数学建模平衡点稳定性

合集下载

数学建模-稳定性问题

数学建模-稳定性问题
一般的微分方程或微分方程组可以写成:
dx f (t , x ) dt
定义 称微分方程或微分方程组 为自治系统或动力系统。 若方程或方程组f(x)=0有解Xo,X=Xo显然满足(3.28)。称点 Xo为微分方程或微分方程组(3.28)的平衡点或奇点。
dx f ( x) dt
(3.28)
例 Logistic模型
考察(3.2Байду номын сангаас)的线性近似方程组: 其中:
dx1 ax1 bx2 dt dx2 cx dx 1 2 dt
' d gx (0,0) 2
(3.30)
' a f x'1 (0,0) b f x'2 (0,0) c gx (0,0) 1
a b 讨论特征值与零点稳定的关系 记 A λ1、λ2为A的特征值则λ1、λ2是方程: c d >0,可能出现以下情形: (1 )若△ det(A-λI)=λ2- (a+b) λ+ (ad – bc )=0的根 ① 若q>0,λ1λ2>0。 1 2 2 当 p >0 时,零点不稳定; ( p p 4 q ) p 4q。 1,2 令p=a+d, q=ad-bc=|A|,则 ,记 2 当p<0时,零点稳定 ② 若q<0,λ 1λ2<0 当c1=0时,零点稳定 当c1≠0时,零点为不稳定的鞍点 ③ q=0,此时λ1=p,λ2=0,零点不稳定。
解析方法 定理1 设xo是微分方程
dx 的平衡点: f ( x) dt
若 f ' (xo ) ,则 xo是渐近稳定的 0
0 若 f '( xo ),则 xo是渐近不稳定的

数学建模-稳定性模型

数学建模-稳定性模型

x (t ) F ( x) rx(1 ) Ex x N E F ( x) 0 x0 N (1 ), x1 0 r 平衡点
产量模型
稳定性判断
F ( x0 ) E r, F ( x1 ) r E
E r F ( x0 ) 0, F ( x1 ) 0
捕鱼业的持续收获
• 再生资源(渔业、林业等)与 非再生资源(矿业等) • 再生资源应适度开发——在持续稳 产前提下实现最大产量或最佳效益。
问题 及 分析
• 在捕捞量稳定的条件下,如何控 制捕捞使产量最大或效益最佳。 • 如果使捕捞量等于自然增长量,渔 场鱼量将保持不变,则捕捞量稳定。
产量模型 假设
稳定平衡点 x0 N (1 E / r )
捕捞 • 封闭式捕捞追求利润R(E)最大 过度 • 开放式捕捞只求利润R(E) > 0
令 E R( E ) T ( E ) S ( E ) pNE(1 ) cE =0 r
ER
r c (1 ) 2 pN
c Es r (1 ) pN
R(E)=0时的捕捞强度(临界强度) Es=2ER 临界强度下的渔场鱼量
c Es xs N (1 ) p r
S(E)
p , c
Es , xs
0
ER E*
T(E) Es r E
捕捞过度
• 鱼销售价格p
• 单位捕捞强度费用c 收入 T = ph(x) = pEx 支出 S = cE
单位时间利润
R T S pEx cE
E R( E ) T ( E ) S ( E ) pNE(1 ) cE r r c r E ( 1 ) E* 求E使R(E)最大 R 2 pN 2 2 rN c 渔场 x N (1 E R ) N c hR (1 2 2 ) R 4 p N 2 2p 鱼量 r

常微分方程平衡点及稳定性研究.

常微分方程平衡点及稳定性研究.

