《数学建模》第六章 稳定性模型

合集下载

数学建模实验报告

数学建模实验报告

湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。

实验二 优化模型........................................................................ 错误!未定义书签。

实验三 微分方程模型................................................................ 错误!未定义书签。

实验四 稳定性模型.................................................................... 错误!未定义书签。

实验五 差分方程模型................................................................ 错误!未定义书签。

实验六 离散模型........................................................................ 错误!未定义书签。

实验七 数据处理........................................................................ 错误!未定义书签。

实验八 回归分析模型................................................................ 错误!未定义书签。

实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。

实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。

数学建模第六章 数值分析模型

数学建模第六章 数值分析模型


1
x1 x0
y0 ( x1 x) y1( x x0 )

建 模
令:
1x
x x1 x0 x1
y0

x x0 x1 x0
y1.
称 (1 x为)两点式插值或线性插值。
理学院
黑 龙
(2) n = 2时. 设yi = f(xi)i = 0,1,2.
令:
学 n=size(x1,2);
院 syms x positive
for i=1:(n-1)
Phi(i)=y(i)*(x-x1(i+1))/(x1(i)-x1(i+1))+y(i+1)*(x-x1(i))/(x1(i+1)-x1(i));
数 end
学 Phi=Phi';

l=find(x1>xx); Y=subs(Phi(l(1)-1),xx);
理学院
6.2 非线性方程求根



科 技
浮力问题


一个半径为r,密度为ρ的球重 4 r,3 高为h
数 学
的 在球水冠中部体分体的积深为度3是(3半rh2径 h的,3) 几求分3之几0.(的6 见球图浸

称值为多La项g式ra。nge插值基函数,n (x)为Lagrange插
理学院
例6.1.1 给定数组

x 75 76 77 78 79 90
龙 江
y 2.768 2.833 2.903 2.979 3.062 3.153

技 (1)作一分段线性插值函数
(x)

院 (2)用上述插值函数计算 x 75.5和 x 78.3

数学模型姜启源 ppt课件

数学模型姜启源 ppt课件
6
《数学模型》 姜启源 主编
数学模型
9 五 5-6 6.4种群的相互依存
2
7.1市场经济中的蛛网模型
10 五 5-6 7.2减肥计划-节食与运动
2
8.3层次分析模型
12 五 5-6 8.4效益的合理分配
2
9.2报童的诀窍(讨论课)
13 五 5-6 9.5随机人口模型
2
9.6航空公司的预定票策略
14 五 5-6 10.1牙膏的销售量
数学模型
对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。
数学
建立数学模型的全过程
建模 (包括表述、求解、解释、检验等)
2020/11/13
12
《数学模型》 姜启源 主编
第一章 建立数学模型
1.2 数学建模的重要意义
• 电子计算机的出现及飞速发展; • 数学以空前的广度和深度向一切领域渗透。
1.3 数学建模示例
1.4 数学建模的方法和步骤
1.5 数学模型的特点和分类
1.6 怎样学习数学建模
2020/11/13
8
《数学模型》 姜启源 主编
第一章 建立数学模型
1.1 从现实对象到数学模型
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型
水箱中的舰艇、风洞中的飞机… … ~ 物理模型
《数学模型》 姜启源 主编
数学模型
数学模型
2020/11/13
1
《数学模型》 姜启源 主编
数学模型
课程简介
课程名称 数学模型与数学建模 Mathematical Modeling
先修课程 微积分、线性代数、概率论与数理统计 课程简介

数学建模:第六章建模范例三

数学建模:第六章建模范例三
(2)
103.133872
(3)
101.310287
(3,1)
98.472872
(5)
96.731702
(5,1)
94.787533
(5,2)
92.480158
(5,3)
90.844949
(5,3,1)
4108.656375
(5,5)
*
M=5000万元,n=10年基金使用最佳方案(单位:万元)
3
改为
4
利用
5
软件求解(程序略)M=5000万元,
6
n=10年基金使用最佳方案:(单位:万元)
7
*
M=5000万元,n=10年基金使最佳方案(单位:万元)
存1年定期
存2年定期
存3年定期
存5年定期
取款数额(到期本息和)
每年发放奖学金数额
第一年初
105.650679
103.527252
220.429705
2.255
*
由上表可得,任何最佳存款策略中不能存在以下的存款策略(1,1),(2,1),(2,2),(3,2)和(3,3)。
由1,2,3,5四种定期能够组成的策略(5年定期不重复) 只能有(1),(2),(3),(3,1),(5), (5,1), (5,2), (5,3), (5,3,1)九种,
*
根据以上的推理,可得n年的最优存储方案公式二为:
据上公式用
可以求得n=10年,M=5000万元时
基金使用的最优方案:(单位:万元)
每年奖学金:
问题三求解:
方案一:只存款不购买国库券
1
因学校要在基金到位后的第3年举行校庆,所以此年奖金应是其他年度的1.2倍,

