矩阵可交换性质
矩阵可交换性的应用讲解

2015届学士学位毕业论文矩阵可交换性的应用学号:11404111姓名:郭冬冬班级:数学1101指导教师:闫慧凰专业:数学与应用数学系别:数学系完成时间:2014年4月学生诚信承诺书本人郑重声明:所呈交的论文《矩阵可交换性的应用》是我个人在导师闫慧凰指导下进行的研究工作及取得的研究成果。
尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得长治学院或其他教育机构的学位或证书所使用过的材料。
所有合作者对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
签名:日期:论文使用授权说明本人完全了解长治学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。
签名:日期:指导教师声明书本人声明:该学位论文是本人指导学生完成的研究成果,已经审阅过论文的全部内容,并能够保证题目、关键词、摘要部分中英文内容的一致性和准确性。
指导教师签名:时间摘要矩阵在高等数学中是一个极重要且应用广泛的概念,是线性代数的核心。
而且在一些重要领域也用到了矩阵的计算,像应用数学、计算数学、经济学、数学物理、卫星通信等等,许多工作人员在大量计算这些矩阵时发现了一些对于特殊矩阵成立的公式和规律,本文将用这些规律来叙述一些特殊矩阵(可交换矩阵)的应用。
关键词:矩阵;可交换目录1.绪论 (1)2.基础知识 (1)2.1 矩阵相关概念 (1)2.2 线性变换相关概念 (2)3.矩阵可交换的应用 (3)3.1线性变换与矩阵(可交换)之间的联系 (3)3.2上三角矩阵可交换的应用 (4)矩阵可交换性的应用11404111 郭冬冬 数学与应用数学指导教师 闫慧凰1.绪论随着社会经济的发展,数学显得格外重要,在生产、生活中都或多或少的涉及到了数学,所以数学是每个人必须学会的,而对于一些技术分子则不仅仅是掌握基本的数学知识,而且要对数学中的一些比较高深的内容进行进一步的了解,之后对其进行应用,像从事计算科学、无线电技术和卫星通信领域工作的人都涉及到了矩阵的可交换方面的知识。
可交换矩阵的性质及应用_孟献青

n
…b n
2
n n
b 。 n nn 1n
性质 2 若矩阵 A, B 可交换, 则对任一多项式 f
(λ),有 (f A)B=BFra bibliotekf A)。性质 3[1] 设 A, B 为 n 阶可交换方阵,且 A, B 都
可对角化, 则存在可逆矩阵 P, 使 P-1AP 与 P-1BP 同
时为对角阵。
证明 由于 A 可对角化,从而存在可逆矩阵 T, 使
(1) (2)
λbn1=λbn1,i=n,j=1,
(3)
λbi1+bi+11=λbi1,i≠n,j=1,
(4)
由(4)得:bi+11=0,即
b21=b31=…bn1=0。
(5)
由(2)得:bnj-1=0,即
bn1=bn2=…bnn-1=0。
由(1)得:bi+1j=bij-1。
(6)
令 j=2 得:bi+12=bi1=0,i≠1,
第 29 卷第 2 期 2013 年 4 月
文章编号:1674-0874(2013)02-0006-03
山西大同大学学报(自然科学版) Journal of Shanxi Datong University(Natural Science)
Vol.29.No.2 Apr 2013
可交换矩阵的性质及应用
k叟1,证明|A+B|=|B|。
证明 因 AB=BA,由性质 4 知,存在可逆矩阵
P使
λ*
* *
1
*
*
P-1AP=
* * *
λ2
*
*
*
**
*
μ*
* *
1
*
*
P-1BP=
矩阵可交换的定义

矩阵可交换的定义嘿,朋友们!今天咱来唠唠矩阵可交换这个事儿。
咱先想想啊,矩阵就像是一群排好了队的数字小兵。
那可交换呢,就好比这些数字小兵可以互相换换位置,而且换了之后没啥大影响。
比如说,你有两个矩阵 A 和 B,它们要是可交换,那 A 乘以 B 就等于B 乘以 A 呀。
这就好像你有两堆玩具,你先从第一堆里拿一个,再从第二堆里拿一个,和你先从第二堆里拿一个,再从第一堆里拿一个,最后的结果差不多。
这有啥用呢?用处可大啦!就像你走路,有时候走这条路能到目的地,走另一条路也能到,这就让你有了更多的选择呀。
你想想,如果矩阵不可交换,那多麻烦呀!就跟你出门,规定了你只能先迈左脚,再迈右脚,不能反过来,那多别扭呀。
咱再打个比方,矩阵可交换就像是朋友之间相处很融洽,可以互相换位子也不影响感情。
要是不可交换,那不就跟两个合不来的人似的,非得按照特定的顺序来,不然就闹别扭。
在实际应用中,矩阵可交换也很重要呢。
