工业循环水冷却设计规范(汇编)

工业循环水冷却设计规范(汇编)
工业循环水冷却设计规范(汇编)

工业循环水冷却设计规范(2009-05-16)

目录

第一章总则

第二章冷却塔

第三章喷水池

第四章水面冷却

附录本规范用词说明

附加说明

第一章总则

第1.0.1条本规范适用于新建和扩建的敞开式工业循环水冷却设施的设计。

第1.0.2条工业循环水冷却设施的设计应符合安全生产、经济合理、保护环境、节约能源、节约用水和节约用地,以及便于施工、运行和维修等方面的要求。

第1.0.3条工业循环水冷却设施的设计应在不断总结生产实践经验和科学试验的基础上,积极开发和认真采用先进技术。

第1.0.4条工业循环水冷却设施的类型选择,应根据生产工艺对循环水的水量、水温、水质和供水系统的运行方式等使用要求,并结合下列因素,通过技术经济比较确定:

一、当地的水文、气象、地形和地质等自然条件;

二、材料、设备、电能和补给水的供应情况;

三、场地布置和施工条件;

四、工业循环水冷却设施与周围环境的相互影响。

第1.0.5条工业循环水冷却设施应靠近主要用水车间;并应避免修建过长的给水排水管、沟和复杂的水工建筑物。

第1.0.6条工业循环水冷却设施的设计除应执行本规范外,尚应符合现行有关的国家标准、规范的规定。

第二章冷却塔

第一节一般规定

第2.1.1条冷却塔在厂区总平面布置中的位置应符合下列规定:

一、冷却塔宜布置在厂区主要建筑物及露天配电装置的冬季主导风向的下风侧;

二、冷却塔应布置在贮煤场等粉尘污染源的全年主导风向的上风侧;

三、冷却塔应远离厂内露天热源;

四、冷却塔之间或冷却塔与其他建筑物之间的距离除应满足冷却塔的通风要求外,还应满足管、沟、道路、建筑物的防火和防爆要求,以及冷却塔和其他建筑物的施工和检修场地要求;

五、冷却塔的位置不应妨碍工业企业的扩建。

第2.1.2条当环境对冷却塔的噪声有限制时,宜采取下列措施:

一、机械通风冷却塔应选用低噪声型的风机设备;

二、冷却塔周围宜设置消声设施;

三、冷却塔的位置宜远离对噪声敏感的区域。

第2.1.3条冷却塔的集中或分散布置方案的选择,应根据使用循环水的车间数量、分布位置及各车间的用水要求,通过技术经济比较后确定。第2.1.4条冷却塔一般可不设备用。冷却塔检修时应有不影响生产的措施。

第2.1.5条冷却塔的热力计算宜采用焓差法或经验方法。

第2.1.6条冷却塔的热交换特性宜采用原型塔的实测数据。

当缺乏原型塔的实测数据时,可采用模拟塔的试验数据,并应根据模拟塔的试验条件与设计的冷却塔的运行条件之间的差异,对模拟塔的试验数据进行修正。

第2.1.7条冷却塔的通风阻力系数宜采用原型塔的实测数据。当缺乏实测数据时,可按经验方法计算。

第2.1.8条冷却塔的最高冷却水温不应超过生产工艺允许的最高值;计算冷却塔的最高冷却水温的气象条件应符合下列规定:

一、根据生产工艺的要求,宜采用按湿球温度频率统计方法计算的频率为5%~10%的日平均气象条件;

二、气象资料应采用近期连续不少于五年,每年最热时期三个月的日平均值。

第2.1.9条计算冷却塔的各月的月平均冷却水温时,应采用近期连续不少于五年的相应各月的月平均气象条件。

第2.1.10条气象资料应选用能代表冷却塔所在地气象特征的气象台、站的资料,必要时宜在冷却塔所在地设气象观测站。

第2.1.11条冷却塔的水量损失应根据蒸发、风吹和排污各项损失水量确定。

第2.1.12条冷却塔的蒸发损失水量占进入冷却塔循环水量的百分数可按下式计算:

第2.1.13条冷却塔的风吹损失水量占进入冷却塔循环水量的百分数可按表2.1.13采用。

第2.1.14条排污损失水量应根据对循环水水质的要求计算确定。第2.1.15条淋水填料的型式和材料的选择应根据下列因素综合考虑确定:

一、塔型;

二、循环水的水温和水质;

三、填料的热力特性和阻力性能;

四、填料的物理力学性能、化学性能和稳定性(耐温度变化、抗老化和抗腐蚀等);

五、填料的价格和供应情况;

六、施工和检修方便;

七、填料的支承方式和结构。

第2.1.16条机械通风冷却塔和风筒式冷却塔一般应装设除水器。视工程具体条件,经过论证,风筒式冷却塔也可不装除水器。

除水器应选用除水效率高、通风阻力小、经济、耐用的型式。

第2.1.17条冷却塔的配水系统应满足配水均匀、通风阻力小、能量消耗低和便于维修等要求;并应根据塔型、循环水质等条件按下列规定选择:

一、逆流式冷却塔宜采用管式、槽式或管槽结合的型式;当循环水含悬浮物和泥砂较多时宜采用槽式;

二、横流式冷却塔宜采用池式;

三、小型机械通风逆流式冷却塔宜采用管式或旋转布水器。

第2.1.18条管式配水系统的配水干管起始断面设计流速宜采用1.0~1.5m/s。

第2.1.19条槽式配水系统应符合下列要求:

一、主水槽的起始断面设计流速宜采用0.8~1.2m/s;配水槽的起始断面设计流速宜采用0.5~0.8m/s;

二、配水槽的设计水深应大于溅水喷嘴内径的6倍,且不应小于0.15m;

三、配水槽的超高一般不应小于0.1m;在可能出现的超过设计水量工况下,配水槽不应溢流;

四、配水槽断面净宽不宜小于0.12m;

五、主、配水槽均宜水平设置,水槽连接处应圆滑,水流转弯角不宜大于90°。

第2.1.20条配水池应符合下列要求:

一、池内水流平稳,水深应大于溅水喷嘴内径或配水底孔直径的6倍;

二、池壁超高不宜小于0.1m;在可能出现的超过设计水量工况下不应溢流;

三、池底宜水平设置;池顶宜设盖板或采取防止光照下滋长微生物和苔藓的措施。

第2.1.21条溅水喷嘴应选用结构合理、流量系数大、喷溅均匀和不易堵塞的型式。

第2.1.22条配水竖井或竖管应有放空措施。槽式配水系统的配水竖井内应保持水流平稳,不产生旋涡流。

第2.1.23条逆流式冷却塔的进风口面积与淋水面积之比宜采用下列数值:

一、机械通风冷却塔不小于0.5;

二、风筒式冷却塔不小于0.4。

第2.1.24条横流式冷却塔的淋水填料的高和径深应根据工艺对冷却水温的要求、冷却塔的通风措施、淋水填料的型式、塔的投资和运行费等因素,通过技术经济比较确定。淋水填料高和径深的比一般宜采用下列数值:

机械通风冷却塔宜为2~2.5;

风筒式冷却塔当淋水面积大于1000m2时,宜为1~1.5;当淋水面积等于和小于1000m2时,宜为1.5~2.0。

第2.1.25条冷却塔的集水池应符合下列要求:

一、集水池的深度不宜大于2.0m。当循环水采用阻垢剂、缓蚀剂处理时,集水池的容积应满足水处理药剂在循环水系统内允许停留时间的要求;

二、集水池应有溢流、排空及排泥措施。池底宜有便于排水及排泥的适当坡度;

三、池壁的超高宜为0.2~0.3m;小型机械通风冷却塔不得小于0.1m;

四、出水口宜有拦污设施。大,中型冷却塔的出水口宜设置安全防护栏栅;

五、集水池周围应设回水台,其宽度宜为1.5~2.0m,坡度宜为3%~5%。回水台外围应有防止周围地表水流入池内的措施;

六、沿集水池周围宜设置栏杆。

第2.1.26条冷却塔内空气通流部位的构件应采用气流阻力较小的断面及型式。

第2.1.27条冷却塔内、外与水汽接触的金属构件、管道和机械设备均应采取防腐蚀措施。

第2.1.28条视不同塔型和具体条件,冷却塔应有下列设施:

一、通向塔内的人孔;

二、从地面通向塔内和塔顶的扶梯或爬梯;

三、配水系统顶部的人行道和栏杆;

四、塔顶的避雷保护装置和指示灯;

五。运行监测的仪表;

六、验收测试使用的仪器和仪表的安装位置和设施。

第2.1.29条寒冷和严寒地区的冷却塔,根据具体条件,宜采用下列防冻措施:

一、在冷却塔的进风口上缘沿塔内壁宜设置向塔内下方喷射热水的喷水管,喷射热水的总量宜为进塔总水量的20%~40%;

二、在冷却塔的进水干管上宜设能通过部分或全部循环水的旁路水管;

