矩阵可交换性的应用
矩阵可交换性的应用讲解

2015届学士学位毕业论文矩阵可交换性的应用学号:11404111姓名:郭冬冬班级:数学1101指导教师:闫慧凰专业:数学与应用数学系别:数学系完成时间:2014年4月学生诚信承诺书本人郑重声明:所呈交的论文《矩阵可交换性的应用》是我个人在导师闫慧凰指导下进行的研究工作及取得的研究成果。
尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得长治学院或其他教育机构的学位或证书所使用过的材料。
所有合作者对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
签名:日期:论文使用授权说明本人完全了解长治学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。
签名:日期:指导教师声明书本人声明:该学位论文是本人指导学生完成的研究成果,已经审阅过论文的全部内容,并能够保证题目、关键词、摘要部分中英文内容的一致性和准确性。
指导教师签名:时间摘要矩阵在高等数学中是一个极重要且应用广泛的概念,是线性代数的核心。
而且在一些重要领域也用到了矩阵的计算,像应用数学、计算数学、经济学、数学物理、卫星通信等等,许多工作人员在大量计算这些矩阵时发现了一些对于特殊矩阵成立的公式和规律,本文将用这些规律来叙述一些特殊矩阵(可交换矩阵)的应用。
关键词:矩阵;可交换目录1.绪论 (1)2.基础知识 (1)2.1 矩阵相关概念 (1)2.2 线性变换相关概念 (2)3.矩阵可交换的应用 (3)3.1线性变换与矩阵(可交换)之间的联系 (3)3.2上三角矩阵可交换的应用 (4)矩阵可交换性的应用11404111 郭冬冬 数学与应用数学指导教师 闫慧凰1.绪论随着社会经济的发展,数学显得格外重要,在生产、生活中都或多或少的涉及到了数学,所以数学是每个人必须学会的,而对于一些技术分子则不仅仅是掌握基本的数学知识,而且要对数学中的一些比较高深的内容进行进一步的了解,之后对其进行应用,像从事计算科学、无线电技术和卫星通信领域工作的人都涉及到了矩阵的可交换方面的知识。
矩阵可交换的条件及其性质

中文摘要特殊矩阵在矩阵分析和矩阵计算中占有十分重要的地位,它们在计算数学、应用数学、经济学、物理学等方面都有着广泛的应用,对特殊矩阵的研究取得的实质性的进展,都将会对计算数学的发展起着重要的推动作用.随着矩阵应用程度的不断加深,矩阵的可交换性越来越被学者和技术人员所重视.矩阵的可交换性不仅在矩阵计算中起着重要作用,而且在卫星通讯等等许多领域也有着直接的应用.关键词:矩阵交换矩阵可交换特殊矩阵上三角矩阵数量矩阵ABSTRACTSpecial matrices play an important role in matrix analysis and matrix computation and have wide applications in computational mathematics, economics,physics,biology,applied mathematics and etc.Great progress obtained in the researchers on special matrices will give improvements in computational mathematics.With the applications of matrices are more and more abroad,the commutativity of matrix is more and more recognition by scholar and technology worker.The commutativity of matrix not only plays an important part in the matrix computation,but also in the secondary planet, communication and other fields.Keywords:the commutant of matrix,mathematics,exchangeable,special matrices,upper triangle matrices,scalar matrices矩阵的可交换性在各类矩阵的运算中应用十分重要,特别是在现在这种信息时代,在卫星通讯、网络安全方面、解码器以及电路系统镇定性问题、路由交换处理器等等都有着不可替代的作用.本文主要介绍了矩阵的可交换性质和可交换条件的研究以及矩阵交换的相关概念和基本定义.对矩阵可交换的基本定理和一些优美性质进行了叙述和总结,以及对一些特殊的矩阵例如数量矩阵、上三角矩阵等等,满足可交换条件的矩阵进行了探究.在高等代数及线性代数的教学中,矩阵是一个重要的教学内容。
矩阵交换性的应用(二):同时对角化