比如在一些科学研究、工程计算里,要是能找到可交换的矩阵,那就能让计算变得简单很多,就像找到了一把钥匙,能轻松打开难题的大门。
而且哦,研究矩阵可交换还能让我们更深入地理解数学的奥秘呢。
就好像探索一个神秘的洞穴,每走一步都可能有新的发现,多刺激呀!咱平常生活中不也经常遇到类似的情况嘛。
比如你做事的顺序,有时候换一换也没啥,有时候就不行。
这和矩阵可交换是不是有点像呀?所以啊,矩阵可交换可不是什么遥不可及的高深概念,它就藏在我们生活的各个角落呢。
只要我们用心去感受,去发现,就能明白它的奇妙之处啦。
总之呢,矩阵可交换是数学里一个很有趣也很有用的概念,它就像一把神奇的钥匙,能打开很多知识的大门,让我们看到更广阔的世界。
我们可不能小瞧它呀,要好好去研究它,利用它,让它为我们的学习和生活带来更多的便利和惊喜!。
论文,夏杰矩阵可交换的条件

长沙学院信息与计算科学系本科生科研训练矩阵可交换的条件系部:信息与计算科学专业:数学与应用数学学号: 2009031123学生姓名:夏杰成绩:2012 年6月矩阵可交换的条件夏杰长沙学院 信息与计算科学系, 湖南 长沙, 410022摘要:本文通过对矩阵的理论研究,给出了矩阵可交换的部分充分条件和部分充要条件. 关键词:矩阵,可交换1 引言在高等代数以及线性代数的教学中,矩阵是一个重要的教学内容。
由矩阵的理论可知。
矩阵的乘法不同于数的乘法,矩阵的乘法不满足交换律,即当矩阵A B 有意义时,矩阵B A 未必有意义,即使矩阵A B 、B A 都有意义时它们也未必相等。
或者说,在一般情况下,矩阵AB BA ≠,但是在某些特殊情况下,矩阵的乘法也是满足交换律的,从而研究矩阵A B 与B A 的关系具有重要的意义。
我们知道若对n 阶实方阵A 、B ,如果满足AB BA =,则称A 与B 可交换。
可交换矩阵有许多良好的性质,研究矩阵可交换的条件及可交换矩阵的一些性质对矩阵理论的研究具有重要的意义(文中的矩阵均指n 阶实方阵).2 矩阵可交换的充分条件定理1[1] (1)设,A B 至少有一个为零距阵,则,A B 可交换;(2)设,A B 至少有一个为单位矩阵,则,A B 可交换;(3)设,A B 至少有一个为数量矩阵,则,A B 可交换;(4)设,A B 均为对角矩阵,则,A B 可交换;(5)设,A B 均为准对角矩阵,则,A B 可交换;(6)设A *是A 的伴随矩阵,则A 与A *可交换;(7)设A 可逆,则A 与1A -可逆;(8)设AB E =,则,A B 可交换.证明 (1)对任意矩阵A ,均有:00A A =,0表示零距阵;(2)对任意矩阵A ,均有:AE EA =,E 表示单位矩阵;(3)对任意矩阵A ,均有:()()A kE kE A =,k 为任意实数;(4)、(5)显然成立;(6) A A AA A E **==;(7) 11A A AA E --==;(8)当AB E =时,,A B 均可逆,且互为逆矩阵.定理2[1] (1)设AB A B αβ=+,其中,αβ为非零实数,则,A B 可交换;(2)设m A AB E α+=,其中m 为正整数,α为非零实数,则,A B 可交换.证明 (1)由AB A B αβ=+可得()()A E B E E βααβ--= 即1()()A E B E E βααβ--= 故依定理1(8)得1()()B E A E E αβαβ--=于是BA A B E E αβαβαβ--+=所以BA A B AB αβ=+=;(2)由m A AB E α+=得1()m A A B E α-+=,故依定理1(8)得1()m A B A E α-+=, 于是m A BA E α+=,所以可得AB BA =.定理3[1] (1)设A 可逆,若0A B =或A AB =或A BA =,则,A B 可交换;(2)设,A B 均可逆,若对任意实数k ,均有()A A kE B =-,则,A B 可交换.证明 (1)若0A B =,由A 可逆得11()()0B A A B A AB --===,从而0B A =,故AB BA =;若A AB =同理可得111()()B A A B A AB A A E ---====,故AB BA =;若A BA =,则111()()B B AA BA A AA E ---====,故AB BA =.