六氟丙烯 三氟氯乙烯 可逆加成-断裂链转移(RAFT)聚合 原子转移自由基聚合(ATRP) 齐聚反应

合集下载

可逆加成断裂链转移可控活性自由基聚合

可逆加成断裂链转移可控活性自由基聚合
添加标题
洪春雁等用于苯乙烯的RAFT聚合制得了以树星型聚合物的形 成机理示意图
可逆加成-断裂链转 移试剂的选择
可逆加成-断裂链转 移试剂(RAFT试剂) 主要有:二硫代酯 、三硫代碳酸酯、 芳基二硫代氨基甲 酸酯、黄原酸酯和 ω-全氟二硫代酯。
RAFT聚 合的应用
目前,利用 RAFT 聚合可实现对聚合物分子 量大小和分布的控制,并实现聚合物的分子设 计,合成具有特定结构和性能的聚合物,已成 为高分子合成研究最活跃的领域之一。 RAFT技术可以在温和的条件下方便地合成 结构可控的聚合物,如嵌段、接枝、星形、 树枝状、支化及超支化聚合物等。
对上面的4种RAFT试剂,可以将左 边与碳原子相连的基团都看成Z基 团,右边的与硫原子相连的基团看 成是R基团。RAFT试剂的性质主要 决定于Z基团、R基团以及所形成的 自由基(R)的性质。根据不同的单体 ,选择RAFT试剂时,要充分了解R 基团、Z基团的性质以及单体自由 基的活性等。其活性可以用自由基 对它的链转移常数Ctr表示。
硫酯化合物链转移常数很大,若试剂选择合适且 反应条件得当,则可以得到分子量分散系数很小 (<1.2)的产物;
由于RAFT试剂存在于聚合物链的末端,从而保持 02 了聚合物的活性,即若再加入单体,可生成嵌段、
星型和其他具有特殊结构的聚合物,还可以很好 地控制聚合物链端结构,制备带有端基官能团的 遥爪聚合物,该特性可以用于进行分子设计。
可以在温和的条件下方便地合成结构可控的聚合物,如 嵌段、接枝、星形、树枝状、支化及超支化聚合物等
与NMP、Ini erter 和ATRP 等方法相 比, RA FT 聚合适用的单体范围更广, 几 乎所有能进行自由基聚合的烯类单体都 能进行RAFT 聚合, 且反应条件比较 温和,没有聚合实施方法的限制, 适宜于 本体、溶液、乳液、悬浮等聚合方法。

可逆加成断裂链转移聚合(RAFT)

可逆加成断裂链转移聚合(RAFT)

可逆加成断裂链转移聚合(RAFT)(Reversible Addition-Fragmentation Chain Transfer,简称RAFT)可逆加成-断裂-链转移(RAFT)聚合是实现可控/“活性”自由基聚合的一种主要方法。

由于其广阔的应用前景,自98年首次报道以来,迅速成为高分子化学研究领域的热点。

RAFT聚合时在传统自由基聚合的体系中引入一种被称为RAFT试剂的化合物,通过与自由基进行可逆加成/断裂反应来实现分子链的“活性”增长。

RAFT反应过程已基本确立,但对加成/断裂反应速率常数的大小却又争议,是当前RAFT聚合机理研究的主要内容。

共聚反应体系中RAFT试剂的选择原则:RAFT共聚反应所选用的RAFT试剂既要能够实现产物分子量及分布的可控性,又不能对共聚速率产生较大的缓聚作用,缓聚作用如果很大,不仅延长了聚合时间,还使得聚合体系中死聚物含量增大,加宽了产物的PDI。

可控/“活性”自由基聚合的重要意义在于它结合了自由基聚合和活性聚合的优点:一方面,可以精确控制大分子链的增长过程,从而得到预设分子量、分子量分布窄的聚合物,可以合成嵌段聚合物、规整结构的星型聚合物和梳状聚合物等以往无法合成的聚合物;另一方面,它适用单体范围广、单体易共聚、聚合条件比较温和并能应用于水介质体系。