数学建模-稳定性模型

数学建模-稳定性模型

x (t ) F ( x) rx(1 ) Ex x N E F ( x) 0 x0 N (1 ), x1 0 r 平衡点
产量模型
稳定性判断
F ( x0 ) E r, F ( x1 ) r E
E r F ( x0 ) 0, F ( x1 ) 0
捕鱼业的持续收获
• 再生资源(渔业、林业等)与 非再生资源(矿业等) • 再生资源应适度开发——在持续稳 产前提下实现最大产量或最佳效益。
问题 及 分析
• 在捕捞量稳定的条件下,如何控 制捕捞使产量最大或效益最佳。 • 如果使捕捞量等于自然增长量,渔 场鱼量将保持不变,则捕捞量稳定。
产量模型 假设
稳定平衡点 x0 N (1 E / r )
捕捞 • 封闭式捕捞追求利润R(E)最大 过度 • 开放式捕捞只求利润R(E) > 0
令 E R( E ) T ( E ) S ( E ) pNE(1 ) cE =0 r
ER
r c (1 ) 2 pN
c Es r (1 ) pN
R(E)=0时的捕捞强度(临界强度) Es=2ER 临界强度下的渔场鱼量
c Es xs N (1 ) p r
S(E)
p , c
Es , xs
0
ER E*
T(E) Es r E
捕捞过度
• 鱼销售价格p
• 单位捕捞强度费用c 收入 T = ph(x) = pEx 支出 S = cE
单位时间利润
R T S pEx cE
E R( E ) T ( E ) S ( E ) pNE(1 ) cE r r c r E ( 1 ) E* 求E使R(E)最大 R 2 pN 2 2 rN c 渔场 x N (1 E R ) N c hR (1 2 2 ) R 4 p N 2 2p 鱼量 r