三、淋水填料内外围宜采用分区配水;

四、机械通风冷却塔可采取停止风机运行、减小风机叶片的安装角,或选用变速电动机以及允许倒转的风机设备等措施;风筒式冷却塔可在进风口设置挡风设施;

五、当塔的数量较多时,可减少运行的塔数。停止运行的塔的集水池应保持一定量的热水循环或采取其他保温措施;

六、风筒式逆流冷却塔的进风口上缘内壁宜设挡水檐,檐宽宜采用0.3~0.4m;

七、风机减速器有润滑油循环系统时,应有对润滑油的加热设施;

八、塔的进水阀门及管道应有防冻放水管或其他保温措施。

第2.1.30条冷却塔的运行管理宜设专人。冷却塔设计应对施工、运行及维护提出要求,并附有冷却塔的热力特性曲线。

第二节机械通风冷却塔

第2.2.1条机械通风冷却塔一般宜采用抽风式塔。当循环水对风机的侵蚀性较强时,可采用鼓风式塔。

第2.2.2条单格的机械通风冷却塔的平面宜为圆形或正多边形;多格毗连的机械通风冷却塔的平面宜采用正方形或矩形。

当塔格的平面为矩形时,边长不宜大于4∶3;进风口宜设在矩形的长边。第2.2.3条逆流抽风式冷却塔的淋水填料顶面至风机风筒的进口之间气流收缩段的顶角宜采用90°~110°。

第2.2.4条抽风式塔的风机风筒进口应采用流线型;风筒的出口应考虑减少动能损失的措施,必要时宜设扩散筒。扩散筒的高度不宜小于风机半径,中心角宜采用14°~18°。

第2.2.5条横流式机械通风冷却塔的淋水填料从顶部至底部应有向塔的垂直中轴线的收缩倾角。点滴式淋水填料的收缩倾角宜为9°~11°;薄膜式淋水填料的收缩倾角宜为5°~6°。

第2.2.6条单侧进风的塔的进风面宜面向夏季主导风向;双侧进风的塔的进风面宜平行于夏季主导风向。

第2.2.7条当塔的格数较多时宜分成多排布置。每排的长度与宽度之比不宜大于5∶1。

第2.2.8条两排以上的塔排布置应符合下列要求:

一、长轴位于同一直线上的相邻塔排净距不小于4m;

二、长轴不在同一直线上相互平行布置的塔排净距不小于塔的进风口高的4倍。

第2.2.9条周围进风的机械通风冷却塔之间的净距不应小于冷却塔的进风口高的4倍。

第2.2.10条根据冷却塔的通风要求,塔的进风口侧与其他建筑物的净距不应小于塔的进风口高的2倍。

第2.2.11条设计机械通风冷却塔时,应考虑冷却塔排出的湿热空气回流和干扰对冷却效果的影响,必要时应对设计气象条件进行修正。

第2.2.12条机械通风冷却塔格数较多且布置集中时,冷却塔的风机宜集中控制;各台风机必须有可切断电源的转换开关及就地控制风机启、停的操作设施。

第2.2.13条风机设备应采用效率高、噪声小、安全可靠、材料耐腐蚀、安装及维修方便、符合标准的产品。

第2.2.14条风机的设计运行工况点应根据冷却塔的设计风量和计算的全塔总阻力确定。风机在设计运行工况点应有较高的效率。

第2.2.15条风机的减速器采用稀油润滑时应配有油位指示装置,大型风机应配有防振保护装置。

第2.2.16条机械通风冷却塔应有起吊风机设备的措施。

第2.2.17条采用工厂生产的冷却塔时,应根据该型产品实测的热力特性曲线进行选用。选用的产品应符合国家有关产品标准。

第三节风筒式冷却塔

第2.3.1条风筒壳体的几何尺寸应满足循环水的冷却要求,并应结合结构、施工等因素通过技术经济比较确定。双曲线型的风筒壳体一般宜采用表2.3.1规定的数值:

第2.3.2条相邻的风筒式冷却塔的净距应符合下列规定:

一、逆流式冷却塔不应小于塔的进风口下缘的塔筒半径;

二、横流式冷却塔不应小于塔的进风口高的3倍;

三、当相邻两塔几何尺寸不同时应按较大的塔计算。

第2.3.3条根据冷却塔的通风要求,塔与其他建筑物的净距不应小于塔的进风口高的2倍。

第2.3.4条塔筒的有效抽风高度应采用淋水填料中部至塔顶的高度。第2.3.5条冷却塔的淋水面积应采用潜水填料顶部面积。

第2.3.6条风筒式冷却塔的塔顶应设人行道及栏杆,人行道上应设检修孔。检修孔平时应封盖。

第2.3.7条风筒式冷却塔从地面通向塔顶的爬梯必须设护栏。

第四节开放式冷却塔

第2.4.1条当循环水量较小,工艺对冷却水温要求不严格时可采用开放式冷却塔;在大风、多砂地区不宜采用开放式冷却塔。

第2.4.2条开放式冷却塔的位置应选择在气流通畅的地方。

第2.4.3条开放式冷却塔的淋水填料宜采用点滴式。淋水填料安装的宽度不宜大于4.0m。淋水填料的安装高度与宽度之比宜采用2~3。第2.4.4条塔的平面宜采用矩形。塔的长边宜与夏季主导风向垂直布置。

第2.4.5条开放式冷却塔的填料周围宜设百页窗。

第2.4.6条开放式冷却塔与其他建筑物的净距应大于30m。

第三章喷水池

第3.0.1条当循环水量较小,工艺对冷却水温要求不严格,且场地开阔,环境允许时可采用喷水池;在大风、多砂地区不宜采用喷水池。

第3.0.2条喷水池可按经验曲线进行热力计算。

第3.0.3条计算喷水池的冷却水温时,选用的气象条件应符合本规范第2.1.8条、第2.1.9条和第2.1.10条的规定。

第3.0.4条喷水池的损失水量应根据下列各项确定:

一、蒸发损失水量应符合本规范第2.1.12条的规定;

二、风吹损失水量占循环水量的百分数可取1.5%~3.5%;

三、排污损失水量应根据对循环水质的要求经计算确定。

第3.0.5条喷水池的淋水密度应根据当地气象条件和工艺要求的冷却水温确定;一般可采用0.7~1.2·h。

第3.0.6条喷水池不宜少于两格,当允许间断运行时亦可为单格。第3.0.7条喷水池的喷嘴宜选用渐伸线型或C—6型。喷嘴前的水头:渐伸线型应为5~7m;C—6型不应小于6m。

喷嘴布置宜高出水面1.2m以上。

第3.0.8条喷水池内的设计水深宜为1.5~2.0m。

第3.0.9条喷水池的超高不应小于0.25m;池底应有坡向放空管的适当坡度。

第3.0.10条喷水池宽不宜大于60m;最外侧喷嘴距池边不宜小于7米。喷水池的长边应与夏季主导风向垂直布置。

第3.0.11条喷水池边缘应有回水台;回水台的宽度不宜小于5米。回水台倾向水池的坡度宜为2%~5%。回水台外围应有防止周围地表水流入池内的措施。

第3.0.12条喷水池应有排污、放空和溢流设施。出水口前应设置拦污设施。

第3.0.13条配水管末端应装设放水管。配水管应有坡向放水管的0.1%~0.2%的坡度。

第3.0.14条寒冷和严寒地区的喷水池应采取下列防冻措施:

一、在进水干管上宜设旁路水管,旁路水管的排水口应位于水池出水口的对面一侧;

二、干管及配水管上的闸门应装设防冻放水管或采取其他保温措施。

第四章水面冷却

第一节一般规定

第4.1.1条利用水面冷却循环水时,宜利用已有水库、湖泊或河道等水体,也可根据自然条件新建冷却池。

第4.1.2条利用水库、湖泊或河道等水体冷却循环水时,水体的水量、水质和水温应满足工业企业取水和冷却的要求。

第4.1.3条利用水库、湖泊或河道等水体冷却循环水时,应征得农业、渔业、航运和环境等有关部门的同意。

第4.1.4条设计水面冷却工程,应考虑排水和冷却水体的综合利用。第4.1.5条工业企业使用综合利用水库或水利工程设施冷却循环水,应取得水利工程管理单位的供水协议。