RAFT 试剂是一种高效的可逆链转移试剂,通过增长自由基与链转移剂之间可逆的链转移平衡反应实现对聚合过程的控制。

相比其他可控/“活性”自由基聚合技术,RAFT 聚合具有反应条件比较温和,适用单体范围广等优点。

可控/“活性”自由基聚合基本特征是在活性种与休眠种之间存在一个平衡反应:休眠种可以在催化剂存在下活化,也可以在适当条件下(如加热等)自活化以形成活性种,在单体存在条件下,活性种可以增长,直到其再次失活变为休眠种,活性种失活的同时还可能发生终止及链转移等副反应。

可以简单的认为休眠种每 k act 秒活化一次变为活性种,在活性种状态停留k deact 秒后又回到休眠种的状态。

可逆加成-断裂链转移(RAFT)聚合概述与最新研究进展

可逆加成-断裂链转移(RAFT)聚合概述与最新研究进展

可逆加成-断裂链转移(RAFT)聚合概述与最新研究进展摘要可逆加成-断裂链转移(RAFT)聚合是一种十分重要的“活性”自由基聚合方法。

这种聚合方式被人们发现以来,RAFT聚合被化学和材料界广泛应用于聚合物的设计和合成上。

本文对RAFT聚合的产生、反应机理等做了简要描述,并综述了其最新研究进展。

关键词RAFT聚合“活性”自由基聚合链转移剂前言活性聚合最早由美国科学家Szwarc于1956年提出。

所谓活性聚合是指那些不存在任何使聚合链增长反应停止或不可逆转副反应的聚合反应。

经历了60年的发展,活性聚合已从最早的阴离子聚合扩展到其它典型的链式聚合:如阳离子(1986年),自由基(1993年)等,并在人们的生产和生活中产生了巨大影响。

活性聚合是高分子发展史上最伟大的发现之一。

活性聚合中依引发机理的不同,分为阴离子活性聚合、阳离子活性聚合、活性自由基聚合、配位活性聚合等。

活性自由基聚合较其它几种聚合方式可聚合的单体多,反应温度范围较宽,能采用的溶剂种类和聚合方法多[1],因而引起了化学和材料界的极大重视。

活性自由基聚合依据其方法可分为引发转移终止(Iniferter)法,稳定自由基聚合(SFRP,NMP)法,原子转移自由基聚合(ATRP)法[2]和可逆加成-断裂链转移聚合(RAFT)法[3]。

其中Iniferter法的缺点是聚合过程难以控制,所得聚合物的相对分子质量与理论值偏差较大,相对分子质量分布较宽;NMP的主要缺点表现在需要使用价格昂贵氮氧自由基,而且氮氧自由基的合成较为困难;ATRP 的劣势则表现在当聚合一些能与过渡金属催化剂形成配位键的单体(如丙烯酸)时的控制力不强,而且较难除去金属离子和催化剂,此外还需要较为苛刻的反应条件(对除氧的要求较高)[4]。

相比而言,可逆加成-断裂链转移聚合(RAFT)法有着其它几种无法比拟的优点(如反应条件温和、适用单体范围广等),使得“活性”自由基聚合技术的发展又向前迈进了一步[5]。

可逆去活化自由基的聚合及应用

可逆去活化自由基的聚合及应用

(图2),此方法可以精确控制分子量,端基结构清楚,还可以制备嵌段共聚物。

图1 三组分NMP反应图2 反应图2 原子转移自由基聚合(ATRP)自从1995年被发现以来,ATRP 成为活性自由基聚合最有用的方法。

经典的ATRP 由引发剂、低价金属卤化物、配体和单体构成四组分组成,前三者构成引发体系。

ATRP 的原理为引发剂中的碳卤键转移到低价金属卤化物与含氮配体的络合物,低价金属被氧化,引发剂发生碳卤键的断裂生成自由基,引发聚合反应。

上述过程是可逆的,且向左的倾向更大,所以活性自由基浓度很低,不可逆链终止得到最大的抑制延迟,反应时间可以使分子量增加(图3)。

ATRP 的最大的优点是使用单体范围广,聚合条件温和,可以形成多种类型的聚合物。

除了α-卤代苯基化合物外,α-卤代羰基化合物、α-卤代腈基化合物也可以引发反应,但要注意当单体为丙烯酸、丙烯酰胺时,其水溶液聚合结果不理想[1]。

然而,在传统 ATRP 中使用金属催化剂限制了聚合物在许多情况下的使用,最近发展了一种更人性化的有机光脱氧化物催化剂替代金属催化剂,这种催化剂可增强对聚合反应的控制,因为这些化合物只需一个光源就可以轻松激活和停用。