数学建模第三版习题答案

数学建模第三版习题答案

数学建模第三版习题答案数学建模是一门应用数学的学科,通过建立数学模型来解决实际问题。

《数学建模第三版》是一本经典的教材,其中的习题对于学生来说是非常重要的练习材料。

在这篇文章中,我将为大家提供《数学建模第三版》习题的答案,希望能够帮助大家更好地理解和应用数学建模的知识。

第一章:数学建模的基础知识1. 数学建模的定义:数学建模是指将实际问题转化为数学问题,并通过建立数学模型来解决问题的过程。

2. 数学建模的基本步骤:问题的分析与理解、建立数学模型、求解数学模型、模型的验证与应用。

3. 数学建模的分类:确定性建模和随机建模。

4. 数学建模的特点:抽象性、理想化、简化性和应用性。

第二章:线性规划模型1. 线性规划模型的基本形式:目标函数和约束条件都是线性的。

2. 线性规划模型的求解方法:图形法、单纯形法和对偶理论。

3. 线性规划模型的应用:生产计划、资源分配、运输问题等。

第三章:整数规划模型1. 整数规划模型的基本形式:目标函数是线性的,约束条件中包含整数变量。

2. 整数规划模型的求解方法:分枝定界法、割平面法、动态规划法等。

3. 整数规划模型的应用:项目选择、装配线平衡问题、旅行商问题等。

第四章:动态规划模型1. 动态规划模型的基本思想:将一个大问题分解为若干个子问题,通过求解子问题的最优解来求解整个问题的最优解。

2. 动态规划模型的求解方法:递推法、备忘录法和自底向上法。

3. 动态规划模型的应用:背包问题、最短路径问题、最长公共子序列问题等。

第五章:非线性规划模型1. 非线性规划模型的基本形式:目标函数和约束条件中包含非线性函数。

2. 非线性规划模型的求解方法:牛顿法、拟牛顿法、全局优化法等。

3. 非线性规划模型的应用:经济增长模型、生态系统模型、医学诊断模型等。

第六章:图论模型1. 图论模型的基本概念:顶点、边、路径、回路等。

2. 图论模型的求解方法:深度优先搜索、广度优先搜索、最短路径算法等。

数模稳定性模型课件

数模稳定性模型课件

模型参数估计与调整
参数估计
利用收集到的数据,估计 模型的参数,例如使用最 小二乘法、梯度下降法等 。
模型评估
根据一定的评估指标,评 估模型的性能,例如均方 误差(MSE)、准确率等 。
参数调整
根据模型评估结果,调整 模型的参数,以优化模型 的性能。
03
数模稳定性模型的评估
评估标准与指标
模型精度
随机稳定性模型
适用于随机系统,考虑系统中 的随机因素,分析系统的稳定
性和可靠性。
稳定性模型的应用场景
航空航天
飞机、火箭等飞行器的控制系 统稳定性分析。
交通运输
高速列车、自动驾驶汽车的控 制系统稳定性分析。
电力能源
电力系统的稳定性分析,如电 网的稳定运行。
生物医学
生物系统的稳定性分析,如神 经网络的稳定性。
用来衡量模型预测结果与实际数据之间的误 差大小。
模型泛化能力
衡量模型对新数据的预测性能。
模型稳定性
评估模型在面对数据变动时的预测稳定性。
模型计算效率
评估模型训练和预测的速度。
评估方法与流程
1. 准备数据
2. 设定评估指标
3. 模型训练与预测
4. 计算评估指标值
5. 分析评估结果
选择合适的实际数据集 ,进行数据预处理。
案例四:交通流量的预测与分析
总结词
数模稳定性模型在交通流量预测和分析中的应用,能够根据历史交通数据预测未来交通流量,优化交通规划和管 理。
详细描述
数模稳定性模型通过对历史交通数据的分析和挖掘,能够预测未来交通流量和变化趋势,从而为交通规划和管理 提供参考。例如,通过分析路网的交通流量和拥堵情况,可以优化交通信号灯配时和道路设计,提高交通效率和 安全性。

《数学建模(一)》课程教学大纲-公选课

《数学建模(一)》课程教学大纲-公选课

《数学建模(一)》课程教学大纲【课程基本情况】一、课程代码:000373二、课程类别及性质:公共选修课三、课程学时学分:54学时(教学:24 实践:30)2学分四、教学对象:12、13级学生五、课程教材:《数学模型》、姜启源谢金星叶俊等、高等教育出版社六、开设系(部):信科系七、先修课:高等数学、线性代数【教学目的】通过本课程的学习,使学生能够较好地理解数学模型、数学建模的含义,了解数学建模的重要性。