(2)因,A B 均可逆,故由()A A kE B =-得A kE -可逆且1()B A kE A -=-,则 1[()][()]A B A kE B A kE A -''''=--111()[()]()()()()()B A kE A A kE B A A kA A kE B A A kE A kE B A E B A A B ---''''=--'''''=--''''=--'''''===两边取转置可得AB BA =.3 矩阵可交换的几个充要条件定理4[1] 下列均是,A B 可交换的充要条件:(1)22()()()()A B A B A B A B A B -=+-=-+;(2)222()2A B A AB B ±=±+;(3)()AB A B '''=;(4)()AB A B ***=.证明 (1)由22()()A B A B A AB AB B +-=-+-及22()()A B A B A AB AB B -+=+--可证得;(2)由222()A B A AB AB B ±=±±+可证得;(3)分别由,()AB BA AB A B '''==两边取转置可证得;(4)分别由,()AB BA AB A B ***==两边取转置可证得.定理5[1] 可逆矩阵,A B 可交换的充要条件是111()AB A B ---=.证明 分别111,()AB BA AB A B ---==两边取逆矩阵可证得.定理6[1] (1)设,A B 均为(反)对称矩阵,则,A B 可交换的充要条件是A B 为对称矩阵;(2)设,A B 有一为对称矩阵,另一为反对称矩阵,则,A B 可交换的充要条件是A B 为反对称矩阵.证明 (1)设,A B 均为对称矩阵,由定理4(3),()AB A B AB '''==,因此A B 为对称矩阵;若,A B 为反对称矩阵,则()()()AB A B A B AB '''==--=,因此A B 也为对称矩阵.(2)仿照(1)可证得.定理7[1] 设,A B 均为对称正定矩阵,则,A B 可交换的充要条件是A B 为对称正定矩阵.证明 充分性由定理6(1)可得;下证必要性:因,A B 为对称正定矩阵,故由可逆矩阵,P Q ,使,A PP B QQ ''==,于是1,()()AB PP Q Q P ABP P Q P Q -'''''==,所以1P ABP -为对称正定矩阵,其特征值全为正数,而A B 与1P ABP -相似,从而A B 的特征值也全为正数,因此A B 为对称正定矩阵.引理1[2] 当A 矩阵为对角阵,即12(,,,)n A diag a a a = ,且(1,2,,)i a i n = 互不相同时,与它可交换的B 矩阵必可表示成A 的1n -次多项式.证明 与对角矩阵可交换的矩阵用求解方程()AB BA =的办法可以得到结论:B 必须是一个对角阵12(,,,),(1,2,,)n i B diag c c c c i n == 可以取任何实数.如果我们考虑下面方程:1011n n B p I p A p A --=++ .它实际上是一个011,,,n p p p - 作为未知数的线性方程组,其系数矩阵正好是一个范德蒙行列式,当(1,2,,)i a i n = 互不相同时,该系数行列式不为零,所以可求得(0,1,2,,1)i p i n =- 是唯一解,故引理的结论得证.定理8[2] 一个矩阵A 化成Jordan 标准型J 后,若J 中没有纯量矩阵的Jordan 块c J ,那么与A 可交换的B 矩阵其充要条件为B 可以化成A 的1n -次多项式,即11011()n n n B P A p I p A p A ---==++ .证明 对于与A 可交换的B 矩阵应满足的方程AB BA =中,若将A 化成Jordan 标准型1A P JP -=,其中P 为满秩阵J 的标准型,将A 代入上面方程,得11P JPB BP JP --=.若令1X PBP -=,则方程化成JX X J =.这就表明:要求A 的可交换矩阵,可先求A 的Jordan 标准型J 的可交换矩阵C ,则与A 可交换的矩阵1B PCP -=.由于本定理的前提中表明Jordan 标准型J 中没有c J 型(纯量矩阵Jordan 块),c J 型Jordan 块由引理1即知与n J 可交换的矩阵可表示为n J 的1n -次多项式.我们知道,将一个矩阵化成Jordan 标准型工作量很大,要等到标准型化成才能应用被定理作出判断,那也太麻烦了,事实上不必作出Jordan 标准型的分解即可判别一个矩阵是否含有纯量矩阵Jordan 块.参考文献[1] 王霞.矩阵可交换成立的条件及性质[J ].内江科技,2009,8(30):161.[2] 钱微微,蔡耀志.论矩阵可交换的充要条件[J ].大学数学,2007,5(23):143-146.[3] 北京大学数学系几何与代数教研室前代数小组.高等代数(第三版)[M].北京:高等教育出版社,2003.9.。
交换矩阵

A
=
1 2
2 3
的可交换矩阵。
解:设矩阵
B
a c
b d
为
A
的可交换矩阵。则有
AB
BA.
