‘是不为零的正上三角形矩
阵
又人一浇‘与以一义‘的最大公因式为入一入,‘所以
,
有个非零参数
同理住一入‘与住一入’的最大公因式的次数为所以和
都
有个非零参数
以
此类推可将表示
成
孟
其中。滋为
非零参数
则与可交换的矩
阵
‘
由以上求法可以看出如果阶方阵的特征根没有重根则与可交换的矩阵
只
有数量矩阵和零
矩阵
参考书
目
【
《拒阵论》
华东师大数学来
翻
印
【李
乔《拒阵论八讲》上海科技
出
版社