这些0 引言自由基聚合在工业中有着重要的用途,传统的自由基聚合在机理研究和工业应用两方面都有比较成熟的研究,其聚合条件温和、适用范围广,但它存在着得到的聚合物分子量分布宽、难以控制生成嵌段共聚物等问题,因此提出了可逆去活化自由基聚合(RDRP)的概念。

活性聚合有着分子量可控、分布范围窄、反应过程中活性中心的浓度恒定、端基结构明确、可以制备嵌段共聚物的特点,在正离子聚合、负离子聚合中都有着重要的地位。

自由基聚合的特点为慢引发、快增长、不可逆链终止、不可逆链转移,为了实现活性聚合,需要降低活性自由基浓度,使自由基暂时休眠,但休眠种仍可以分解成为自由基,构成可逆平衡,尽管如此,自由基的不可逆双基终止不能从根本上避免,只能在一定程度上抑制,所以一般称为可控/“活性”自由基聚合。

分散剂的7种类型

分散剂的7种类型

本文摘自再生资源回收-变宝网()分散剂的7种类型分散剂又称湿润分散剂,它除具有湿润作用外,其活性基团一端能吸附在粉碎成细小微粒的颜料表面,另一端溶剂化进入漆基形成吸附层(吸附基越多,链节越长,吸附层越厚),产生电荷斥力(水性涂料)或熵斥力(溶剂型涂料),使颜料粒子长期分散悬浮于漆基中,避免再次絮凝,因而保证制成的色漆体系的贮存稳定。

分散剂有很多种,初步估算,现存世界上有1000多种物质具有分散作用。

现按其结构来区分,可分为以下7种类型。

阴离子型润湿分散剂大部分是由非极性带负电荷的亲油的碳氢链部分和极性的亲水的基团构成。

2种基团分别处在分子的两端,形成不对称的亲水亲油分子结构。

它的品种有:油酸钠c17h33coona、羧酸盐、硫酸酯盐(r—o—so3na)、磺酸盐(r—so3na)等。

阴离子分散剂相容性好,被广泛应用于水性涂料及油墨中。

多元羧酸聚合物等也可应用于溶剂型涂料,并作为受控絮凝型分散剂广泛使用。

阳离子型润湿分散剂非极性基带正电荷的化合物,主要有胺盐、季胺盐、吡啶鎓盐等。

阳离子表面活性剂吸附力强,对炭黑、各种氧化铁、有机颜料类分散效果较好,但要注意其与基料中羧基起化学反应,还要注意不要与阴离子分散剂同时使用。

非离子型润湿分散剂在水中不电离、不带电荷,在颜料表面吸附比较弱,主要在水系涂料中使用。

主要分为乙二醇性和多元醇型,降低表面张力和提高润湿性。

与阴离子型分散剂配合使用作为润湿剂或乳化剂,广泛应用于水性色浆、水性涂料及油墨中。

两性型润湿分散剂是由阴离子和阳离子所组成的化合物。

典型应用的是磷酸酯盐型的高分子聚合物。

这类聚合物酸值较高,可能会影响层间附着力。

电中性型润湿分散剂分子中阴离子和阳离子有机基团的大小基本相等,整个分子呈现中性,但却具有极性。

如油氨基油酸酯c18h35nh3oocc17h33等均属于这种类型,在涂料中应用相当广泛。

高分子型超分散剂高分子型分散剂最为常用,稳定性也最佳。

高分子型分散剂也分为多己内多酯多元醇-多乙烯亚胺嵌段共聚物型分散剂、丙烯酸酯高分子型分散剂、聚氨酯或聚酯型高分子分散剂等,由于它们的锚定基团一头与树脂缠绕吸附,另一头又与颜料粒子包附,因此贮存稳定性是比较好的。