矩阵交换性的应用(二):同时对角化矩阵交换性的应用(二)1.设和都是维线性空间的线性变换,如果的个特征值互异,则的充要条件是的特征向量也是的特征向量.证明:充分性:若的特征向量也是的特征向量.那么取一组基使得:在这组基下的矩阵为对角阵,由于前提,所以在这组基下的矩阵也是对角阵,因此,所以可交换.必要性:由于的特征值互异,因此可对角化,设其在某一组基下的矩阵式是角阵,记在这组基下的矩阵为,因此有:但是由于的个特征值互异,我们将具体写出来和相乘,简单验证就会发现必须是对角阵,因此结论得证.2.设,且,且都可对角化,证明存在可逆矩阵使得同时为对角阵.证明:由于可对角化,因此存在可逆矩阵使得:而由于可对角化,因此它的所有初等因子都是一阶的,因此存在可逆阵使得,令为:所以:这时取:可逆,且:故可同时对角化!推论:设均为阶实对称阵. 证明:有阶正交阵 , 使与同时为对角矩阵的充分必要条件是 .练习1:设与是实正定矩阵,证明: 是正定矩阵的充要条件时.练习2:若都是复数域上的阶方阵,且(k为某个正整数),则存在可逆矩阵使得,同时为对角阵.习题训练:目录●数分训练(一)解答及(二)预告●每日一题:数分训练(二):上下极限●数分训练(三):一道三角函数题目●数分训练(四):数列与级数训练●数分训练(五):定积分定义处理问题●数分训练(六):一道中值定理的渐进形态●高代训练(一):有限不覆盖定理●数分训练(八):一道积分不等式●数分训练(九):反正切函数的裂项●(十):高代训练:迹的基本应用●(十一):高代训练:正定矩阵习题●高代训练:矩阵交换性的应用(一)●Problem13:一道矩阵方程与特征多项式的关系。
矩阵的变换与应用

矩阵的变换与应用矩阵是数学中一种重要的工具,具有广泛的应用。
它可以用来表示线性变换、解决线性方程组、描述图形的旋转、缩放和平移等操作。
在计算机图形学、物理学、经济学以及工程学等领域,矩阵的变换与应用发挥着重要的作用。
一、矩阵的基本定义与性质矩阵是由数所组成的矩形阵列,通常用方括号表示。
一个矩阵包含若干行和若干列,行和列的交点处的元素是矩阵的元素。
矩阵的大小由它的行数和列数确定。
例如,一个3行4列的矩阵可以表示为:[ a11 a12 a13 a14 ][ a21 a22 a23 a24 ][ a31 a32 a33 a34 ]矩阵的性质包括可加性、可乘性、转置等。
矩阵的加法满足交换律和结合律,即(A + B) + C = A + (B + C)。
矩阵的乘法满足结合律,但不满足交换律,即AB ≠ BA。
矩阵的转置是将矩阵的行和列对调得到的新矩阵。
二、矩阵的变换1. 线性变换矩阵可以表示线性变换,例如,平移、旋转和缩放。
对于二维坐标系上的点P(x, y),通过矩阵变换可以得到新的坐标P'(x', y')。
比如平移变换可以表示为:[ 1 0 dx ][ 0 1 dy ]其中dx和dy表示平移的距离,在矩阵乘法的运算中,将原点移动到(dx, dy)处。
2. 矩阵乘法的几何意义矩阵乘法的几何意义是将一个向量通过矩阵的变换得到另一个向量。
考虑一个二维向量V(x, y),通过矩阵乘法可以实现旋转、平移和缩放等操作。
若矩阵A表示旋转变换,矩阵B表示平移变换,矩阵C表示缩放变换,则最终的变换为V' = ABCV。
三、矩阵在不同领域的应用1. 计算机图形学在计算机图形学中,矩阵的变换与应用用于实现平移、旋转、缩放和投影等操作。
通过矩阵变换,可以实现图像的变形和移动,并将三维图像投影到二维屏幕上。
2. 物理学在物理学研究中,矩阵的变换与应用广泛应用于描述物体的运动、变形和相互作用等。
矩阵的变换可以描述刚体的运动,将物体的位移、速度和加速度通过矩阵运算进行计算。
矩阵可交换问题及其在高等代数考研中的应用

( 详情请看文献 % 3 & ) " 即 它 们 之 间 存 在 着 同 构 的 关 系" 线 性变换的可交换对应着矩阵的可交换# 在每年的高等代 数考研试题的大题中"都会涉及有关矩阵(线性变换) 可交 换问题# 大致会从这几个方面来进行考察!($) 在求矩阵 的 , 次方幂时"可以观察矩阵的特点"将其拆分成两个可 交换的矩阵"再进行二项式展开# ())已知一个矩阵"求与 此矩阵可交换的矩阵是哪种类型的矩阵# (() 已知一个矩 阵"求与此矩阵可交换的所有矩阵# (3) 已知两个矩阵可 交换"求证对于二阶分块矩阵的行列式的计算方法类似二 阶数字矩阵的计算方法# (5)有关矩阵可交换问题而引出 的可同时三角化( 对角化) 问题# (0) 涉及线性变换下的 可交换问题# 下面通过对历年真题的研究"总结有关可交 换问题的考点#
科教论坛 !"#!$%&$'(') *+&,-./&$01$21(3$&)%)$((%$'
科技风 @A@B 年 BB 月
矩阵可交换问题及其在高等代数考研中的应用
张 蓉4陈国华#
湖南人文科技学院!湖南娄底!B"J###
摘4要高等代数是数学专业的学生必学的科目同时也是考研数学的专业课 有关矩阵的内容在高等代数的教学 中有着举足轻重的地位 我们知道矩阵的乘法一般都不满足交换律但是在特定的条件下矩阵之间是可以交换的而数 学主要研究的就是这类特殊的东西 可交换问题是高等代数教学中的重点内容之一同时也是高等代数考研数学中的热 点之一 本文罗列出了一些矩阵线性变换可交换问题在高等代数考研数学中的应用希望对考研数学有一定的帮助
交换矩阵

A
=
1 2
2 3
的可交换矩阵。
解:设矩阵
B
a c
b d
为
A
的可交换矩阵。则有
AB
BA.