本文给出了微分方程稳定性的概念,并举了一些例子来说明不同稳定性定义之间的区别和联系。

这些例子都是通过求出方程解析解的方法来讨论零解是否稳定。

在实际问题中提出的微分方程往往是很复杂的,无法求出其解析解,这就需要我们从方程本身来判断零解的稳定性。

所以我们讨论了通过Liapunov稳定性定理来判断自治系统零解的稳定性,并用类似的方法讨论了非自治系统零解的稳定性。

在此基础上,讨论了一阶和二阶微分方程的平衡点及其稳定性,这对其研究数学建模的稳定性模型起到很大的作用,并且利用相关的差分方程的全局吸引性研究了具时滞的单种群模型()()()() ().11N tN t r t N tcN t ττ--=--的平衡点1x=的全局吸引性,所获结果改进了文献中相关的结论。

关键词:自治系统平衡点稳定性全局吸引性AbstractIn this paper,we gived the conceptions of differential equation stability. Simultaneously a number of examples to illustrate the difference between the definition of different stability and contact. These examples are obtained by analytical solution equation method to discuss the stability of zero solution. Practical issues raised in the often very complicated differential equations, analytical solution can not be obtained, which requires us to determine from the equation itself, the stability of zero solution. So we discussed the stability theorem to determine through the stability of zero solution of autonomous systems, and use similar methods to discuss the non-zero solution of autonomous system stability. On this basis,we discuss a step and the second-step and the stability, which plays the major role to its stability of the model, and the global attractivity of the positive equilibrium 1x=of the following delay single population model()()()() ().11N tN t r t N tcN t ττ--=--is investigated by using the corresponding result related to a difference equation.The obtained results improve some known results in the literature.Key Words:autonomous system;equilibrium point;stability;delay;globally asymptotic stability;global attractivity摘要 (I)Abstract (I)目录 (II)第1章引言 (1)第2章微分方程平衡点及稳定性分析 (3)2.1 平衡点及稳定性定义 (3)2.2 自治系统零解的稳定性 (4)2.2.1 V函数 (4)2.2.2 Liapunov稳定性定理 (5)2.3 非自治系统的稳定性 (8)2.3.1 V函数和k类函数 (8)2.3.2 零解的稳定性 (10)2.4 判定一阶微分方程平衡点稳定性的方法 (14)2.4.1 相关定义 (14)2.4.2 判定平衡点稳定性的方法 (14)2.5 判定二阶微分方程平衡点稳定性的方法 (15)2.5.1 相关定义 (15)2.5.2 判定平衡点稳定性的方法 (15)第3章一类时滞微分方程平衡点的全局吸引性 (17)3.1 差分方程(3-7)的全局渐近稳定性 (17)3.2 微分方程(3-1)的全局吸引性 (19)第4章常微分方程稳定性的一个应用 (23)第5章结论 (25)参考文献 (27)致谢 (29)第1章引言20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,在自然科学(如物理化学生物天文)和社会科学(如工程经济军事)中的大量问题都可以用微分方程来描述,尤其当我们描述实际对象的某些特性随时间(空间)而演变的过程,分析它的变化规律,预测它的未来形态时,要建立对象的动态模型,通常要用到微分方程模型,而稳定性模型的对象仍是动态过程,而建模的目的是研究时间充分长以后过程的变化趋势、平衡状态是否稳定。

数学建模-微分方程的稳定性讲述

数学建模-微分方程的稳定性讲述

p q 0 p ( a d ) q det A
2
1, 2 ( p p 4q ) / 2
2
(t ) ax by 线性常系数 x 的平衡点及其稳定性 微分方程组 y (t ) cx dy
平衡点 P0(0,0) 特征根
• 鱼销售价格p
• 单位捕捞强度费用c 收入 T = ph(x) = pEx 支出 S = cE
单位时间利润 稳定平衡点
R T S pEx cE
E R( E ) T ( E ) S ( E ) pNE(1 ) cE r r c r E ( 1 ) E* 求E使R(E)最大 R 2 pN 2 2 rN c 渔场 x N (1 E R ) N c hR (1 2 2 ) R 4 p N 2 2p 鱼量 r
问题 及 分析
• 在捕捞量稳定的条件下,如何控 制捕捞使产量最大或效益最佳? • 如果使捕捞量等于自然增长量,渔 场鱼量将保持不变,则捕捞量稳定.
产量模型 假设
x(t) ~ 渔场鱼量
• 无捕捞时鱼的自然增长服从 Logistic规律. x (t ) f ( x) rx(1 x ) N r~固有增长率, N~最大鱼量 • 单位时间捕捞量与渔场鱼量成正比. h(x)=Ex, E~捕捞强度
稳定性模型
1 微分方程稳定性的理论知识 2 捕鱼业的持续收获 3 军备竞赛
4 废水的生物处理
稳定性模型
• 对象仍是动态过程,而建模目的是研究时 间充分长以后过程的变化趋势 ——平衡状 态是否稳定. • 不求解微分方程,而是用微分方程稳定性 理论研究平衡状态的稳定性.
1 微分方程稳定性的理论知识
1.1 一阶微分方程的平衡点及其稳定性 1.2 线性常系数微分方程组的平衡点及其稳定性