通过示例的学习使同学们基本掌握建立数学模型的方法和步骤,并能通过数学方法、数学软件求解模型,而且能够对模型的精准性进行分析。

通过学习,培养了同学们的把实际问题表述成数学问题的能力,从而提高了他们的抽象思维能力。

并且通过MATLAB、LINGO 数学软件的应用,提高了他们的计算机应用水平。

【教学内容、基本要求及学时分配】第一章建立数学模型教学时数:2学时第一节从现实对象到数学模型基本要求:掌握数学模型、数学建模的含义。

第二节数学建模的重要意义基本要求:了解数学建模的重要性。

第三节数学建模的示例(不讲授)基本要求:掌握三个示例的建模过程;重点:模型的建立、模型的求解。

第四节数学建模的基本方法和步骤基本要求:掌握数学建模的基本方法和步骤;重点:建模的基本方法和步骤。

第五节数学模型的特点和分类基本要求:了解数学模型的特点和分类。

第六节数学建模能力的培养(不讲授)基本要求:了解建立数学模型所需要的能力。

第二章初等模型教学时数:4学时第一节公平的席位分配基本要求:掌握公平席位的建模方法;重点:建立数量指标。

第二节录像机计数器的用途基本要求:掌握录像机计数器的建模方法;重点:模型的假设及模型的构成。

难点:建立模型的过程。

第三节双层玻璃的功效基本要求:掌握双层玻璃的功效的建模方法及模型应用;重点:模型的构成。

第四节汽车刹车距离基本要求:掌握t秒准则的建立方法;重点:模型建立的过程。

第五节划艇比赛的成绩(不讲授)第六节动物的身长和体重(不讲授)第七节实物交换(不讲授)第八节核军备竞赛(不讲授)第九节扬帆远航(不讲授)第十节量纲分析与无量纲化(不讲授)第三章简单的优化模型教学时数:4学时第一节存贮模型基本要求:掌握存贮模型在两种情况下的建模方法;重点:模型假设。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不求x(t), 判断x0稳定性的方法——直接法
(1)的近似线性方程
x F ( x )( x x ) ( 2 )
0
0
F ( x ) 0 x 稳定 ( 对 ( 2 ), (1))
0
0
F ( x ) 0 x 不稳定 ( 对 ( 2 ), (1))
0
0
产量模型
x x( t ) F ( x ) rx (1 ) Ex
6.1 捕鱼业的持续收获
背景
• 再生资源(渔业、林业等)与 非再生资源(矿业等)
• 再生资源应适度开发——在持续稳 产前提下实现最大产量或最佳效益。
问题 及 分析
• 在捕捞量稳定的条件下,如何控 制捕捞使产量最大或效益最佳。
• 如果使捕捞量等于自然增长量,渔 场鱼量将保持不变,则捕捞量稳定。
产量模型
P*
P y=f(x)
E r x 0 稳定
0
x0*=N/2 x0
Nx
P的横坐标 x0~平衡点
P的纵坐标 h~产量
产量最大 P * ( x * N / 2 , h rN / 4 )
0
m
E*
hm
/
x
* 0
r
/
2
控制渔场鱼量为最大鱼量的一半
效益模型 在捕捞量稳定的条件下,控制捕捞
强度使效益最大.
假设 • 鱼销售价格p • 单位捕捞强度费用c
2
1
2
x( t ) f ( x 0 , x 0 )( x x 0 ) f ( x 0 , x 0 )( x x 0 )
1
x1
1
2
1
1
x2
1
2
2
2
x ( t ) g ( x 0 , x 0 )( x x 0 ) g ( x 0 , x 0 )( x x 0 ) ( 2 )
2
x1
1
2
1
1
1
1 12
,
2
2
1 12
1
1
2
1 12
2
r r (1 )(1 )
12
1
2
1 12
1<1, 2<1
p (0,0) 4
(r r )
1
2
rr 12
不稳定
P1, P2 是一个种群存活而另一灭绝的平衡点
P3 是两种群共存的平衡点
P1稳定的条件 1<1 ?
平衡点稳 定性的相 轨线分析
x
x
1
2
的根
g(x , x ) 0
1
2
若从P0某邻域的任一初值出发,都有 lim t
x (t) 1
x0, 1
lim
t
x (t) 2
x0, 2
称P0是微分方程的稳定平衡点
判断P0 (x10,x20) 稳定 性的方法——直接法 (1)的近似线性方程
x(t ) f ( x , x )
1
1
2
x (t ) g ( x , x ) (1)
2)由于经济实力限制,一方军备越大,对 自己军备增长的制约越大;
3)由于相互敌视或领土争端,每一方都存
在增加军备的潜力。
进一步 假设
1)2)的作用为线性;3)的作用为常数
建模
x(t)~甲方军备数量, y(t)~乙方军备数量 x( t ) x ky g
y( t ) lx y h
, ~ 本方经济实力的制约;
x(t ) 1