AB
=
1 2
2a
3
c
b d
a 2c 2a 3c
b 2d 2b 3d
C
a b 1 2 a 2b 2a 3b
BA
c
d
2
3
c
2d
2c
3d
D
a 2 a 2b
dn1
d1n
。
dnn
显然有 C D 。 (3) AB 与 BA 均有意义,且二者阶数也相同但是最后具体的乘积方阵还是 不一样。
比如说:矩阵
A
=
2 1
1 1
,
B
=
1 1
2 2
。
AB
=
2 1
1 1 1 1
2 3 2 2
6 4
=
C
;
但是
BA
=
1 1
2 2 2 1
1 1
4 4
3 3
=
D
。显然
C
定理 6: ( A B)2 A2 2AB B2 ; 证明:充分性 ( A B)2 ( A B)( A B) A2 AB BA B2
又 ( A B)2 A2 2AB B2 , 从而 AB BA 2AB 即 AB BA; 必要性: 若 AB BA 则 ( A B)2 ( A B)( A B) A2 AB BA B2 A2 2AB B2 , 必要性得证。 定理 7: (AB) AB ; 证明:充分性 由题知 (AB) AB ,又因为 (BA) AB ,
矩阵可交换性质

矩阵可交换的条件及其性质摘要:矩阵在高等数学中是一个极重要且应用广泛的概念,是线性代数的核心。
本文通过对可交换矩阵理论的深入研究,对矩阵的可交换做了深入的探讨,归纳总结了矩阵可交换的条件及性质,给出了与已知矩阵可交换的矩阵的求法.关键词:矩阵;可交换;可交换矩阵The Conditions For The Commutation Of Matrix and SomePropertiesAbstract: Matrix in higher mathematics is a very important and widely used concept, is the coreof the linear algebra.This article through to exchange matrix theory research, the matrix interchange to do a further study and summarizes the matrix interchangeable condition and properties are given, and the known matrix can exchange the matrix is introduced.Key words:Matrix;Commutation;The Commutation Of Matrix目录1 引言........................................................................................................................................ - 1 -2 可交换矩阵的基本定义........................................................................................................ - 1 -3 矩阵可交换的条件................................................................................................................ - 1 -3.2 矩阵可交换的几个充要条件............................................................................................... - 3 -4 可交换矩阵的性质.................................................................................................................. -5 -5 与已知矩阵可交换的矩阵的求法........................................................................................ - 5 -5.1 定义法.......................................................................................................................... - 5 -6 结论(结束语).................................................................................................................... - 9 -7 致谢...................................................................................................................................... - 10 - 参考文献.................................................................................................................................... - 10 -1 引言矩阵在高等代数以及线性代数中是一个重要的内容.本文从可交换矩阵的定义出发,通过对矩阵理论的深入研究,总结归纳了矩阵可交换的充分条件、充要条件以及可交换矩阵的一些性质及给出了求可交换矩阵的一些方法,对矩阵理论的研究具有重要的意义(文中的矩阵均指n阶实方阵).2 可交换矩阵的基本定义一般说来,矩阵的乘法不适合交换律,即BAAB≠,这是由于在乘积中一方面要求第一个因子的列数等于第二个因子的行数,否则没有意义.所以当矩阵AB有意义时,矩阵BA未必有意义;另一方面,即使矩阵AB、BA都有意义时,它们的级数也未必相等.因为乘积的行数等于第一个因子的行数,列数等于第二个因子的列数.由此我们给出可交换矩阵这一特殊矩阵的定义.定义2.1[]1对于两个n阶方阵A,B,若BAAB=,则称方阵A与B是可交换的。