稳定性理论

稳定性理论

微分方程的稳定性理论简介一阶方程的平衡点及稳定性设有微分方程()()t f x x •= 〔1〕右端方程不显含自变量t ,称为自治方程。

代数方程的实根0x x =称为方程〔1〕的平衡点〔或齐点〕它也是方程〔1〕的解〔齐解〕。

如果存在某个邻域,使方程〔1〕的解()x t 从这个邻域内的某个(0)x 出发,满足0lim ()t x t x →∞= 〔3〕则称平衡点0x 是稳定的〔稳定性理论中称渐近稳定〕;否则,称0x 是不稳定的(不渐近稳定)推断平衡点0x 是否稳定点通常有两种方法。

利用定义即〔3〕式称间接法。

不求方程〔1〕的解()x t ,因而不利用〔3〕式的方法称直接法。

下面介绍直接法。

将()f x 在0x 点做Taylor 展开,只取一次项,方程〔1〕近似为'00()x t f x x x •=-()() 〔4〕〔4〕称为〔1〕的近似方程,0x 也是方程〔4〕的平衡点。

关于0x 点稳定性有如下结论:假设'0f x ()<0, 则0x 对于方程〔4〕和〔1〕都是稳定的; 假设'0f x ()>0,则0x 对于方程〔4〕和〔1〕都是不稳定的。

0x 对于方程〔4〕的稳定性很简单由定义〔3〕式证明,因为假设记'0()f x a =,则〔4〕的一般解是其中c 是由初始条件决定的常数,显然,当0a <时〔3〕式成立。

二阶方程的平衡点和稳定性二阶方程可用两个一阶方程表示为112212()(,)()(,)x t f x x x t g x x ⎧=⎪⎨⎪=⎩ 〔6〕右端不显含t ,是自治方程。

代数方程组 1212(,)0(,)0f x xg x x =⎧⎨=⎩ 〔7〕的实根011x x =,022x x =称为方程〔6〕的平衡点,记做00012(,)P x x 。

如果存在某个邻域,使方程〔6〕的解1()x t ,2()x t 从这个邻域内的某个12((0),(0))x x 出发,满足011lim ()t x t x →∞= ,022lim ()t x t x →∞= 〔8〕则称平衡点0P 是稳定的〔渐近稳定〕;否则,称0P 是不稳定的〔不渐近稳定〕。

微分方程稳定性理论 数学建模课件

微分方程稳定性理论 数学建模课件

dX F(X ) dt
的一
的一个 ~ (i 1..n) 为动力系统的一个奇解。 平衡点,则 xi (t ) x i
~ ~ ~ T ~ X ( x , x x ) 1 2 n 平衡点 在对一个动力系统的定性分
~ ~ ~ T ~ X ( x , x x ) 1 2 n 若 为动力系统
dX ~ F(X) X 统 dt 的平衡点 是局部(渐近)稳定的。
dX ~ ~ A( X ) ( X X ) dt
t
dX ~ X 对平衡点 局部(渐近)稳定性的判别,只须对原微分方程 dt F(X)
的右端项取一阶Taylor展式,构造线性动力系统
~ f i ( X ) ~ A ( X ) a 讨论,其中 ij x j
dX a11 a12 22 AX 其中 A R a dt 21 a22
平衡点类型 稳定结点 不稳定结点 鞍点 稳定退化结点 不稳定退化结点 稳定焦点 不稳定焦点 中心 稳定性 稳定 不稳定 不稳定 稳定 不稳定 稳定 不稳定 不稳定
下表给出其平衡点O(0,0)的类型和稳定性
i i 1 2 n
1 2 n
T
数学建模与模拟
X ( t ) ( x1 ( t ), x2 ( t ) xn ( t ))T 称n 维空间Rn 为相空间, 在相空间确定的曲线称为相轨线,简称轨线。
~ ~ ~ 称点 X ( x1 , x2 ~ xn )T 为动力系统 ~ 个平衡点 ,若 f i ( X ) 0(i 1..n)。
对于二维平面中(二阶方程)的情形,根 据平衡点的局部拓扑性状可将其分为结点、 焦点、鞍点以及中心等四类,其中鞍点、 中心这两种类型的平衡点是不稳定的,而 结点、焦点类型的平衡点还可以分为稳定 与不稳定的两种情形。