r 1
x
1
1
1
N 1
1
2
N 2
x x
x (t ) 2
r 2
x
2
1
2
1
N 1
2
N 2
x
x
(x ,x ) 1 1 2
1
2
1
N
N
1
2
xx
(x ,x ) 1
第六章 稳定性模型
6.1 捕鱼业的持续收获 (讲) 6.2 军备竞赛(讲) 6.3 种群的相互竞争 6.4 种群的相互依存 6.5 种群的弱肉强食
稳定性模型
• 对象仍是动态过程,而建模目的是研究时 间充分长以后过程的变化趋势 ——平衡状 态是否稳定。
• 不求解微分方程,而是用微分方程稳定性 理论研究平衡状态的稳定性。
线性常系数 x(t ) ax by 微分方程组 y(t ) cx dy
的平衡点及其稳定性
平衡点 P0(0,0)
特征根 ( p p 2 4 q ) / 2 1,2
微分方程一般解形式 c e 1t c e 2t
1
2
1,2为负数或有负实部
p>0且q>0 p<0或q<0
平衡点 P0(0,0)稳定 平衡点 P0(0,0)不稳定
E~捕捞强度
r~固有增长率
x0 稳定, 可得到稳定产量 x1 稳定, 渔场干枯
产量模型
在捕捞量稳定的条件下, 控制捕捞强度使产量最大 图解法
F (x) f (x) h(x)
x f ( x ) rx (1 )
N
h ( x ) Ex
y hm h
F ( x ) 0 f 与h交点P
y=rx y=E*x y=h(x)=Ex
模型
x( t ) 1
r 1
x 1
1
x1 N1
1
x N
2 2
x x
x (t ) 2
r 2
x
2
1
2
1
N 1
2
N 2
对于消耗甲的资源而
言,乙(相对于N2)是甲
(相对于N1) 的 1 倍。
1 1
对甲增长的阻滞 作用,乙大于甲 乙的竞争力强
模型
模型 分析
x
x
x( t ) 1
r 1
x 1
1
1
N 1
1
2) 若g=h=0, 则 x0=y0=0, 在 > kl 下 x(t), y(t)0,
即友好邻国通过裁军可达到永久和平。
模型的定性解释
模型
x( t )
x ky
g
y( t ) lx y h
, ~ 本方经济实力的制约;
k, l ~ 对方军备数量的刺激;
g, h ~ 本方军备竞赛的潜力。 3)若 g,h 不为零,即便双方一时和解,使某时x(t), y(t) 很小,但因 x 0 , y 0 ,也会重整军备。
N
• 不需要求解x(t), 只需知道x(t)稳定的条件
一阶微分方程的平衡点及其稳定性
x F ( x ) (1) 一阶非线性(自治)方程
F(x)=0的根x0 ~微分方程的平衡点 x 0 x x
x x0
0
设x(t)是方程的解,若从x0 某邻域的任一初值出发,
都有
lim
t
x(t)
x, 0
称x0是方程(1)的稳定平衡点
若从P0某邻域的任一初值出发,都有 lim t
x (t )
x, 0
lim
t
y(t)
y, 0
称P0是微分方程的稳定平衡点
记系数矩阵
a
A
c
b
d
2 p q 0
p (a d )
q
det
A
特征方程 det( A I ) 0 特征根
( p p 2 4q ) / 2 1,2
收入 T = ph(x) = pEx
支出 S = cE
单位时间利润 R T S pEx cE
稳定平衡点 x N (1 E / r ) 0
E R ( E ) T ( E ) S ( E ) pNE (1 ) cE
r
求E使R(E)最大
r
c
r
E R (1
) E*
2
pN
2
渔场 鱼量
xR
N (1
ER ) r
N 2
c
2p
rN
c2
h
(1
)
R
4
p2N 2
捕捞
• 封闭式捕捞追求利润R(E)最大
r E R (1
c )
过度 • 开放式捕捞只求利润R(E) > 0
2
pN
E

R ( E ) T ( E ) S ( E ) pNE (1 ) 衡点
p ( N ,0)
1
1
p (0, N )
2
2
p
q
稳定条件
r r (1 )
1
2
2
r (1 ) r
1
1
2
r r (1 )
12
2
r r (1 )
12
1
2>1, 1<1 1>1, 2<1
N (1 ) N (1 ) r (1 ) r (1 )
p 3
1
x
2
1
2
1
N 1
2
N 2
x
x
f (x ,x )
1
2
r 1
x 1
1
1
N 1
1
2
N 2
0
g(x ,x )
1
2
rx 22
1
2
x 1
N 1
x 2
N 2
0
平衡点: P1 ( N 1 ,0 ), P2 ( 0 , N 2 ),
P3
N 1 (1 1 ) , 1 1 2
N 2 (1 2 1 1 2
• 建立数学模型描述两个种群相互竞争的过程, 分析产生这种结局的条件。
模型假设 • 有甲乙两个种群,它们独自生存
相关文档
最新文档