(整理)可交换矩阵成立的条件和性质.

内蒙古财经大学本科学年论文可交换矩阵成立的条件与性质作者:系别:专业:年级:学号:指导教师:导师职称:指导教师评语:该学生在整个论文书写过程中态度端正,能配合指导教师,指导教师交给的任务基本能在规定时间内的完成。
在开题以后,对论文题目理解正确,在指导下能完成论文初稿的书写,书写基本符合规范。
但对参考书目及参考文献的依赖性太大,应在论文中添加自己独立的理解及总结。
成绩:中指导教师:内容提要矩阵是高等数学中一个重要的内容,在数学领域中以及其他科学领域中有着重大的理论意义.众所周知,矩阵的乘法在一般情况下是不满足交换律的,即在通常情况下,AB BA.但是,在某种特殊情况下,矩阵的乘法也能满足交换律.可交换矩阵有着很多特殊的性质和重要的作用.本文从可交换矩阵和相关知识的定义出发,探讨了矩阵可交换的一些条件和可交换矩阵的部分性质,并且介绍了几类特殊的可交换矩阵.关键字:矩阵可交换条件性质上三角矩阵AbstractMatrix is an importantcontent inaltitude-mathematics,it has agreattheoretic significanceintheaspectofbothmathematicsandothersciencefields.Asfaraswehaveconcerned,themultiplicationofmatrixcouldnotsatisfytheexchangeruleunderthenormal condition,thatis tosay,normally, AB BA.Whereas, insomecertainconditions, the multiplication of matrix couldsatisfy the exchange rule. Theexchangeable matrixhasmanyspecial properties and important effections. This paperdiscussessomeconditionsofthematrixexchangeandpartsofthepropertyof theexchangeablematrix,andalsointroducesseveralkindsofspecificexchangeablematrix.All of thesearediscussed from the conceptof exchangeable matrix and relativeinformation.KeyWords:matrix interchangeable conditions property upper triangularmatrix目录引言⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 一可交换矩阵及相关定义⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1(一)矩阵⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1(二)可交换矩阵⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 二可交换矩阵成立的条件与性质⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3(一)可交换矩阵成立的条件⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3(二)相关结论⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5(三)可交换矩阵的性质⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 三几类常用的可交换矩阵⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 四可交换矩阵的应用⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 五总结⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 参考文献⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 致谢⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10可交换矩阵成立的条件与性质引言随着科学技术的迅速发展和计算机技术的进步,科学与工程计算即科学计算的研究受到科学技术人员的极大重视,其应用范围已经渗透到各个学科领域.计算机的普及,使得矩阵理论越来越受到学者、工程技术人员和科技人员的关注.矩阵理论不仅仅是一门重要的数学理论,而且在数值分析、数学建模、最优化方法等数学分支上有极其重要的应用,还在计算机科学、无线电技术和卫星通信等尖端技术科学领域和社会学、经济数学等许多方面都有着重要的用途和具体应用背景.利用矩阵理论与方法来处理错综复杂的工程问题时,具有表达简洁、对工程问题的实质刻画深刻的优点,因此应用矩阵理论和方法来处理工程技术上的各种问题,越来越受到工程界人士的极大重视,逐渐成为数学建模中解决实际问题常用的一种方法,矩阵理论与应用已成为众多学科领域的教学工具.在科学技术人员和学者在解决这些矩阵的计算问题时,逐渐发现把数学的一些计算公式,如平方和、平方差等许多运算律运用到矩阵的计算中来,既利于计算速度的提高,也方便于通过计算机的编程来进行大型矩阵的迅速计算.一、可交换矩阵及相关定义㈠矩阵1、矩阵的定义由m n个数a ij i1,2,,m,j1,2, ,n 排成的m行n列的数表a11 a12a1na21 a22 a2nA1a n1 a n2a nn称为m行n列矩阵,简称m n矩阵,为表示它是一个整体,总是加一个括弧,并用大写黑体字母表示它,也可以记为A a ij或A mn.