第4.1.6条取水、排水建筑物的布置和型式应有利于吸取冷水和热水的扩散冷却。有条件时,宜采用深层取水和表面排水。

排水口应使出流平顺,排水水面与受纳水体水面的衔接宜平缓。

第4.1.7条在有温差异重流的冷却水体内,采用深层取水建筑物取底部冷水时,其进口流速宜通过模型试验确定,一般可采用0.1~0.2m/s。

第4.1.8条采用重叠式取排水建筑物的冷却水体应有足够的水深。设计应考虑各种不利因素对设计最低水位和表面热水层厚度的影响。

第4.1.9条水面的综合散热系数应根据工程地区的热水面实测资料确定,当缺乏实测资料时,可利用经验公式计算确定。

第4.1.10条当水体的冷却能力不足或需要降低排水温度时,可根据综合技术经济分析,选用辅助的冷却设施。

第4.1.11条冷却水体中有渔业生产时,取水建筑物应设拦鱼设施。第4.1.12条取水口和排水口应装设测量水温和冷却水体水位的仪表。

第二节冷却池

第4.2.1条新建冷却池,应不占或少占耕地。设计应采取防止池岸和堤坝冲刷及崩坍的措施;还应采取对冷却池附近农田和建筑物的防护措施,防止因冷却池附近地下水位升高对农田和建筑物造成不良影响。

第4.2.2条利用水库或湖泊冷却循环水,应根据水体的水文气象条件、水利计算、运行方式和水工建筑物的设计标准等资料进行设计。

第4.2.3条冷却池的设计最低水位,应根据水体的自然条件、冷却要求的水面面积和最小水深、泥沙、淤积和取水口的布置等条件确定。

第4.2.4条冷却池在夏季最低水位时,水流循环区的水深不宜小于2m。

第4.2.5条冷却池的正常水位和洪水位,应根据水量平衡和调洪计算成果、循环水系统对水位的要求和池区淹没损失等条件,通过技术经济分析确定。

第4.2.6条新建冷却池,应根据冷却、取水、卫生和其他方面的要求,对池底进行清理。

第4.2.7条新建冷却池,初次灌水至运行要求的最低水位所需的时间,应满足工业企业投入生产的要求。

第4.2.8条设计冷却池,应通过物理模型试验,当工程条件允许时,也可利用数学模型计算或其他方法,确定水体的冷却能力和取水温度,并结合技术经济分析选择取水和排水工程的最优布置方案。

第4.2.9条冷却池的冷却水最高计算温度,不应超过生产工艺允许的最高值。

计算冷却池的设计冷却能力或冷却水最高温度的水文气象条件,应根据生产工艺的要求确定。一般宜符合下列规定:

一、深水型冷却池,采用多年平均的年最热月月平均自然水温和相应的气象条件;

二、浅水型冷却池,采用多年平均的年最炎热连续十五天平均自然水温和相应的气象条件。

第4.2.10条计算冷却池的各月月平均冷却水温,应采用多年相应各月的月平均水文和气象条件。

第4.2.11条自然水温应根据实测资料或条件相似水体的观测资料确定。当缺乏上述资料时,可按热量平衡方程或经验公式计算确定。

第4.2.12条冷却池必须有可靠的补充水源。冷却池补充水源的设计标准,应根据工业企业的重要性和生产工艺的要求确定。一般可采用频率为95%~97%的枯水年水量。

第4.2.13条冷却池的损失水量应按自然蒸发、附加蒸发、渗漏和排污等各项计算的损失水量确定。

第4.2.14条冷却池的自然蒸发量应按当地水面自然蒸发量公式或邻近相似水体的自然蒸发量公式计算确定。

自然蒸发水量的计算应符合下列规定:

一、年调节水量的冷却池,当为地表径流补给时,应采用与补充水源同一设计标准的枯水年;人工补水时,可按历年中蒸发量与降水量的差值最大年份考虑;

二、多年调节水量的冷却池,可采用多年平均值;

三、蒸发量年内各月分配可采用设计枯水年的年内月分配率。

第4.2.15条冷却池的附加蒸发水量可按下式计算:

第4.2.16条冷却池的渗漏水量可根据池区的水文地质条件和水工建筑物的型式等因素确定。必要时,冷却池应采取防渗漏的措施。

第4.2.17条冷却池的排污水量,应根据对循环水水质的要求计算确定。

第4.2.18条冷却池应考虑泥沙淤积对取水口、排水口的位置和冷却能力的影响,必要时应采取防止或控制淤积发展的措施。

第4.2.19条当冷却池有地表径流补给水时,宜设置向冷却池下游排放热水的旁路设施。

第4.2.20条冷却池取水口和排水口方位的选择,应考虑风向对取水温度和热水扩散的影响。

第4.2.21条为提高冷却池的冷却能力或降低取水温度,可采用导流堤、潜水堰和挡热墙等工程措施。

第4.2.22条地表径流补水的冷却池,应有排泄洪水的建筑物。人工补水的冷却池,应根据需要,设置溢流和放水等设施。

第4.2.23条工业企业自建的冷却池,应设专人管理。

第三节河道冷却

第4.3.1条利用河道冷却循环水,应根据工程的具体条件,利用物理模型试验或数学模型计算,确定河段水面的冷却能力、取水温度和河段的水温分布,并结合技术经济分析选择取水和排水工程的最优布置方案。

第4.3.2条计算河道的设计冷却能力或冷却水最高温度的水文气象条件,应根据生产工艺的要求确定。一般可采用历年最炎热时期(一般以三个月计算)频率为5%~10%的日平均水温和相应的水文气象条件。冷却水的最高计算温度,不应超过生产工艺允许的最高值。

第4.3.3条利用河网冷却循环水,应根据河网的规划设计,论证和选择设计最低水位。

第4.3.4条排水口宜设在取水口下游。当排水口设在上游时,应采取减少进入取水口的热水量的措施。

第4.3.5条感潮河段应采取避免和减少排水热量在河道中积蓄对取水温度影响的措施。

工业循环冷却水系统设计规范标准

《》 条文说明 1总则目录 1.01为了控制工业循环冷却水系统由水质引起的结垢、污垢和腐蚀,保证设备的换热效率和使用年限,并使工业循环冷却水处理设计达到技术先进、经济合理,制定本规。 1.02本规适用于新建、扩建、改建工程中间接换热的工业循环冷却水处理设计。 1.03工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。 1 总则全文 1.0.1本条阐明了编制本规的目的以及为了达到这一目的而执行的技术经济原则。 在工业生产中,影响水冷设备的换热器效率和使用寿命的因素来自两个方面,一是工艺物料引起的沉积和腐蚀;二是循环冷却水引起的沉积和腐蚀。后者是本规所要解决的问题。 因循环冷却水未加处理而造成的危害是很严重的,例如,某化工厂,原来循环水的补充水是未经过处理的深井水,每小时的循环量9560t。由于井水硬度大、碱度高,每运行50h后,有50%的碳酸盐在设备、管道沉积下来,严重影响换热器效率。据统计,空分透平压缩机冷却器,在运转3个月后,结垢厚度达20㎜。打气减少20%。该厂不少设备、在运转3个月后,必须停车酸洗一次,不但影响生产,而且浪费人力、物力。为了防止设备管道产生结垢,该厂在循环水中直接加入六偏磷酸钠、EDTMP和T—801水质稳定剂之后,机器连续3年运行正常。虽然每年需要增加药剂费用2万元,但综合评价经济效益还是合算的。又如某石油化工厂,常减压车间设备腐蚀与结垢现象十分严重,Φ57×3.5面碳钢排管平均使16-20个月后,垢厚达15-40㎜。后经投加聚磷酸盐+膦酸盐+聚合物的复合药剂进行处理,对腐蚀、结垢和菌藻的控制取得了良好的效果。每年可节约停车检修费用约60万元,延长生产周期增产的利润约70万元。减少设备更新费用约4.7万元。现将该厂水质处理前后的冷却设备更新情况列表如下: 某厂冷却设备更新情况统计(单位:台)表1 从上述情况可以看出,循环冷却水采取适当的处理方法,能够控制由水质引起的

电力工程电缆设计规范模板

电力工程电缆设计 规范

5 电缆敷设 5.1 一般规定 5.1.1 电缆的路径选择, 应符合下列规定: ( 1) 避免电缆遭受机械性外力、过热、腐蚀等危害。 ( 2) 满足安全要求条件下使电缆较短。 ( 3) 便于敷设、维护。 ( 4) 避开将要挖掘施工的地方。 ( 5) 充油电缆线路经过起伏地形时, 使供油装置较合理配置。 5.1.2 电缆在任何敷设方式及其全部路径条件的上下左右改变部位, 都应满足电缆允许弯曲半径要求。电缆的允许弯曲半径, 应符合电缆绝缘及其构造特性要求。对自容式铅包充油电缆, 允许弯曲半径可按 电缆外径的20倍计。 5.1.3 电缆群敷设在同一通道中位于同侧的多层支架上配置, 应符合下列 规定: ( 1) 应按电压等级由高至低的电力电缆、强电至弱电的控制和信号电缆、通讯电缆的顺序排列。当水平通道中含有35kV以上高压电缆, 或为满足引入柜盘的电缆符合允许弯曲半径要求时, 宜按”由下而上”的顺序排列。在同一工程中或电缆通道延伸于不同工程的情况, 均应按相同的上下排列顺序原则来配置。