数学建模作业实验2微分方程实验

数学建模作业实验2微分方程实验

数学建模作业(实验2微分方程实验)基本实验1.微分方程稳定性分析绘出下列自治系统相应的轨线,并标出随t 增加的运动方向,确定平衡点,并按稳定的、渐近稳定的、或不稳定的进行分类:,,,+1,(1)(2)(3)(4);2;2;2.dx dx dx dxx x y x dt dt dt dt dy dy dy dy y y x y dt dt dt dt ⎧⎧⎧⎧==-==-⎪⎪⎪⎪⎪⎪⎪⎪⎨⎨⎨⎨⎪⎪⎪⎪===-=-⎪⎪⎪⎪⎩⎩⎩⎩解答解:(1)由平衡点的定义可得,f (x )=x=0,f (y )=y=0,因此平衡点为(0,0),微分方程组的系数矩阵为1001A ⎡⎤=⎢⎥⎣⎦,显然其特征值为12=1=1λλ,;由根与系数的关系可得:1212()2010p q λλλλ=-+=-<==>,且24p q >,由平衡点与稳定性的各种情况可知,平衡点(0,0)是不稳定的。

自治系统相应轨线为:(2)由平衡点的定义可得,f (x)=-x=0,f (y )=2y=0,因此平衡点为(0,0),微分方程组的系数矩阵为-1002A ⎡⎤=⎢⎥⎣⎦,显然其特征值为12=-1=2λλ,;由根与系数的关系可得:121210-(2<0)p q λλλλ=-+=-<==,,平衡点(0,0)是不稳定的。

自治系统相应轨线为:(3)由平衡点的定义可得,f (x )=y=0,f (y )=-2x=0,因此平衡点为(0,0),微分方程组的系数矩阵为0120A ⎡⎤=⎢⎥-⎣⎦,显然其特征值为121.4142=4142=-1.i i λλ,;由根与系数的关系可得:12120 1.41420()p q λλλλ=-+===>,,由平衡点与稳定性的各种情况可知,平衡点(0,0)是不稳定的。

自治系统相应轨线为:(4)由平衡点的定义可得,f (x )=-x=0,f (y )=-2y=0,因此平衡点为(0,0),微分方程组的系数矩阵为-100-2A ⎡⎤=⎢⎥⎣⎦,显然其特征值为12==-12-λλ,;由根与系数的关系可得:1212()3020p q λλλλ=-+=>==>,且24p q >,由平衡点与稳定性的各种情况可知,平衡点(0,0)是稳定的。

数学建模之微分方程建模与平衡点理论

数学建模之微分方程建模与平衡点理论

微分方程列微分方程常用的方法: (1)根据规律列方程利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立微分方程模型。

(2)微元分析法利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。

(3)模拟近似法在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。

一、模型的建立与求解 1.1传染病模型 (1)基础模型假设:t 时刻病人人数()x t 连续可微。

每天每个病人有效接触(使病人治病的接触)的人数为λ,0t =时有0x 个病人。

建模:t 到t t +∆病人人数增加()()()x t t x t x t t λ+∆-=∆ (1)0,(0)dxx x x dtλ== (2) 解得:0()t x t x e λ= (3)所以,病人人数会随着t 的增加而无限增长,结论不符合实际。