AB
=
1 2
2a
3
c
b d
a 2c 2a 3c
b 2d 2b 3d
C
a b 1 2 a 2b 2a 3b
BA
c
d
2
3
c
2d
2c
3d
D
a 2 a 2b
dn1
d1n
。
dnn
显然有 C D 。 (3) AB 与 BA 均有意义,且二者阶数也相同但是最后具体的乘积方阵还是 不一样。
比如说:矩阵
A
=
2 1
1 1
,
B
=
1 1
2 2
。
AB
=
2 1
1 1 1 1
2 3 2 2
6 4
=
C
;
但是
BA
=
1 1
2 2 2 1
1 1
4 4
3 3
=
D
。显然
C
定理 6: ( A B)2 A2 2AB B2 ; 证明:充分性 ( A B)2 ( A B)( A B) A2 AB BA B2
又 ( A B)2 A2 2AB B2 , 从而 AB BA 2AB 即 AB BA; 必要性: 若 AB BA 则 ( A B)2 ( A B)( A B) A2 AB BA B2 A2 2AB B2 , 必要性得证。 定理 7: (AB) AB ; 证明:充分性 由题知 (AB) AB ,又因为 (BA) AB ,
与矩阵A可交换的全体矩阵的性质

(自 然 科 学 版 )
Vol.35 No.7
2019年7月 JournalofHebeiNorthUniversity (NaturalScienceEdition) Jul.2019
与矩阵犃 可交换的全体矩阵的性质
丁 晓 业1, 李 红 菊1, 何 健2
(1. 安徽新华学院通识教育部,安徽 合肥 230088;2. 吉首大学数学系,湖南 吉首 416000)
摘要:目的 针对一些满足特殊条件的可交换矩阵,研究与矩阵 犃 可交换的全体矩阵的性质。方法 从
可交换矩阵的概念出发,给出矩阵可交换的条件。再通过一些特殊的矩阵,利用可交换矩阵的定义和矩阵的乘
犫21
犫22
… 犫1狀燄
…
犫2狀
,则称矩阵 (犮犻犼)犿×狀
燀犪犿1 犪犿2 … 犪犿狊燅
燀犫狊1 犫狊2 … 犫狊狀燅
来稿日期:2018 07 11 基 金 项 目 : 安 徽 新 华 学 院 校 级 重 点 教 研 项 目 (2016jy008) 作 者 简 介 : 丁 晓 业 (1990), 男 , 安 徽 省 合 肥 市 人 , 硕 士 , 助 教 , 研 究 方 向 为 代 数 学 与 矩 阵 理 论 。
·1·
2019年7月 河北北方学院学报 (自然科学版) 第7期
为矩 阵 犃 与 矩 阵 犅 的 乘 积 矩 阵。记 作 犃犅,即 犃犅 = (犮犻犼)犿×狀,其 中犮犻犼 = 犪犻1犫1犼 +犪犻2犫2犼 + … +犪犻狊犫狊犼 =
狊
∑犪犻犽犫犽犼(犻=1,2,…,犿;犼=1,2,…,狀)。乘积矩阵 犃犅 读作犃 左乘犅 或右乘犃。
般地,矩阵的乘法不满足交换律,即 犃犅 ≠ 犅犃 。但是在某些特殊情况下,矩阵的乘法也满足交换律,即
两矩阵可交换的条件

两矩阵可交换的条件我觉得这两矩阵可交换啊,这里面的事儿可太有意思了。
你想啊,就好像两个人打交道似的,矩阵也得有自己的规矩和默契才能交换。
我就想起我以前认识的一个老学究,那家伙戴着个厚厚的眼镜,镜片就像瓶底儿似的。
他成天就研究这些个矩阵的事儿。
有一回我问他:“您说这矩阵咋就能交换呢?”他那眼睛从镜片后面翻着看我,跟看个怪物似的,然后慢悠悠地说:“这哪是一两句话能说清的事儿。
”我就不服气啊,我觉得这事儿肯定有个简单的门道。
我就自己琢磨。
这矩阵就像两个小方阵,每个小方阵里的数字就像一个个小兵。
这两个矩阵要能交换,就好比两个军队要换防,那得满足一定的条件啊。
你看啊,要是两个矩阵都是那种规规矩矩的方阵,就像两个整齐的兵团,那可能就比较容易交换。
但要是一个矩阵长得歪七扭八的,就像一群散兵游勇,那和另一个矩阵交换起来肯定就麻烦。
这就像你让一群训练有素的士兵和一群乌合之众换地方,那不乱套了嘛。
有时候我看着那些矩阵里的数字,就好像看到一个个小人在里面晃悠。
我就想啊,这些个数字小人是不是也得互相商量好了才能交换呢?比如说这个数字小人对另一个矩阵里的数字小人说:“兄弟,咱们换换位置呗。
”然后另一个小人说:“行啊,但是你得满足我们这儿的条件。
”我还见过那种特别复杂的矩阵,那数字密密麻麻的,就像一群蚂蚁在纸上爬。
看着那样的矩阵,我脑袋都大了,更别说想它们可交换的条件了。
我就想,这要是把老学究叫来,他估计也得挠头。
不过我觉得,这矩阵可交换的条件,肯定和它们的大小、形状还有里面数字的规律有关系。
就像人与人之间的交往,得看身份、性格还有彼此的需求一样。
这矩阵也得看自己的“身份”,也就是它的行数和列数,还有那些数字之间的微妙关系。