这里的a ij表示位于A的第i行第j列的元素.m n称为矩阵的阶数.矩阵可分为实矩阵与复矩阵.当行数与列数相等,矩阵称为方阵.只有一行的矩阵称为行矩阵,只有一列的矩阵称为列矩阵.所有元素为0的矩阵称为零矩阵,记为O.两个矩阵如果行数与列数完全相同,则称为同型矩阵.2、矩阵的运算1加减法设Aa ij mn,Bbij mn为同型矩阵,则A B a ij b ij mn 2这里若设B为B的负矩阵,即 B bij m n,则可以定义减法运算A B a ijb ij mn 32数与矩阵的乘积设A a ijmn,kR为实数,则kA称为矩阵A的数乘,且kAka ijmn 4 即给A的每个元素均乘以数k.3矩阵的乘积设A aijm5,B bij5n,则ABCc ijmn 5 称c为矩阵A与矩阵B的乘积.其中c ij a i1b1j a i2b2j a i5b5j i 1,2, ,m;j 1,2, ,n即C的第i行第j列元素为A的第i行各元素与B的第j列各元素对应相乘再相加.注意:只有当A的行数与B的列数相等时,A与B才能相乘.4对称矩阵在一个n阶方阵A中,若元素满足如下性质:A ij A ji,0i,jn1 6 则称A为对称矩阵.5反对称矩阵设A是一个n阶方阵,如果A T A 7 则称A为反对称矩阵.㈡可交换矩阵一般情况下,矩阵的乘法不满足交换律,其原因有以下几点: 1. AB 有意义时,BA 不一定有意义.2. AB 与BA 均有意义时,可能它们的阶数不相等.3.AB 与BA 均有意义时,且它们的阶数相等时,仍可能出现 ABBA.因此,把满足乘法交换律的矩阵称为可交换矩阵,即若矩阵A,B 满足:ABBA8则称矩阵A 和B 是可交换的.二、矩阵可交换成立的条件与性质若AB BA 成立,则称方阵A 与B 为可交换矩阵.设fxa m x ma m1x m1a 1x 1a 09 系数a 0,a 1, ,a m 均为数域P 中的交换数,A 为P 上的一个n 阶方阵,记faaA mam1 A m1aAa Em1 0容易看出:任何方阵A 都与其伴随矩阵 A *是可交换的,且二者的乘积为 AIn;对于任何方阵A ,fx a A PaA P1a p I 与gAbA qb A q1 bI 可交换. 011 q (一)可交换矩阵成立的条件定理1[1]设n 阶方阵A,B 满足条件A BAB.则A,B 可交换. 证明由条件A BAB,diage 1,e nI ,变形可得I AIBAB(AI)B(IA)(AI)(B I)即(A I)(B I) I ,所以A I 为可逆矩阵,其逆矩阵为 BI ,有(AI)(BI) (BI)(AI)I即ABABI BABAI ,从而可得AB BA.定理2[3]设A,B 均为对称矩阵,则A,B 可交换的充要条件是AB 为对称矩阵. 证明设A,B 均为对称矩阵,由于AB BA ,故AB TB T A TBAAB 所以AB 是对称的.推论设A为n阶对称矩阵,则A,A T都可交换.定理3[3]设A为对称矩阵,B为反对称矩阵,则A,B可交换的充要条件是AB为反对称矩阵.证明设A T A,B T B,由于AB BA,所以AB T B T A T BA AB 10所以AB为反对称矩阵.反之,若AB为反对称矩阵,则AB AB T B T A T BA11 从而ABBA.定理4[3]设A,B均为反对称矩阵,则A,B可交换的充要条件是AB为对称矩阵.证明因A,B均为反对称矩阵,故有A T A,B T B,又因为A,B可交换,故有ABBA成立.从而AB T B T A T B A AB BA 12 反之,若AB为对称矩阵,则AB AB T B T A T B A BA AB 13 所以A,B是可交换矩阵.定理5[3]若A,B为同阶可逆矩阵,则A,B可交换的充要条件是A1,B 1可交换.证明因AB BA,故有AB1BA1B1A1A1B 114 即A1与B1是可交换的.反之,因A 1,B1可交换,故有BA1A1B1B1A1AB 115 两边求逆得到ABBA.推论可逆矩阵A,B可交换的充要条件是AB1B1A1.定理6[3]若A,B为n阶方阵,则AB可交换的条件是AB T A T B T证明如果ABBA,那么AB T BA T A T B T精品文档精品文档定理7[5]矩阵A能与一切n阶矩阵可交换的充分必要条件是A为数量矩阵.证明若A与一切n阶矩阵可交换,自然与对角线上元素互不相同的对角矩阵可交换,由此可知A必为一对角线矩阵.设d1d2A ..d n取矩阵1 1 . . 10 0 . . 0B . . . . 0. . . . .0 0 . . 0代入条件AB BA,得d1d2d n,所以A是一个数量矩阵.反之,设A aI,B为任意n阶矩阵,则AB aIB aB Ba BIa BIa BA 16引理1(1)A0时(即A为零矩阵时),与A可交换得矩阵B可以是任意的与A同价的B矩阵.(2)A的幂矩阵总是与A可交换.定理8[7]与A可交换的多项式矩阵总可以转化为小于等于n1次的多项式矩阵.定理9[7]一个矩阵A化为约当标准型后,若中没有纯量矩阵的约当块,那么与A可交换的矩阵其充要条件为B可化为A的n1次多项式.定理10[7]下列均是A,B可交换的充要条件:(1)A B ABABABAB(2)AB'A'B'定理11[5]可逆矩阵A,B可交换的充要条件是:ABAB.定理12[7](1)设A,B均为(反)对称矩阵,则A,B可交换的充要条件是AB为对称矩阵.(2)设A,B有一为对称矩阵,另一为反对称矩阵,则A,B可交换的充要条件是AB为反对称矩阵.