( 2) 支架层数受通道空间限制时, 35kV及以下的相邻电压级电力电缆, 可排列于同一层支架, 1kV及以下电力电缆也可与强电控制和 信号电缆配置在同一层支架上。 ( 3) 同一重要回路的工作与备用电缆需实行耐火分隔时, 宜适当配 置在不同层次的支架上。 5.1.4 同一层支架上电缆排列配置方式, 应符合下列规定: ( 1) 控制和信号电缆可紧靠或多层迭置。 ( 2) 除交流系统用单芯电力电缆的同一回路可采取品字形( 三叶形) 配置外, 对重要的同一回路多根电力电缆, 不宜迭置。 ( 3) 除交流系统用单芯电缆情况外, 电力电缆相互间宜有35mm空 隙。 5.1.5 交流系统用单芯电力电缆的相序配置及其相间距离, 应同时满足电缆金属护层的正常感应电压不超过允许值, 并使按持续工作电流选择电缆截面尽可能较小的原则来确定。未呈品字形配置的单芯电力电缆, 有两回线及以上配置在同一通路时, 应计入相互影响。 5.1.6 交流系统用单芯电力电缆与公用通讯线路相距较近时, 宜维持技术经济上有利的电缆路径, 必要时可采取下列抑制感应电势的措施: ( 1) 使电缆支架形成电气通路, 且计入其它并行电缆抑制因素的影 响。

循环水冷却器

化工原理课程设计————循环水冷却器设计 学院:化工学院 专业班级:高分子061班 姓名:李猛 学号: 2006016050 指导教师:徐功娣 时间:2009年6月25-30日

目录 1 设计任务书 (1) 2 设计摘要 (2) 3 主要物性参数表 (4) 4 工艺计算 (5) 4.1 确定设计方案 (5) 4.1.1 选择换热器的类型 (5) 4.1.2 计算热负荷和冷却水流量 (5) 4.1.3 计算两流体的平均温差,确定管程数 (6) 4.1.4 工艺结构尺寸 (6) 4.2 核算总传热系数 (8) 4.2.1 管程对流传热系数Ai (8) (9) 4.2.2 壳程流体传热系数 o 4.2.3 计算总传热系数K0 (10) 4.3 核算压强降 (12) 4.3.1 管程压强降 (12) 4.3.2 壳程压强降校核 (13) 5 设备参数的计算 (16) 5.1 确定换热器的代号 (16) 5.1.1 换热器的代号 (16) 5.1.2 确定方法 (16) D (16) 5.2 计算壳体内径 i 5.3 管根数及排列要求 (16) 5.4 计算换热器壳体壁厚 (17) 5.4.1 选适宜的壳体材料 (17) 5.4.2 该钢板的主要工艺参数性能 (17) 5.4.3 壁厚的计算 (17)

5.5 选择换热器的封头 (19) 5.6 选择容器法兰 (20) 5.6.1 选择法兰的型式 (20) 5.6.2 确定法兰相关尺寸 (20) 5.6.3 选用法兰并确定其标记 (21) 5.7 选择管法兰和接管 (22) 5.7.1 热流体进出口接管 (22) 5.7.2 冷流体进出口接管 (22) 5.7.3 选择管法兰 (23) 5.8 选择管箱 (23) 5.9 折流档板的设计 (24) 5.10 支座的选用 (24) 5.11 拉杆的选用和设置 (25) 5.11.1 拉杆的选用 (25) 5.11.2 拉杆的设置 (26) 5.12 确定管板尺寸 (26) 5.13 垫片的选用 (27) 5.13.1 设备法兰用垫片 (27) 5.13.2 管法兰用垫片 (28) 6 数据汇总 (29) 7 总结评述 (30) 8 参考文献 (32) 9 主要符号说明 (33) 10 附表 (35)

工业循环冷却水处理系统

工业循环冷却水处理系统 一、概述 循环冷却水在使用之後,水中的Ca2+、Mg2+、Cl-、SO42-等离子,溶解固体和悬浮物相应增加,空气中污染物如灰尘、杂物、可溶性气体以及换热器物料泄露等,均可进入循环冷却水,使循环冷却水系统中的设备和管道腐蚀、结垢,造成换热器传热效率降低,过水断面减少,甚至使设备管道腐蚀穿孔。 循环冷却水系统中结垢、腐蚀和微生物繁殖是相互关联的,污垢和微生物粘泥可以引起垢下腐蚀,而腐蚀产品又形成污垢,要解决循环冷却水系统中的这些问题,必须进行综合治理。 采用水质稳定技术,用物理与化学处理相结合的办法控制和改善水质,使循环冷却水系统中的腐蚀、结垢、生物污垢得到有效的解决,从而取得节水、节能的良好效益。臭氧产品已在国内电子、电力、饮料、制药行业广泛应用,质量达到国外同行业90年代水平。投入产出比的可比效益为:1:2-1:10以上,节约能源,提高设备使用效率,延长设备的使用寿命和运行的安全性,减少环境污染。 臭氧可以作为唯一的处理药剂来替代其它的处理冷却水处理剂,它能阻垢、缓蚀、杀菌、能使冷却水系统在高浓缩倍数甚至在零排污下运行,从而节水节能,保护水资源;同时,臭氧冷却水处理不存在任何环境污染。国外应用臭氧进行循环水处理已经取得了成功,而我国在这个领域却是空白。 二、系统工艺 循环水冷却通常分为密闭式循环水冷却系统和敞开式循环水冷却系统。密闭式循环水冷却系统中,水是密闭循环的,水的冷却不与空气直接接触。敞开式循环水冷却系统,水的冷却需要与空气直接接触,根据水与空气接触方式的不同,可分为水面冷却、喷水冷却池冷却和冷却塔冷却等。 敞开式循环水冷却系统可分为以下3类: 1.压力回流式循环冷却系统 此种循环水系统一般水质不受污染,仅补充在循环使用过程中损失的少量水量。补充水可流入冷水池,也可流入冷却构筑物下部。冷水池也可设在冷却塔下面,与集水池合并。 补充水→ 冷水池→ 循环泵房→生产车间或冷却设备→冷却塔 压力回流式循环冷却系统

电力工程电缆设计规范

(六)电力工程电缆设计规范 电缆选择时对电缆芯线材质有何要求 控制电缆应采用铜芯。 用于下列情况的电力电缆,应采用铜芯: (1)电机励磁、重要电源、移动式电气设备等需要保持连接具有高可靠性的回路。(2)振动剧烈、有爆炸危险或对铝有腐蚀等严酷的工作环境。 (3)耐火电缆。 用于下列情况的电力电缆,宜采用铜芯: (1)紧靠高温设备配置。 (2)安全性要求高的重要公共设施中。 (3)水下敷设当工作电流较大需增多电缆根数时。 除限于产品仅有铜芯和规范所确定宜采用铜芯的情况外,电缆缆芯材质应采用铝芯。控制电缆额定电压的选择 控制电缆额定电压的选择,应不低于该回路工作电压、满足可能经受的暂态和工频过电压作用要求。且宜符合下列规定: (1)沿较长高压电缆并行敷设的控制电缆(导引电缆),选用相适合的额定电压。 (2)在220kV及以上高压配电装置敷设的控制电缆,宜选用600/1000V,或在有良好屏蔽时可选用450/750V。 (3)除上述情况外,一般宜选用450/750V;当外部电气干扰影响很小时,可选用较低的额定电压。 直埋敷设电缆的外护层选择 直埋敷设电缆的外护层选择,应符合下列规定: (1)电缆承受较大压力或有机械损伤危险时,应有加强层或钢带铠装。 (2)在流砂层、回填土地带等可能出现位移的土壤中,电缆应有钢丝铠装。 (3)白蚁严重危害且塑料电缆未有尼龙外套时,可采用金属套或钢带铠装。 (4)除上述外的情况,可采用不带铠装的外护层。 弱电信号、控制电缆选择应注意什么? 下列情况的回路,相互间不宜合用同一根控制电缆: (1)弱电信号、控制回路与强电信号、控制回路。 (2)低电平信号与高电平信号回路。 (3)交流断路器分相操作的各相弱电控制回路。 弱电回路的每一对往返导线,宜属于同一根控制电缆。 弱电信号、控制回路的控制电缆,当位于存在干扰影响的环境又不具备有效抗干扰措施时,宜有金属屏蔽。 强电回路控制电缆,除位于超高压配电装置或与高压电缆紧邻并行较长,需抑制干扰的情况外,可不含金属屏蔽。 电力电缆缆芯截面选择的基本要求(1) 最大工作电流作用下的缆芯温度,不得超过按电缆使用寿命确定的允许值。持续工作回路的缆芯工作温度,应符合附录A的规定。 最大短路电流作用时间产生的热效应,应满足热稳定条件。对非熔断器保护的回路,满足热稳定条件可按短路电流作用下缆芯温度不超过附录A所列允许值。 连接回路在最大工作电流作用下的电压降,不得超过该回路允许值。 电力电缆缆芯截面选择的基本要求(2)