有时候一个小小的数字变化,可能就像在平静的湖水里扔了块石头,整个矩阵的可交换性就变了。
我还和一个年轻的学生讨论过这事儿。
那学生眼睛亮晶晶的,充满了求知欲。
他说:“刘老师,我觉得这矩阵可交换可能就像拼图一样,得严丝合缝才行。
矩阵分析小论文-线性变换的可交换性

故 AB=BA
参考文献 [1] 史荣昌,魏丰.矩阵分析(第 3 版)[M].北京:北京理工大学出版社,2010 [2] 高明.线性变换及矩阵可交换的性质与应用[J].阴山学刊(自然科学版).2013(3)
x1 + λ1 x2 + + λ1n −1 xn = µ1 n −1 µ2 x + λ x + + λ2 xn = 考虑方程组 1 2 2 n −1 µn x1 + λn x2 + + λn xn =
1 λ1 λ1n −1 1 λ2 λ2 n −1 = ∏ (λi − λ j ) ≠ 0 该方程组的系数行列式 1≤ j ≤i ≤ n 1 λn λn n −1
4 应用
设 V 是数域 F 上的 n 线性空间, A,B 为 V 上的两个线性变换, A 在 F 上有 n 个互异的特征 值,则:1) AB=BA 的充要条件是 A 的特征向量都是 B 的特征向量;2) AB=BA 的充要条件是 B 是 ε , A , A 2 , , A n −1 的线性组合,其中 ε 为 V 的恒等变换。 证明:设 λ1 , λ2 , , λn 是 A 的 n 个互异的特征值, α1 , α 2 , , αn 是 A 的分别属于特征值
(a1ε +a2B + +an −1B n −1 )(αi )=A (αi )
由于 α1 , α 2 , , α n 是 V 的一组基 故 A = a1ε +a2B + +an −1B n −1 充分性 若 A = a1ε +a2B + +an −1B n −1 ,则
BA = α1B +a2B 2 + +an B n , AB = α1B +a2B 2 + +an B n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵可交换的条件及其性质摘要:矩阵在高等数学中是一个极重要且应用广泛的概念,是线性代数的核心。
本文通过对可交换矩阵理论的深入研究,对矩阵的可交换做了深入的探讨,归纳总结了矩阵可交换的条件及性质,给出了与已知矩阵可交换的矩阵的求法.关键词:矩阵;可交换;可交换矩阵The Conditions For The Commutation Of Matrix and SomePropertiesAbstract: Matrix in higher mathematics is a very important and widely used concept, is the coreof the linear algebra.This article through to exchange matrix theory research, the matrix interchange to do a further study and summarizes the matrix interchangeable condition and properties are given, and the known matrix can exchange the matrix is introduced.Key words:Matrix;Commutation;The Commutation Of Matrix目录1 引言........................................................................................................................................ - 1 -2 可交换矩阵的基本定义........................................................................................................ - 1 -3 矩阵可交换的条件................................................................................................................ - 1 -3.2 矩阵可交换的几个充要条件............................................................................................... - 3 -4 可交换矩阵的性质.................................................................................................................. -5 -5 与已知矩阵可交换的矩阵的求法........................................................................................ - 5 -5.1 定义法.......................................................................................................................... - 5 -6 结论(结束语).................................................................................................................... - 9 -7 致谢...................................................................................................................................... - 10 - 参考文献.................................................................................................................................... - 10 -1 引言矩阵在高等代数以及线性代数中是一个重要的内容.本文从可交换矩阵的定义出发,通过对矩阵理论的深入研究,总结归纳了矩阵可交换的充分条件、充要条件以及可交换矩阵的一些性质及给出了求可交换矩阵的一些方法,对矩阵理论的研究具有重要的意义(文中的矩阵均指n阶实方阵).2 可交换矩阵的基本定义一般说来,矩阵的乘法不适合交换律,即BAAB≠,这是由于在乘积中一方面要求第一个因子的列数等于第二个因子的行数,否则没有意义.所以当矩阵AB有意义时,矩阵BA未必有意义;另一方面,即使矩阵AB、BA都有意义时,它们的级数也未必相等.因为乘积的行数等于第一个因子的行数,列数等于第二个因子的列数.由此我们给出可交换矩阵这一特殊矩阵的定义.定义2.1[]1对于两个n阶方阵A,B,若BAAB=,则称方阵A与B是可交换的。
3 矩阵可交换的条件3.1 矩阵可交换的充分条件定理3.1.1(1)设A、B至少有一个为零矩阵,则A、B可交换;(2)设A、B至少有一个为单位矩阵,则A、B可交换;(3)设A、B至少有一个为数量矩阵,则A、B可交换;(4)设A、B均为对角矩阵,则A、B可交换;(5)设A、B均为准对角矩阵,则A、B可交换;(6)设*A是A的伴随矩阵,则A与*A可交换;(7)设A是可逆矩阵,则A与1-A可交换;(8)设EAB=,则A、B可交换.证明:(1)对任意矩阵A,均有:A0=,0表示零矩阵;A0(2)对任意矩阵A,均有:EAAE=,E表示单位矩阵;(3)对任意矩阵A,均有:A)(=,k为任意实数;(kEkEA)(4、5)显然成立; (6)E A A A AA ⋅==**; (7)E A A AA ==--11;(8)当E AB =时,A 、B 均可逆,且为互逆矩阵. 定理3.1.2(1) 设B A AB βα+=,其中α,β为非零实数,则A ,B 可交换; (2) 设E AB A m =+α,其中m 为正整数,α为非零实数,则A ,B 可交换 证明(1) 由B A AB βα+=可得()()E E B E A αβαβ=--即()()E E B E A =--αβαβ1,故依定理3.1.1()8得()()E E A E B =--αααβ1,于是E E B A BA αβαββα=+--,所以AB B A BA =+=βα;(2) 由E AB A m =+α得()E B A A m =+-α1,故依定理3.1.1()8得()E B Am =+-α1,于是E BA A m =+α,所以可得BA AB =定理3.1.3(1) 设A 可逆,若O AB =或AB A =或BA A =,则A ,B 可交换;(2) 设A ,B 均可逆, 若对任意实数k , 均有()B kE A A -=,则A ,B 可交换[]2证明(1) 若O AB =,由A 