(二)相关结论定理13[7]设A,B是可交换矩阵,则以下结论成立:(1)A2B2 A B A B A B A B(2)AB(3)AB 2A 2 2AB B22A 2 2AB B2精品文档(4) AB K B K A K,AB m B m A,其中k,m分别为正整数A mB m ABA m1A m2B B m1B m m(5) A C m k A mk B kk0证明(1) 因为A B A B A2AB BA B2A B A B A2AB BA B2由已知AB BA,可得A2B2ABAB ABAB(2) A B2ABA B A2ABBAB2由已知AB BA,可得A B2A22AB B2同理可得:A B2A22AB B2(3)由已知ABBA,可得AB k ABAB AB AABB AB AA AB B A k B k,AB m ABB B BAB B BB BA B m A(4)运用数学归纳法①当m 2时,由(1)等式成立,即A2B2 A B A B②假设m k 1时,等式成立,即有A k1B k1AB A k2 A k3BB k2③当m k时,由已知AB BA,有A kB k A k1B k1ABA k1B B k1AABA k2A k3B B k2ABA k2BB k1AA k A k1B A2B k2 B2A k2 B3A k3 B3A k1BB k1A由性质有B k1AAB k1,A k1BBA k1因此,上式可转化为:A kB k A k A k1B A2B k2 B2A k2 B k A k1BB k1AA k A k1B A2B k2 AB k1BA k1-B2A k2 B3A k3 B k 精品文档ABA k1A k2B B k1A k1ABA k2BAB B k1AB即证得A mB m A BA m1A m2B B m1同理可证得A mB m A m1A m2B B m1 A B(5)对m用数学归纳法同(4)即可得证.(三)可交换矩阵的性质高等代数中可交换矩阵具有一些特殊的性质.[2]性质1 设A,B可交换,则有:(1)ABBA,BAAB,其中m,k都是正整数(2)AfBfBA,其中fB是B的多项式,即A与B的多项式可交换(3) A BA BAAB?B AAB?BABB m m(4) A C m k A m1B kk0性质2[4](矩阵二项式定理) 设A,B可交换,则有:(1)若A,B均为对合矩阵,则AB也为对合矩阵(2)若A,B均为幂等矩阵,则AB,A B AB也为幂等矩阵(3)若A,B均为幂幺矩阵,则AB也为幂幺矩阵(4)若A,B均为幂零矩阵,则AB,A B均为幂零矩阵.三、几类常用的可交换矩阵假设以下矩阵均为n阶实方阵,定理14[7](1)设A,B至少有一个为零矩阵,则A,B可交换(2)设A,B至少有一个为单位矩阵,则A,B可交换(3)设A,B至少有一个为数量矩阵,则A,B可交换(4)设A,B均为对角矩阵,则A,B可交换(5)设A,B均为准对角矩阵,则A,B可交换精品文档(6)设A*是A的伴随矩阵,则A*与A可交换(7)设A可逆,则A与A可交换(8) 设AB E,则A,B可交换.定理15[7](1) 设AB AB,其中, 为非零实数,则A,B可交换(2) 设Am ABE,其中m为正整数, 为非零实数,则A,B可交换.定理16[7](1) 设A可逆,若ABO或A AB或A BA,则A,B可交换(2) 设A,B均可逆,若对任意实数k,均有AA kEB,则A,B可交换.四、可交换矩阵的应用例1设A与所有的n阶矩阵均可交换,证明A一定是数量矩阵.证明记a ijnn,用E ij将第i行第j列的元素表示为1,而其余元素为零的n n矩阵.因A与任何矩阵均可交换,因此必与E ij可交换.由AE ij E ij A,得a ii a jj i,j 1,2, ,n及a ij0i j,i,j 1,2, ,n.故A是数量矩阵.例2与任意一个n阶方阵相乘都可交换的方阵必为数量矩阵?解不妨设B为可逆矩阵,由于AB BA,所以对于任意可逆阵B都有B 1AB A即A的任意线性变换仍是A自己,这样的矩阵只能是KI.例3 如果矩阵A与所有的n阶矩阵可交换,则A一定是数量矩阵,即 A aE.证明记A ij用E ij将第i行第j列的元素表示为1,而其余元素为零的矩阵.因A与任何矩阵均可交换,所以必与E可交换.由AE ij E ij A得a ji a ij(i j 1,2,3, n 及a ij0i不等于j)故A是数量矩阵.例4若矩阵A1,A2都与B可交换,则KA1 LA2,A1A2也都与B可交换.解由已知A1B BA1,A2B BA2,那么KA1LA2B KA1B LA2B BKA1 BLA2 BKA1 LA2A1A2B A1A2B A1BA2A1BA2BA1A2.精品文档例 5 A与B可交换(即AB BA)的充分必要条件是AB为对称矩阵(即AB T AB).解题目根本就是错的,A取单位阵,B取任意非对称阵,那么AB非对称但ABBA.一定要加一个条件A和B本身都是对称阵才有结论.若ABBA,则AB T BA T A T B T AB.反之,若AB T AB,则AB B T A T BA.例6设A,B为乘积可交换的n阶矩阵,且初等因子为一次的,则存在n阶可逆矩阵P,使得都为对角矩阵.证明在V中选取一组基,存在线性变换,它们在该基下的矩阵分别为A,B,且A,B 与对角形相似.例7所有与A可交换的矩阵对于矩阵的加法和乘法作成环.解一般地,由于交换性问题,乘法公式对于n阶矩阵的多项式不再成立,如果所出现的n阶矩阵互相都是交换的,则乘法公式成立.例如A B2A22AB B2A和B可交换.A B AB A2B2A和B可交换.A和B 可交换(不是!)有二项公式.例8(1)设矩阵A diaga1,a2, ,a n为对角矩阵,其中ij 时,a i a j i,j1,2, ,n,则A,B可交换的充要条件是B为对角矩阵.若A,B均为对角矩阵则,A,B可交换.若B与A diaga1,a2,,a n可交换,i不等于j 时,a i a j,(i,j 1,2,n),证明设Bb ijnn,AB C ij nn,BA d ij n n,因为A为对角矩阵,故c ij a i b ij,d ij a j b ij i,j 1,2,,n由AB BA,即c ij d ij i,j 1,2,,n得a i a jb ij 0而i j时,a i a j0i,j 1,2, ,n,精品文档故b ij0i j,i,j 1,2, ,n所以B为对角矩阵.五、总结本文通过大量的例题对可交换矩阵在计算与证明以及应用三方面进行了总结分析,在证明方面,涉及了矩阵的条件与性质和矩阵列(行)向量线性相关性等问题,利用可交换矩阵可以很清晰地描述线性方程组的解与其相关内容,对一些具体的解与矩阵行(列)向量组线性相关性之间的关系给出了结论.