化工原理课程设计(循环水冷却器设计说明书)

齐齐哈尔大学 化工原理课程设计 题目循环水冷却器的设计 学院化学与化学工程学院 专业班级制药工程 学生姓名夏天 指导教师吕君 成绩 2016年 07月 01日 目录

摘要.......................................................................................错误!未定义书签。Abstract..........................................................................................错误!未定义书签。第1章绪论 (1) 1.1设计题目:循环水冷却器的设计 (1) 1.2设计日任务及操作条件 (1) 1.3厂址:齐齐哈尔地区 (1) 第2章主要物性参数表 (1) 第3章工艺计算 (2) 3.1确定设计方案 (2) 3.2核算总传热系数 (4) 3.3核算压强降 (6) 第4章设备参数的计算 (8) 4.1确定换热器的代号 (8) 4.2计算壳体内径DⅠ (9) 4.3管根数及排列要求 (9) 4.4计算换热器壳体的壁厚 (9) 4.5选择换热器的封头 (11) 4.6选择容器法兰 (11) 4.7选择管法兰和接管 (13) 4.8选择管箱 (14) 4.9折流挡板的设计 (15) 4.10支座选用 (16) 4.11拉杆的选用和设置 (16) 4.12垫片的使用 (18) 总结评述 (20) 参考文献 (21) 主要符号说明 (22)

附表1 (24) 附表2 (25) 致谢 (26)

工业循环水冷却设计规范

工业循环水冷却设计规范(2009-05-16) 目录 第一章总则 第二章冷却塔 第三章喷水池 第四章水面冷却 附录本规范用词说明 附加说明 第一章总则 第1.0.1条本规范适用于新建和扩建的敞开式工业循环水冷却设施的设计。 第1.0.2条工业循环水冷却设施的设计应符合安全生产、经济合理、保护环境、节约能源、节约用水和节约用地,以及便于施工、运行和维修等方面的要求。 第1.0.3条工业循环水冷却设施的设计应在不断总结生产实践经验和科学试验的基础上,积极开发和认真采用先进技术。 第1.0.4条工业循环水冷却设施的类型选择,应根据生产工艺对循环水的水量、水温、水质和供水系统的运行方式等使用要求,并结合下列因素,通过技术经济比较确定: 一、当地的水文、气象、地形和地质等自然条件; 二、材料、设备、电能和补给水的供应情况; 三、场地布置和施工条件; 四、工业循环水冷却设施与周围环境的相互影响。 第1.0.5条工业循环水冷却设施应靠近主要用水车间;并应避免修建过长的给水排水管、沟和复杂的水工建筑物。 第1.0.6条工业循环水冷却设施的设计除应执行本规范外,尚应符合现行有关的国家标准、规范的规定。 第二章冷却塔 第一节一般规定 第2.1.1条冷却塔在厂区总平面布置中的位置应符合下列规定:

一、冷却塔宜布置在厂区主要建筑物及露天配电装置的冬季主导风向的下风侧; 二、冷却塔应布置在贮煤场等粉尘污染源的全年主导风向的上风侧; 三、冷却塔应远离厂内露天热源; 四、冷却塔之间或冷却塔与其他建筑物之间的距离除应满足冷却塔的通风要求外,还应满足管、沟、道路、建筑物的防火和防爆要求,以及冷却塔和其他建筑物的施工和检修场地要求; 五、冷却塔的位置不应妨碍工业企业的扩建。 第2.1.2条当环境对冷却塔的噪声有限制时,宜采取下列措施: 一、机械通风冷却塔应选用低噪声型的风机设备; 二、冷却塔周围宜设置消声设施; 三、冷却塔的位置宜远离对噪声敏感的区域。 第2.1.3条冷却塔的集中或分散布置方案的选择,应根据使用循环水的车间数量、分布位置及各车间的用水要求,通过技术经济比较后确定。第2.1.4条冷却塔一般可不设备用。冷却塔检修时应有不影响生产的措施。 第2.1.5条冷却塔的热力计算宜采用焓差法或经验方法。 第2.1.6条冷却塔的热交换特性宜采用原型塔的实测数据。 当缺乏原型塔的实测数据时,可采用模拟塔的试验数据,并应根据模拟塔的试验条件与设计的冷却塔的运行条件之间的差异,对模拟塔的试验数据进行修正。 第2.1.7条冷却塔的通风阻力系数宜采用原型塔的实测数据。当缺乏实测数据时,可按经验方法计算。 第2.1.8条冷却塔的最高冷却水温不应超过生产工艺允许的最高值;计算冷却塔的最高冷却水温的气象条件应符合下列规定: 一、根据生产工艺的要求,宜采用按湿球温度频率统计方法计算的频率为5%~10%的日平均气象条件; 二、气象资料应采用近期连续不少于五年,每年最热时期三个月的日平均值。 第2.1.9条计算冷却塔的各月的月平均冷却水温时,应采用近期连续不少于五年的相应各月的月平均气象条件。

工业循环水系统

工业循环水系统: 1、简介: 工业循环冷却水一般占工业用水的80%以上。根据冷却循环水是否与大气直接接触冷却可将冷却循环系统分为敞开式循环系统和密闭式循环系统。工业冷却水系统一般为开式循环系统。冷却塔内空气与水进行充分的接触,大气中尘埃不断混入水中,造成菌藻滋生,会影响冷却塔水流速度,降低换热效率;由于冷却水蒸发、飞溅、漏损、浓缩形成的盐类污垢,造成管网堵塞;外系统内没有安装过滤装置,不能去除这些杂质,导致水的电导率增加,造成管道腐蚀;却水经过被冷却设备时温度上升,水中的钙、镁离子溶解度发生变化会在形成水垢,降低换热效率,影响系统正常工作。 2、运用的主要设备: 水泵电机: 根据三项电机名牌上的额定功率来选择泵的额定功率的百分数。 ≤22kW---125% 22-55kW---115% >55kW---110% 水泵电机功率计算: P=ρgQH/(n1n2) P--功率,W;p=水的密度,p=1000kg/m3; g--重力加速度,g=9.8m/s2;Q--流量,m3/s;H--扬程,m; n1--水泵效率;n2--电机效率。 对于流量Q;Q=UIcosΦ·1000/3.6H; U--电压,V;I--电流,A;H--扬程,m;cosΦ--功率因素一般为0.8; 3、改造方案: 在冷却循环水系统主管道或分支管道上安装一套量子管通环,并在循环管道上引出一条旁路,水量是总循环水量的5-10%左右,安装一套旁滤过滤器,水通过过滤器过滤后,再返回到运行管线中。 采用此改造方案的综合效益可以从几个方面统计: (1)节水量:每台冷却循环系统可以节约用水10-20吨/天,每年节水总量在23400吨。如果按每吨水5.7元计算,每年节水费用达到13.34万元。 (2)节能源:采用此改造方案,水的洁净度增加,在冷却塔上的附着量减少,提高了冷却塔的换热效率,相当节约了能源消耗,估计至少可以降低10-30%的能源消耗。 (3)节约传统化学药剂费用:该系统可以完全替代传统化学药剂,起到阻垢、防腐灭菌。 4、总结: 经过这样的改造之后首先能够达到国家循环水的行业标准,大量的减少排污量,节约了各项资源,同时也延长了设备的使用寿命。

GB-50217-2007电力工程电缆设计规范

GB 50217-2007电力工程电缆设计规范 前言 本规范是根据建设部《关于印发“二OO一~二OO二年度工程建设国家标准制定、临订计划”的通知》(建标[2002]85号)的要求,由中国电力工程顾问集团西南电力设汁院会同有关单位对《电力工程电缆设计规范》GB 50217—1994修订而成的。 本规范修订的主要技术内容包括: 1.增加了中、高正电缆;冰数选择要求: 2.增加了电缆绝缘类别选择要求,取消了粘性浸渍纸绝缘电缆的相关内容: 3.增加了主芯截面400mm2<S≤800mm2和S>800mm2的保护地线允许最小截面选样要求; 4.增加了大电流负荷的供电回路由多根电缆并联时对电缆截面、材质等要求; 5.增加了电缆终端一般性选择要求: 6.增加了自接电缆实施金属层开断并作绝缘处理内容: 7.增加了交流系统三芯电缆的金属层接地要求: 8.增加了城市电缆系统的电缆与管道相互间允许距离相关规定: 9.增加了架空桥架检修通道设置要求; 10.增加了电缆隧道安全孔设置间距要求; 11.增加了附录B和附录F。 本规范以黑体字标志的条文为强制性条文,必须严格执行。 本规范由建设部负责管理和对强制性条文的解释,由中国电力企业联合会标准化中心负责具体管埋,由中国电力工程顾问集团西南电力设计院负责具体技术内容的解释:本规范在执行过程中,请各单位结合工程实践,认真总结经验,注意积累资料,随时将意见和建议反馈给中国电力工程顾问集团西南电力设计院(地址:四川省成都市东风路18号.邮编:610021),以便今后修改时参考。 1 总则 1.0.1 为使电力工程电缆设计做到技术先进。经济合理,安全适用、便于施工和维护,制定本规范。 1.0. 2 本规范适删于新建、扩建的电力工程中500kV及以下电力电缆和控制电缆的选择与敷设设计。