(2)SI 模型假设:1.疾病传播时期,总人数N 保持不变。

人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。

2.每位病人每天平均有效接触λ人,λ为日接触率。

有效接触后健康者变为病人。

依据:患病人数的变化率=Ni(t)(原患病人数)* λs(t)(每个病人每天使健康人变为病人的人数) 建模:di N Nsi dtλ= (4)由于()()1s t i t += (5)设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型0(1),(0)dii i i i dtλ=-= (6) 解得:01()111kti t e i -=⎛⎫+- ⎪⎝⎭(7)用Matlab 绘制图1()~i t t ,图2 ~di i dt图形如下,结论:在不考虑治愈情况下①当12i =时didt 达到最大值m di dt ⎛⎫ ⎪⎝⎭,这时101ln 1m t i λ-⎛⎫=- ⎪⎝⎭②t →∞时人类全被感染。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微分方程平衡点及其稳定性理论
这里简单介绍下面将要用到的有关内容:
一、 一阶方程的平衡点及稳定性
设有微分方程
()dx f x dt
= (1) 右端不显含自变量t ,代数方程
()0f x = (2)
的实根0x x =称为方程(1)的平衡点(或奇点),它也是方程(1)的解(奇解)
如果从所有可能的初始条件出发,方程(1)的解()x t 都满足
0lim ()t x t x →∞
= (3) 则称平衡点0x 是稳定的(稳定性理论中称渐近稳定);否则,称0x 是不稳定的(不渐近稳定)。

判断平衡点0x 是否稳定通常有两种方法,利用定义即(3)式称间接法,不求方程(1)的解()x t ,因而不利用(3)式的方法称直接法,下面介绍直接法。

将()f x 在0x 做泰勒展开,只取一次项,则方程(1)近似为:
0'()()dx f x x x dt
=- (4) (4)称为(1)的近似线性方程。

0x 也是(4)的平衡点。

关于平衡点0x 的稳定性有如下的结论:
若0'()0f x <,则0x 是方程(1)、(4)的稳定的平衡点。

若0'()0f x >,则0x 不是方程(1)、(4)的稳定的平衡点
0x 对于方程(4)的稳定性很容易由定义(3)证明,因为(4)的一般解是
0'()0()f x t x t ce x =+ (5)
其中C 是由初始条件决定的常数。

二、 微分方程组的平衡点和稳定性
方程的一般形式可用两个一阶方程表示为
112212()(,)()(,)dx t f x x dt dx t g x x dt
⎧=⎪⎪⎨⎪=⎪⎩ (6)
右端不显含t ,代数方程组
1212
(,)0(,)0f x x g x x =⎧⎨=⎩ (7) 的实根0012
(,)x x 称为方程(6)的平衡点。

记为00012(,)P x x 如果从所有可能的初始条件出发,方程(6)的解12(),()x t x t 都满足
101lim ()t x t x →∞= 202lim ()t x t x →∞
= (8) 则称平衡点00012(,)P x x 是稳定的(渐近稳定);否则,称P 0是不稳定的(不渐
近稳定)。

为了用直接法讨论方法方程(6)的平衡点的稳定性,先看线性常系数方程
1111222122()()dx t a x b x dt dx t a x b x dt
⎧=+⎪⎪⎨⎪=+⎪⎩ (9) 系数矩阵记作
1122a b A a b ⎡⎤=⎢⎥⎣⎦
并假定A 的行列式det 0A ≠
于是原点0(0,0)P 是方程(9)的唯一平衡点,它的稳定性由的特征方程
det()0A I λ-=
的根λ(特征根)决定,上方程可以写成更加明确的形式:
2120()det p q p a b q A λλ⎧++=⎪=-+⎨⎪=⎩
(10)
将特征根记作12,λλ,则
121,(2p λλ=- (11) 方程(9)的解一般有形式1212t t c e c e λλ+(12λλ≠)或12()t c c t e λ+(12λλλ==) 12,c c 为任意实数。

由定义(8),当12,λλ全为负数或有负的实部时0(0,0)P 是稳定的平衡点,反之,当12,λλ有一个为正数或有正的实部时0(0,0)P 是不稳定的平衡点。

相关文档
最新文档