通过本文的论述,充分体现了可交换矩阵在代数计算与证明方面所具有的一定的优越性,也给出了可交换矩阵和矩阵可交换在代数学中所具有的重要地位,当然在对可交换矩阵的应用的论述上本文并不是所有类型的证明与计算都进行了讨论,只是针对一些具有代表性的应用例子上进行证明,所以在应用的完整性上还有待改进,并可以继续进行研究探讨.于此同时,通过课题的详细研究,也让我进一步巩固和加深了对可交换矩阵的理解,在今后的探讨中相信也会有所进步.参考文献[1].北京大学数学系几何与代数教研室前代数小组编.高等代数(第三版)[M].高等教育出版社.2007:181-186.[2]. 戴立辉,《矩阵可交换的条件及可交换矩阵的性质》,华东地质学院学报,2002(04)[3].阎家灏,赵锡英,《可交换矩阵》,兰州工业高等专科学校学报2002(03)[4].戴笠辉、颜七笙,《矩阵可交换的条件及可交换矩阵的性质》,华东地质学院学报,2002,25(4)[5].李瑞娟、张厚超,《可交换矩阵浅析》,和田师范专科学校学报,2009(4)[6].呙林兵,《与方阵可交换的矩阵为矩阵多项式的探讨》,长沙大学学报,2010,24(5)[7].赵锡英、闫家瀛,《可交换矩阵》,兰州工业高等专科学校学报,2002,9(3)[8].龙兴华、马圣荣、颜世建,《矩阵方程AX+XB=C的显式解及其应用》,2002致谢本文是在老师的细心指导下完成的,导师从我们每一个人的论题出发,给予我们详细的指导,并结合知识点进行讲解,这使我们从开始的茫然变的思路清晰,课题才得以顺利进行,导师在学习上的谆谆教诲和身体力行以及无私的帮助使我受益终身,在此谨精品文档向导师表示衷心的感谢!导师高度的敬业精神,为学生们树立了良好的风范,也是我今后所追求的目标.“登泰山始懂尊冠五岳,遇导师才知德高智睿”,师恩浩瀚,溢于言表!课题的顺利进行,还得益于和我同行的两位同学和四年来各位同学的支持和帮助,在此特别感谢在论文的书写和编辑上帮助我的同组同学和在文献查阅与思路启发上给予的莫大帮助的同学们,为论文顺利的进行奠定了基础.感谢我的同学提供的友好合作和无私帮助,永远难忘在一起拼搏的日日夜夜.最后谨向所有帮助和支持过我的领导、老师、同学及亲友们表示最诚挚的谢意.精品文档。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015届学士学位毕业论文矩阵可交换性的应用学号:*********名:***班级:数学1101指导教师:***专业:数学与应用数学系别:数学系完成时间:2014年4月学生诚信承诺书本人郑重声明:所呈交的论文《矩阵可交换性的应用》是我个人在导师闫慧凰指导下进行的研究工作及取得的研究成果。
尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得长治学院或其他教育机构的学位或证书所使用过的材料。
所有合作者对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
签名:日期:论文使用授权说明本人完全了解长治学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。
签名:日期:指导教师声明书本人声明:该学位论文是本人指导学生完成的研究成果,已经审阅过论文的全部内容,并能够保证题目、关键词、摘要部分中英文内容的一致性和准确性。
指导教师签名:时间摘要矩阵在高等数学中是一个极重要且应用广泛的概念,是线性代数的核心。
而且在一些重要领域也用到了矩阵的计算,像应用数学、计算数学、经济学、数学物理、卫星通信等等,许多工作人员在大量计算这些矩阵时发现了一些对于特殊矩阵成立的公式和规律,本文将用这些规律来叙述一些特殊矩阵(可交换矩阵)的应用。
关键词:矩阵;可交换目录1.绪论 (1)2.基础知识 (1)2.1 矩阵相关概念 (1)2.2 线性变换相关概念 (2)3.矩阵可交换的应用 (3)3.1线性变换与矩阵(可交换)之间的联系 (3)3.2上三角矩阵可交换的应用 (4)矩阵可交换性的应用11404111 郭冬冬 数学与应用数学指导教师 闫慧凰1.绪论随着社会经济的发展,数学显得格外重要,在生产、生活中都或多或少的涉及到了数学,所以数学是每个人必须学会的,而对于一些技术分子则不仅仅是掌握基本的数学知识,而且要对数学中的一些比较高深的内容进行进一步的了解,之后对其进行应用,像从事计算科学、无线电技术和卫星通信领域工作的人都涉及到了矩阵的可交换方面的知识。
通常情况下,若A B 和都是m 阶矩阵,像22=B ⨯-(A+B )(A-B)A是不成立的,但如果已知A B 和可交换,那么上述这个公式就是成立的。
像这样的公式还有很多在可交换矩阵的条件下是成立的,如k k k AB A B =()等等,当然,有时候在解决一些问题的时候会将线性变换与矩阵结合起来,这样两者之间就可以转化,将问题简单化。
文献[9]就主要介绍了线性变换和矩阵之间的转化问题,文献[3]和文献[4]主要是对矩阵可交换的性质进行了探究。
本文第一部分主要介绍了矩阵可交换性的相关概念,第二部分讲了矩阵可交换在一些方面的应用,主要有线性变换与矩阵的转化、上三角矩阵可交换的计算等。
2.基础知识2.1 矩阵相关概念定义2.1.1 设矩阵A B 和,如果有=AB BA ,则称矩阵A B 与可交换。
定义2.1.2 在m 阶方阵B 中,倘若其中的元素=0,1,2,,ij b i j j m ≠=,,则称B 为m 阶对角矩阵,记为1100mm b b ⎛⎫ ⎪ ⎪ ⎪⎝⎭定义2.1.3 如果一个m m ⨯矩阵其主对角线上的元素全是1,其余的元素全是0,即1001m m⨯⎛⎫ ⎪ ⎪ ⎪⎝⎭,则称其为m 级单位矩阵,记为m E 或简写为E 。
显然有 sm m sm A E A =s sm sm E A A =定义2.1.4 矩阵1111m s sm ka ka ka ka ⎛⎫ ⎪ ⎪ ⎪⎝⎭称为矩阵=ij sm A (a )与数k 的数量乘积,记为kA ,换句话说,即用数k 乘矩阵就是把矩阵的每个元素都乘上k 。
定义2.1.5 设A =,所谓A 的转置就是指矩阵=A ',显然s m ⨯矩阵的转置是m s ⨯矩阵。
定义2.1.6 m 级方阵A 称为可逆的,若有m 级方阵B ,使得=AB BA E =,这里E 是m 级单位矩阵。