可逆得()()O AB A B A A B ===--11, 从而O BA =,故BA AB =;若AB A =,同理可得()()E AB A B A A B ===--11,故BA AB =;若BA A =,则()()E A BA AA B B ===--11,故BA AB =(2) 因A ,B 均可逆, 故由()B kE A A -=得kE A -可逆, 且()A kE A B 1--=,则()[]()[]()()()()()()()'=''=-'-'''=-''-'''=⎥⎦⎤⎢⎣⎡'-''-'='-'-=''----AB A B kE A kE A A B kE A A k A A B kE A A kE A B AkE A B kE A B A 1111两边取转置可得BA AB =.或由()[]()[]()()()()()[]()111112111111111--------------=--=--=--=--=A B kE A A kE A B kE A kEA B kE A A kE A B A kE A B kE A B A两边取逆可得BA AB =.3.2 矩阵可交换的几个充要条件定理3.2.1下列均是A,B 可交换的充要条件①))(())((22B A B A B A B A B A +-=-+=-②2222)(B AB A B A +±=±;③''')(B A AB =; ④***)(B A AB =证明:(1)由22))((B BA AB A B A B A -+-=-+及22))((B BA AB A B A B A --+=+-可证得;(2)由222)(B ba AB A B A +±±=±可证得;(3)分别由BA AB =,''')(B A AB =两边取转置可证得; (4)分别由BA AB =,***)(B A AB =两边取伴随可证得.定理3.2.2 可逆矩阵A ,B 可交换的充要条件是()111---=B A AB . 证明 分别由BA AB =,()111---=B A AB 两边取逆可证得 定理3.2.3( 1) 设A ,B 均为(反) 对称矩阵, 则A ,B 可交换的充要条件是AB 为对称矩阵;(2) 设A ,B 有一为对称矩阵,另一为反对称矩阵,则A ,B 可交换的充要条件是AB 为反对称矩阵证明(1) 设A ,B 均为对称矩阵, 由定理3.2.1(3) ,()AB B A AB =''=',因此AB 为对称矩阵;若A ,B 均为反对称矩阵,则()()()AB B A B A AB =--=''='因此AB 也为对称矩阵.仿(1)可证(2)定理3.2.4[]6 设A ,B 均为对称正定矩阵, 则A ,B 可交换的充要条件是AB 为对称正定矩阵.证明 充分性由定理3.2.3(1)可得,下面证明必要性 因,A B 为对称正定矩阵,故有可逆矩阵P ,Q ,使P P A '=,Q Q B '=于是Q Q P P AB ''=,()()'''=-Q P Q P ABP P 1所以ABP P 1-为对称正定矩阵, 其特征值全为正数.而AB 与ABP P 1-相似, 从而AB 的特征值也全为正数,因此AB 为对称正定矩阵定理3.2.5 1-=PCP A ,1-=PDP B ,则A 与B 可交换的充分必要条件是C 、D 可交换.证明 因BA AB =,1-=PCP A ,1-=PDP B ,得1-=PAP C ,1-=PBP D ,()()()()DC P BA P P AB P PBP PAP CD ====----1111,所以C 、D 可交换.另一方面,DC CD =,()()()BA P DC P CDP P DP P CP P AB ====----1111, 所以C 、D 可交换.4 可交换矩阵的性质设B A ,可交换,则有(1),,)(,l l k k k m m BA B A B A AB A B AB ===其中l k m ,,都是正整数; 证明 (1)由BA AB =可得A B A B B B B BA B B A AB mm m m m =====-个个个1 同理可证ll k k k BA B A B A AB ==,)(.(2)A B f B Af )()(=,其中)(B f 是B 的多项式,即A 与B 的多项式可交换; (3)))((121---+++-=-m m m m m B B A A B A B A))((121B A B B A A m m m -+++=---(4)))(0k k m mk kmmB AC B A -=∑=+(矩阵二项式定理).5 与已知矩阵可交换的矩阵的求法5.1 定义法求此类矩阵的基本思路是:按定义,设未知数,列齐次方程组,求通解。