10kV及以下供配电设计与安装图集 - 副本

10kV及以下供配电设计与安装图集(上册)1.pdf 110~500KV变电所总布置设计规程.pdf 35KV及以下架空电力线路施工及验收规范.pdf 35KV无人值班变电所典型方案设计.pdf 35~110KV小型化无人值班变电站标准工程图集:设计、加工安装、设备材料、概算.pdf GB2682-1981电工成套装置中的指示灯和按钮的颜色.pdf GB50045.CHM GB50054-95低压配电设计规范.chm GB50096-1999住宅设计规范.chm GB50116-98火灾自动报警系统设计规范.chm GB50116-98自动报警设计规范.chm GB50194-1993建设工程施工现场供用电安全规范.pdf GB50261-96自动喷水灭火系统施工及验收规范.pdf GB50303-2002《建筑电气工程施工质量验收规范》.pdf GB50343-2004.pdf _新编电气工程师实用手册(上、下册) 《电气制图与读图手册》.pdf 《电气装置安装工程施工及验收规范》汇编.pdf 《建筑电气专业设计技术措施》..pdf 常用低压设备供配电设备选型与安装技术手册.pdf 电缆计算程序V1.1.zip 电气符号00DX001.dwg 电气设备实用手册(上下册).rar 电气设计安装技术实用手册 电气设计规范大全.chm 电气设计数据查询.chm 防雷计算软件.exe 建筑安装工程质量工程师手册 建筑电气工程施工质量验收表格 建筑电气数据软件版 建筑灭火器配置设计计算程序.exe 建筑弱电工程设计手册 建筑物电子信息系统防雷技术规范.txt 民用建筑电气设计手册 民用建筑电气设计资料集办公、住宅 实用电工计算手册 实用电工计算手册2 实用节电技术与方法 需要系数法负荷计算.exe 照度计算 整定保护.exe 注册考试用规范目录.txt 电力系统继电保护最新实用技术及检验标准规程规范实用手册.rar

风冷却器设计说明(1)

立管式风冷却器的设计说明 白酒蒸馏就是把在发酵过程中形成的酒精成分加以浓缩并把它从酒醅中提取出来,使成品酒具有一定的酒度,同时把发酵产生的香味物质挥发浓缩并蒸入 酒中,使成品酒形成独特的风格,通过蒸馏还可以排除有害杂质,保证白酒符合卫生要求。 传统工艺酿酒设备主要有:甑桶、过汽管、冷却器(水冷)、接酒桶。蒸馏工艺分为上甑、接酒、拉尾、出糟等工序。 一、风冷却器的应用: 冷却器是白酒出酒的最后一道工序,不仅要讲究冷却效果,同时还要讲究出酒的产量、质量,传统冷却方法都是采用水冷却,一是由于水资源的日益匮乏,同时随着人们对环境保护的日益重视,对排放的要求越来越高,这样水冷却的运行费用会越来越高,产品成本也越来越高。二是如果采用循环水,则冷却后水温逐步提高,水冷却的效果越来越低,产量得不到保证,同时维护成本也较高,这样势必会逐渐淘汰水冷却。为适应市场需要,我公司发明了卧式风冷却器,由于卧式风冷却器的冷却效果比水冷好,不仅产酒量高,而且节能减排,所以在苏酒系列厂家中广泛使用,并取得了较好的业绩。 二、立管式风冷却器的设计理念: 我公司为了将风冷却器向更多白酒厂家推广,在2012年9月与贵州茅台酒股份有限公司进行了初步接触,并做了技术上的交流,通过了解,茅台酒的口味、质量的要求与苏酒有很大的不同,茅台酒为酱香型,出酒温度相对较高(达35℃左右),并且出酒层次要求也比较高,这样卧式风冷却器就难以适应贵公司的生产要求。在茅台公司领导、技术人员的大力支持、帮助下,我公司技术人员通过反复调研认证,抛弃了原先的卧式结构形式,发明了新颖的立管式风冷却器,这一新的设计思路突破了设计上的瓶颈,解决了蒸馏时白酒的留酒、层次不清(酒头、酒干、酒梢相互干扰)、质量不高、一级酒出酒少等问题。我公司于2012年10月初立即组织生产了2台样机给茅台公司试用,通过一段时间的试用,立管式风冷却器不仅产酒量大大提高,同时由于出酒层次分明,一级酒的产量得到了有效保证,这样立管式风冷却器的适用范围将更加广阔,市场前景也更加光明。 三、立管式风冷却器的结构及特点: 风冷冷却器由进风室、出风室、消声器、换热管(带翅片)、风机(变频电机)、外框架、预热系统、控制系统等组成。具体结构及特点如下: 1、立管式风冷器是我公司从原卧式风冷冷却器基础上进一步的改造延伸。它具有保持酒的传统风味;对出酒口的温度实现可控(适用范围广);酒在酿造过程的层次清晰,无一点酒液残留 2、由于使用立管式,所以管中酒液残留少,便于使用后的清洗维护。 3、使用风冷冷却器后大大提高冷却效率,可以使生产所需的时间降低一倍以上。 4、选用多叶片,低噪音风机,使风机的噪音降低到60 dB(A) 5、采用丹佛斯变频器,使风机的风量可调可控,以适应不同季节不同环境温度下的使用要求。

工业循环冷却水系统处理的重要性

工业循环冷却水系统处理的重要性 循环水的使用及水处理的重要性 用水来冷却工艺介质的系统,我们称作冷却水系统,通常可分为以下两种类型:直流冷却水系统和循环冷却水系统。其中,循环冷却水系统目前已被广泛地应用于各行各业之中,比如,石油化工、电力、冶金、医药、纺织、机械、电子等等传统工业企业中的工艺用循环冷却水系统,及各楼宇的中央空调用循环冷却水系统。 最早使用的是直流冷却水系统,冷却水仅仅通过换热设备一次,用过后水就被排放掉。这种系统虽然投资少、操作简便,但它的用水量却很大,冷却水的操作费用也大,不符合节约使用水资源的要求,目前基本都改成了循环冷却水系统(除了海水中还在使用的直流冷却水系统),即冷却水用过后不立即排放掉,而是收回循环再用。从直流水系统到循环水系统,水资源的节约非常可观,例如:一个年产30万吨的合成氨工厂,如采用直流水系统,每小时用水量约25000T,而改成循环水系统,并以3倍的浓缩倍数运行,则每小时耗水量只需约550T。 冷却水循环后遇到什么问题? 腐蚀:冷却水在循环使用中,水在冷却塔内和空气充分接触,使水中的溶解氧得到补充,所以循环水中溶解氧总是饱和的,水中溶解氧是造成金属电化学腐蚀的主要原因,这是冷却水循 环后易带来的问题之一。 结垢:水在运行中蒸发(尤其是在冷却塔的环境中),使循环水中含盐量逐渐增加,加上水中二氧化碳在塔中解析逸散,使水中碳酸钙或其它盐类在传热面上结垢析出的倾向增加,这是问题之二。 生物污垢:冷却水和空气接触,吸收了空气中大量的灰尘、泥沙、微生物及其孢子,使系统的污泥增加;冷却塔内的光照、适宜的温度、充足的氧和养分都有利于细菌和藻类的生长,从而使系统粘泥增加,在换热器内沉积下来,造成了粘泥的危害,这是水循环使用后易带来的问题之三。 冷却水循环后,冷却水补充水量可大幅度降低,节约了用水,这是我们所希望的。但水循环后突出的腐蚀、结垢和生物污垢等问题如不解决,生产装置的长周期、满负荷、安全稳定运行是难以保证的,那么采用循环水后所期望的经济、技术效益不仅不能充分发挥,而且将给企业带来许多危害——严重的沉积物的附着、设备腐蚀和微生物的大量滋生,由此形成的黏泥污垢堵塞管道或各种材料及设备严重受损等问题,会威胁和破坏工厂的安全生产;而由于各种沉积物使换热设备的水流阻力加大,水泵及相关设备的能耗大幅增加,传热效率降低,从而降低产品品质或生产效率,这一切都可能造成极大的经济损失,例如:电厂出现此类问题,必然使凝汽器凝结水的温度升高、真空度下降,严重影响汽轮机的出力和电厂的发电量,并且大幅增加能耗(有一个经验数值:发电机组真空度每下降1%,多耗燃料原油0.8%)。 所以,必须要选择一种科学合理、全面有效且经济实用的循环冷却水处理方案,使上述问题得到妥善解决或改善,水处理就是通过水质处理的办法来解决以上问题。如能真正做好水处理,不但能保证保质保量、安全生产,而且还能通过大幅降低能耗、节约材料、节约用水来降低生产成本,直接创造可观的经济效益,例如在电厂,就可以提高汽轮机凝汽器的真空度,一般可提高7~8%,提高汽轮机的功率,提高电负荷5~6%,增加发电能力;如应用在低压锅炉炉内处理,不但可将水处理运行费用从仅使用炉外处理方式时的0.5元/吨降到0.3元/吨左右,而且据统计,可使每台2t?h-1的锅炉节煤约5%;现代工业一般水冷换热器在未进行水处理时的寿命为2年左右,经水处理后的寿命可达7~8年,检修费和检修工作量可降低90%,一个小型化工厂由此节约的检修费即可达50万元。 科学合理且全面完整的化学水处理方案