定义 2.1.7 设ij X 是矩阵A =中元素ij x 的代数余子式,矩阵*X =称为X 的伴随矩阵。
2.2 线性变换相关概念定义2.2.1 设V 是线性空间,σ和τ是V 上的线性变换,若=σττσ成立,则称线性变换σ和τ是可交换的。
定义2.2.2 设V 是数域P 上的m 维线性空间,()L V 是V 上的所有线性变换的集合,12m ααα,,是的一组基,即=V 12(,)m L ααα,记为1212(,,)=(,,)m m B σαααααα,().m m L V B P σ⨯∈∈ ① 在①式所设下,令:()f L V P →,且()f σ= B , ().m m L V B P σ⨯∈∈,则()m m f L V P ⨯是到的同构映射,因此()m m L V P ⨯≅3.矩阵可交换的应用3.1线性变换与矩阵(可交换)之间的联系设V 是数域P 上的m 维线性空间,由定义2.2.2我们得到了()m m L V P ⨯≅,如此便建立了数域上的m 维线性空间V 的线性变换与数域P 上的m m ⨯矩阵的关系,它们是相互唯一确定的。
解决上述中线性变换的问题就可以借助矩阵σ,这样有限维空间上的线性变换问题就可以转化为m m P ⨯中矩阵的问题了,反过来,m m P ⨯中矩阵的问题就可以转化为有限维空间上的线性变换问题。
在同构的前提下,()L V 中的线性变换的很多性质转化为矩阵语言同样成立,反之,也成立。
定理3.1.1 设V 是复数域P 上的m 维线性空间,στ和 是V 的线性变换,且=σττσ,(1) σ的每一个特征子空间都是τ的不变子空间;(2) σ与τ至少有一个公共的特征向量。
证明:(1)设b V 是的σ特种子空间,其中b 是σ的特征值,则对于b V ς∀∈,有()b σςς=,从而(())=()=()=(())()()b b στςστττσττσςτςτς==,故()b V τς∈,即σ的每一特征子空间都是τ的不变子空间。
(2)b V 是τ的不变子空间,则在复数域上,τ必有特征值η,并存在非零向量,(),()()b V b ςτςηςτςηςσςς∈===使故又,所以,ς是σ与τ的公共特征向量。
接下来,我们利用这个定理来证明两个题。
例1:设X Y 、是m 阶复矩阵,且X 的m 个特征值12,,m μμμ两两互异,XY YX =。
证明:Y 是个对角矩阵。
证明:设X 和Y 是m 维复空间V 的线性变换σ和τ在某组基下的矩阵,由已知可得12,,m μμμ是m 个两两互异的特征值,从而存在i ζ使得(),1,2,,i i i i m σζμζ==,其中12,,,m ζζζ线性无关,所以12,,,m ζζζ是V 的一组基,则=()i V L ζ是τ的一维不变子空间的直和.又因为XY YX =,所以=σττσ,根据定理得()i L ζ是τ的不变子空间,其中1,2,i m =,则有()(),1,2,,i i L i m τζζ∈=,即τ有m 个线性无关的特征向量12,,,m ζζζ,则τ可以对角化,所以Y 可以对角化,因此Y 是个对角矩阵。
例2:σ和τ是m 维:线性空间V 的线性变换,证明:若σ的m 个特征值两两互异,则=σττσ的充要条件是σ的特征向量也是τ的特征向量。
证明:设12,,m μμμ是σ的全部特征值,且,()j i i j μμ≠≠,属于i μ的特征向量为(1,2,,)i i m α=。
因为属于不同特征值的特征向量是线性无关的,所以12,,m ααα是V 的一个基。
必要性:设=σττσ,且σ和τ在基i α下的矩阵分别为X Y 、,则12112212(,,)(,,,)(,,)m m m m X σαααμαμαμαααα==,其中12X=(,,,)m diag μμμ。
因为=σττσ,所以XY YX =,由于与对角元素彼此不同的对角矩阵可交换的矩阵只能是对角矩阵,所以12=(,,,)m diag τηηη,这时从1212(,,)(,,)m m Y ταααααα=得到(1,2,,)i i i i m ταηα==。
充分性:若σ的特征向量也是τ的特征向量,则12121(,,)(,,)(,,)m m m diag σααααααμμ=12121(,,)(,,)(,,)m m m diag τααααααηη=,。
于是,σ与τ在基12,,m ααα下的矩阵X 与Y 可交换,12121212(,,,)(,,,)(,,,)(,,,)m m m m diag diag diag diag μμμηηηηηημμμ=即XY YX =,因此=σττσ。
3.2上三角矩阵可交换的应用首先,给出几个简单的定理,然后由这几个简单定理来推出一个比较复杂的性质,最后利用结论来解决矩阵方面的习题。
定理3.2.1 型如1112110x x X x ⎛⎫= ⎪⎝⎭的二阶上三角矩阵的可交换矩阵仍然是二阶上三角阵1112110y y Y y ⎛⎫= ⎪⎝⎭其中,(1,1,2)ij ij x y i ==为任意实数。
定理3.2.2 型如111213112311000x x x X x x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭的三阶上三角矩阵的可交换矩阵仍然是三阶上三角矩阵111213112311000y y y Y y y y ⎛⎫ ⎪= ⎪ ⎪⎝⎭(且12122323x y x y =)其中,(1,1,2)ij ij x y i j ==为任意实数。
定理3.2.3 型如0000x a X x a x ⎛⎫ ⎪= ⎪ ⎪⎝⎭的三阶方阵的可交换矩阵仍然是三阶方阵0000000y Y y ⎛⎫ ⎪= ⎪ ⎪⎝⎭其中,,a x y 为任意实数。
下面给出矩阵X =的上三角矩阵,再给出一个引理: 引理:与m 阶方阵Q =的可交换矩阵型如上述矩阵X = 根据以上引理,来证明一下如下定理。
定理3.2.4 m 阶方阵P 能与m 阶方阵X =可交换⇔P 是型如方阵X 的m 阶方阵。
证明:必要性:设方阵P 能与m 阶方阵X 可交换,那么与Q =也可交换,由引理可知P 是型如方阵X 的m 阶方阵。
充分性:设=P ,R =中,(1,2,,)i i k r i m =是任意实数,通过矩阵的乘法比较PR RP 和,得出=PR RP 。
接下来,应用以上定理来证明以下的题目。