GB 50217-2007电力工程电缆设计规范

UDC 中华人民共和国国家标准 P GB 50217-2007 电力工程电缆设计规范 Code for design of cables of electric engineering 2007—10—23发布 2008—04—01实施 中华人民共和国建设部 联合发布中华人民共和国国家质量监督检验检疫总局

本规范是根据建设部《关于印发“二00一~二00二年度工程建设国家标准制定、修订计划”的通知》(建标〔2002〕85号)的要求,由中国电力工程顾问集团西南电力设计院会同有关单位对《电力工程电缆设计规范》GB20217-1994修订而成的。 本规范修订的主要技术内容包括: 1.增加了中、高压电缆芯数选择要求; 2.增加了电缆绝缘类型选择要求,取消了粘性浸渍纸绝缘电缆的相关内容; 3.增加了主芯截面400mm2<S≤800mm2和S>800mm2的保护地线允许最小截面选择要求; 4.增加了大电流负荷的供电回路由多根电缆并联时对电缆截面、材质等要求; 5.增加了电缆终端一般性选择要求; 6.增加了直接对电缆实施金属层开断并作绝缘处理内容; 7.增加了交流系统三芯电缆的金属层接地要求; 8.增加了城市电缆系统的电缆与管道相互间允许距离相关规定; 9.增加了架空桥架检修通道设置要求; 10.增加了电缆遂道安全孔设置间距要求; 11.增加了附录B和附录F。 本规范以黑体字标志的条文为强制性条文,必须严格执行。 本规范由建设部负责管理和对强制性条文的解释,由中国电力企业联合会标准化中心负责具体管理,由中国电力工程顾问集团西南电力设计院负责具体技术内容的解释。本规范在执行过程中,请各单位结合工程实践,认真总结经验,注意积累资料,随时将意见和建议反馈给中国电力工程顾问集团西南电力设计院(地址:四川省成都市东风路18号,邮编:610021),以便今后修改时参考。 本规范主编单位、参编单位和主要起草人: 主编单位:中国电力工程顾问集团西南电力设计院 参编单位:中国电力工程顾问集团东北电力设计院 喜利得(中国)有限公司 主要起草人:李国荣熊涛张天泽齐春陶勤万里宁王鑫王聪慧

《某电力工程公司管理制度、流程规定汇编》(86页).doc

天津电力工程有限公司管理制度汇编 GB/T19001:2008 GB/T50430:2007 GB/T24001:2004 文件编号: 文件版本: A/0 控制状态: 发放编号: 使用部门: 2011年9月1日发布 2011年9月1日实施

本管理制度编制、审批人员 编制:日期: 2011-08-25 审核:日期:2011-08-25 批准:日期:2011-09-01

管理制度目录 1、文件管理制度(BNDL01/ZH-01-2011) 2、记录管理制度(BNDL01/ZH-02-2011) 3、目标指标和管理方案管理制度(BNDL01/ZH-03-2011) 4、协商和信息交流管理制度(BNDL01/ZH-05-2011) 5、人力资源管理制度(BNDL01/ZH-06-2011) 6、员工绩效考核管理制度(BNDL01/ZH-07-2011) 7、施工机具管理制度(BNDL01/XM-08-2011) 8、工程项目投标及工程承包合同管理制度(BNDL01/XM-09-2011) 9、施工组织设计(方案)编制审批管理制度(BNDL01/XM-10-2011) 10、建筑材料、构配件和设备管理制度(BNDL01/XM-12-2011) 11、工程分包管理制度(BNDL01/ZH-13-2011) 12、信息管理和管理改进管理制度(BNDL01/ZH-14-2011) 13、工程项目施工质量管理度(BNDL01/XM-15-2011) 14、施工过程管理制度(BNDL01/XM-16-2011) 15、施工质量检查和验收管理制度(BNDL01/XM-17-2011) 16、管理体系自查评价和内部审核管理制度(BNDL01/ZH-18-2011) 17、质量问题处理管理制度(BNDL01/ZH-19-2011)

循环水冷却器设计

循环水冷却器设计 [摘要]:传热过程是化工生产过程中存在的及其普遍的过程,实现这一过程的换热设备种类繁多,是不可缺少的工艺设备之一。由于使用条件不同,换热设备可以有各种各样的型式和结构。其中以管壳式换热器应用更为广泛。现在,它被当作一种传统的标准换热设备在很多工业部门中大量使用,尤其在化工、石油、能源设备等部门所使用的换热设备中仍处于主导地位。 循环水冷却器是换热设备中的一种,是企业生产中的重要设备。它的作用是通过温度相对较低的水来把其他设备所产生的热量带走,从而使设备部分的温度保持在一个生产所需要的水平,使设备正常工作。因此,循环水冷却器的设计对企业的生产是很重要的,它很可能影响企业的经济损失,对其的设计具有很强的实际意义。 本设计是对管壳式换热器中固定管板式换热器的研究。固定管板式换热器属于管壳式换热器的一种,是利用间壁使高温流体和低温流体进行对流传热从而实现物料间的热量传递。在本设计中以GB 150-2011《压力容器》、GB 151-1999《管壳式换热器》等标准和《固定式压力容器安全技术监察规程》为依据,并参考《换热器设计手册》,首先通过方案的论证,确定物料的物性参数,再结合工作条件,选定换热器的形式。根据设计任务,完成对换热面积、总换热系数等工艺参数的确定,同时进行换热面积、壁温和压力降的核算。再根据工艺参数进行机械设计,机械设计主要包括对筒体、管箱、管板、折流板、封头、换热管、鞍座及其它零部件,如拉杆、定距管等的计算和选型等,并进行必要的强度核算,最后运用AutoCAD绘制固定管板式换热器的装配图及零部件图,并编写说明书。 [关键词]:换热器、换热面积、管板、换热管。

工业循环冷却水处理设计规范2007

工业循环冷却水处理设计规范 中华人民共和国国家标准 GB50050--2007 工业循环冷却水处理设计规范 Code for design of industrial recirculating cooling water treatment 中华人民共和国建设部 关于发布国家标准《工业循环冷却水处理设计规范》的公告 中华人民共和国建设部公告第742号 现批准《工业循环冷却水处理设计规范》为国家标准,编号为GB50050-2007,自2008年5月1日起实施。其中,第3.1.6(2、4、5、6)、3.1.7、3.2.7、6.1.6、8.1.7、8.2.1、8.2.2、8.5.1(1、2、3、4、5、6、7)、8.5.4条(款)为强制性条文,必须严格执行。原《工业循环冷却水处理设计规范》GB50050-95同时废止。本标准由建设部标准定额研究所组织中国计划出版社出版发行。 中华人民共和国建设部 二〇〇七年十月二十五日 1 总则 1.0.1 为了贯彻国家节约水资源和保护环境的方针政策,促进工业冷却水的循环利用和污水资源化,有效控制和降低循环冷却水所产生的各种危害,保证设备的换热效率和使用年限,减少排污水对环境的污染,使工业循环冷却水处理设计做到技术先进,经济实用,安全可靠,制定本规范。 1.0.2 本规范适用于以地表水、地下水和再生水作为补充水的新建、扩建、改建工程的循环冷却水处理设计。 1.0.3 工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。 1.0.4 工业循环冷却水处理设计应不断地吸取国内外先进的生产实践经验和科研成果,积极稳妥地采用新技术。 1.0.5 工业循环冷却水处理设计除应按本规范执行外,还应符合国家有关现行标准和规范的规定。 2 术语、符号 2.1 术语 2.1.1 循环冷却水系统Recirculating Cooling Water System 以水作为冷却介质,并循环运行的一种给水系统,由换热设备、冷却设备、处理设施、水泵、管道及其它有关设施组成。 2.1.2 间冷开式循环冷却水系统(间冷开式系统)Indirect Open Recirculating Cooling Water System 循环冷却水与被冷却介质间接传热且循环冷却水与大气直接接触散热的循环冷却水系统。2.1.3 间冷闭式循环冷却水系统(闭式系统)Indirect Closed Recirculating Cooling Water System 循环冷却水与被冷却介质间接传热且循环冷却水与冷却介质也是间接传热的循环冷却水系

电缆设计规范

电缆设计规范
1.导线材料选择 电缆一般采用铝芯线。 下列场合应采用铜芯电缆及电缆: (1)需要确保长期运行中连线可靠的回路。如:重要电源,重 要的操作回路二次回路,电机的励磁,移动设备的线路及剧烈振动场 合的线路。 (2)对铝有严重腐蚀而对铜腐蚀轻微的场合。 (3)爆炸危险环境或火灾危险环境有特殊要求者。 (4)特别重要的公共建筑物 (5)高温设备 (6)应急系统,包括消防设施的线路。 此外,经全面技术经济分析确证宜用铜芯电缆及电缆的,如有高 层建筑,大、中型计算机房的建筑,重要的公共建筑等以及国外工程 和外资工程等适应国外要求者。 2.电缆芯数的选择 (1)电压 1KV 及以下的三相四线低压系统,若第四芯为 PEN 线时,应采用四芯型电缆而不得用三芯电缆加单芯电缆组合成的回路 的方式。当 PE 线作为专用而与带电导体 N 线分开时,则应用五芯型 电缆。若无五芯型电缆时可用四芯电缆加单芯电缆电缆捆扎组合的方 式;PE 线也可利用电缆的护套,屏蔽层,铠装等金属外护层等。分

支单相回路带 PE 线时应采用三芯电缆。如果是三相三线制系统则采
用四芯电缆,第四芯为 PE 线。
(2) 3-35KV 交流系统应采用三芯电缆.
(3)在水下或重要的较长线路中为避免或减少中间接头或单芯电
缆比多芯电缆有较好的综合技术经济性时,可选用单芯电缆。但应注
意用于交流系统的单芯电缆不得采用钢带铠装,应采用经隔磁处理的
钢丝铠装电缆。
3.电缆绝缘水平选择
表 1 电缆绝缘水平选择
单位 KV
系数
标称电压 U
0.22/0.38
3
6
10
35
N
电缆 的额 定电 压 U /U
0
U
0

Ⅰ 类 0.6/1
(0.3/0.5)
U
0
(0.45/0.75)



1.8/3 3/3 3/6 6/6 6/10 8.7/10
21/35 26/35
缆芯之间的 工频最高电 压 Umax
3.6
7.2
12
42
缆芯对地的 雷电冲击而 授电压的峰 值 Up1
60 75 75
95
200
250
注:括号内数值只能用于建筑物的电气线路,不包括建筑物电源

循环水冷却器

化工原理课程设计 ————循环水冷却器设计 学院:化工学院 专业班级:高分子061班 姓名:李猛 学号: 2006016050 指导教师:徐功娣 时间:2009年6月25-30日 目录 1 设计任务书1 2 设计摘要2 3 主要物性参数表4 4 工艺计算5 4.1 确定设计方案5 4.1.1 选择换热器的类型5 4.1.2 计算热负荷和冷却水流量5 4.1.3 计算两流体的平均温差,确定管程数6 4.1.4 工艺结构尺寸6 4.2 核算总传热系数8 4.2.1 管程对流传热系数Ai8 4.2.2 壳程流体传热系数9

4.2.3 计算总传热系数K010 4.3 核算压强降12 4.3.1 管程压强降12 4.3.2 壳程压强降校核13 5 设备参数的计算16 5.1 确定换热器的代号16 5.1.1 换热器的代号16 5.1.2 确定方法16 5.2 计算壳体内径16 5.3 管根数及排列要求16 5.4 计算换热器壳体壁厚17 5.4.1 选适宜的壳体材料17 5.4.2 该钢板的主要工艺参数性能17 5.4.3 壁厚的计算17 5.5 选择换热器的封头19 5.6 选择容器法兰20 5.6.1 选择法兰的型式20 5.6.2 确定法兰相关尺寸20 5.6.3 选用法兰并确定其标记21 5.7 选择管法兰和接管22 5.7.1 热流体进出口接管22

5.7.2 冷流体进出口接管22 5.7.3 选择管法兰23 5.8 选择管箱23 5.9 折流档板的设计24 5.10 支座的选用24 5.11 拉杆的选用和设置25 5.11.1 拉杆的选用25 5.11.2 拉杆的设置26 5.12 确定管板尺寸26 5.13 垫片的选用27 5.13.1 设备法兰用垫片27 5.13.2 管法兰用垫片28 6 数据汇总29 7 总结评述30 8 参考文献32 9 主要符号说明33 10 附表35

工业循环水冷却设计规范 GBJ102—87汇总

工业循环水冷却设计规范GBJ102—87 目录 第一章总则 第二章冷却塔 第一节一般规定 第二节机械通风冷却塔 第三节风筒式冷却塔 第四节开放式冷却塔 第三章喷水池 第四章水面冷却 第一节一般规定 第二节冷却池 第三节河道冷却 附录本规范用词说明 附加说明本规范主编单位、参加单位和主要起草人名单 主编部门:中华人民共和国水利电力部 批准部门:中华人民共和国国家计划委员会 施行日期:1987年10月1日 关于发布《工业循环水冷却设计规范》的通知 计标〔1987〕384号 根据原国家建委(81)建发设字第546号文的要求,由水利电力部会同有关部门共同制订的《工业循环水冷却设计规范》,已经有关部门会审,现批准《工业循环水冷却设计规范》GBJ102—87为国家标准,自一九八七年十月一日起施行。 本标准由水利电力部负责管理,其具体解释等工作由水利电力部东北电力设计院负责.出版发行由我委基本建设标准定额研究所负责组织。 国家计划委员会 一九八七年三月五日 编制说明 本规范是根据原国家建委(81)建发设字第546号通知的要求,由水利电力部负责主编,具体由水利电力部东北电力设计院会同有关单位共同编制而成。 在编制过程中,规范编制组遵照国家有关的方针政策,进行了比较广泛的调查研究,认真总结了我国工业循环水冷却设施的建设和使用的实践经验,吸取了国内外近年来在工业循环水冷却方面的科学技术最新成果,并参考国外同类标准规范,经广泛地征求了全国有关单位的意见,反复讨论修改,最后由我部会同有关部门审查定稿。

本规范共分四章计120条和一个附录。主要内容有:总则、冷却塔、喷水池、水面冷却等。 鉴于本规范是新编制的,希望各单位在执行过程中,结合工程实践和科学研究,认真总结经验,注意积累资料,如发现需要修改和补充之处,请将意见和有关资料寄交水利电力部东北电力设计院(吉林长春),以便今后修改时参考。 水利电力部 1986年12月31日 第一章总则 第1.0.1条本规范适用于新建和扩建的敞开式工业循环水冷却设施的设计。 第1.0.2条工业循环水冷却设施的设计应符合安全生产、经济合理、保护环境、节约能源、节约用水和节约用地,以及便于施工、运行和维修等方面的要求。 第1.0.3条工业循环水冷却设施的设计应在不断总结生产实践经验和科学试验的基础上,积极开发和认真采用先进技术。 第1.0.4条工业循环水冷却设施的类型选择,应根据生产工艺对循环水的水量、水温、水质和供水系统的运行方式等使用要求,并结合下列因素,通过技术经济比较确定: 一、当地的水文、气象、地形和地质等自然条件; 二、材料、设备、电能和补给水的供应情况; 三、场地布置和施工条件; 四、工业循环水冷却设施与周围环境的相互影响。 第1.0.5条工业循环水冷却设施应靠近主要用水车间;并应避免修建过长的给水排水管、沟和复杂的水工建筑物。 第1.0.6条工业循环水冷却设施的设计除应执行本规范外,尚应符合现行有关的国家标准、规范的规定。 第二章冷却塔 第一节一般规定 第2.1.1条冷却塔在厂区总平面布置中的位置应符合下列规定: 一、冷却塔宜布置在厂区主要建筑物及露天配电装置的冬季主导风向的下风侧; 二、冷却塔应布置在贮煤场等粉尘污染源的全年主导风向的上风侧; 三、冷却塔应远离厂内露天热源; 四、冷却塔之间或冷却塔与其他建筑物之间的距离除应满足冷却塔的通风要求外,还应满足管、沟、道路、建筑物的防火和防爆要求,以及冷却塔和其他建筑物的施工和检修场地要求; 五、冷却塔的位置不应妨碍工业企业的扩建。 第2.1.2条当环境对冷却塔的噪声有限制时,宜采取下列措施: 一、机械通风冷却塔应选用低噪声型的风机设备; 二、冷却塔周围宜设置消声设施; 三、冷却塔的位置宜远离对噪声敏感的区域。 第2.1.3条冷却塔的集中或分散布置方案的选择,应根据使用循环水的车间数量、分布位置及各车间的用水要求,通过技术经济比较后确定。 第2.1.4条冷却塔一般可不设备用。冷却塔检修时应有不影响生产的措施。 第2.1.5条冷却塔的热力计算宜采用焓差法或经验方法。

相关文档
最新文档