高分子材料的绿色制备技术有哪些

高分子材料的绿色制备技术有哪些

高分子材料的绿色制备技术有哪些在当今社会,高分子材料已经广泛应用于各个领域,从日常生活中的塑料制品到高科技领域的航空航天材料,都离不开高分子材料的身影。

然而,传统的高分子材料制备方法往往伴随着高能耗、高污染等问题,对环境和人类健康造成了严重的威胁。

因此,发展绿色制备技术成为了高分子材料领域的重要研究方向。

绿色制备技术,顾名思义,就是在制备高分子材料的过程中,尽量减少对环境的负面影响,提高资源利用率,降低能耗,实现可持续发展。

那么,目前有哪些高分子材料的绿色制备技术呢?一、原子转移自由基聚合(ATRP)原子转移自由基聚合是一种活性可控聚合技术,它能够精确控制高分子的分子量、分子量分布和结构。

与传统的自由基聚合相比,ATRP 反应条件温和,对环境友好。

在 ATRP 过程中,通过使用低价态的过渡金属催化剂和有机卤化物引发剂,可以有效地控制聚合反应的进程。

反应结束后,催化剂可以通过简单的方法回收和重复使用,减少了金属废弃物的排放。

二、可逆加成断裂链转移聚合(RAFT)RAFT 聚合也是一种活性聚合方法,具有广泛的适用性。

在 RAFT聚合中,使用了一种特殊的链转移剂,它能够在聚合过程中不断地进行加成和断裂反应,从而实现对聚合反应的控制。

RAFT 聚合不需要使用金属催化剂,避免了金属残留对材料性能和环境的影响。

同时,该方法对单体的适用性广,能够制备各种结构和性能的高分子材料。

三、开环聚合开环聚合是指环状单体在引发剂或催化剂的作用下,通过打开环结构进行聚合反应。

这种方法具有原子经济性高、副产物少等优点。

例如,ε己内酯的开环聚合可以制备生物可降解的聚酯材料,这些材料在生物医学领域有着广泛的应用前景。

此外,环氧乙烷、环氧丙烷等环氧化合物的开环聚合也能够得到性能优异的高分子材料。

四、酶催化聚合酶作为一种生物催化剂,具有高效、专一和温和的催化特性。

在高分子材料的制备中,酶催化聚合能够在常温常压下进行,减少了能源消耗和环境污染。

可逆加成-断裂链转移自由基聚合反应制备含氟丙烯酸酯嵌段共聚物

可逆加成-断裂链转移自由基聚合反应制备含氟丙烯酸酯嵌段共聚物

可逆加成-断裂链转移自由基聚合反应制备含氟丙烯酸酯嵌段共聚物安冬;李慧;赵镇;盛艳;韩哲文【摘要】以苯乙烯(St)、1H,1H,2H,2H-丙烯酸全氟癸酯(FOA)为聚合单体,二苄基三硫代碳酸酯(DBTTC)作为RAFT试剂,通过可逆加成-断裂链转移反应合成了一系列PS-PFOA-PS三嵌段含氟共聚物.傅里叶红外测试(FT-IR)表征了产物的结构,GPC、核磁等测试结果证明聚合过程符合活性聚合机理,聚合产物相对分子质量及其分布可控.DSC、XRD测试结果验证了聚合产物具有结晶性质,同样研究了测试溶剂对于含氟共聚物核磁结果的影响.【期刊名称】《涂料工业》【年(卷),期】2010(040)008【总页数】6页(P16-20,24)【关键词】含氟丙烯酸;DBTTC;可逆加成-断裂链转移反应(RAFT)【作者】安冬;李慧;赵镇;盛艳;韩哲文【作者单位】华东理工大学材料科学与工程学院,上海,200237;华东理工大学材料科学与工程学院,上海,200237;华东理工大学材料科学与工程学院,上海,200237;华东理工大学材料科学与工程学院,上海,200237;华东理工大学材料科学与工程学院,上海,200237【正文语种】中文【中图分类】TQ630.4近年来,可控/活性自由基聚合技术的发展使得越来越多的单体[1]可以更加容易地得到具有特定官能团以及较窄相对分子质量分布的聚合产物[2]。

已见报道的聚合方法主要有以下几种:氮氧自由基聚合[3]、原子转移自由基聚合 (ATRP)[4]和可逆加成 -断裂链转移聚合[5]。

像其他含氟聚合物一样,含氟丙烯酸酯也呈现出一系列独特的表面特性 (尤其是憎水憎油性),如低表面能、良好的热稳定性,以及耐化学性、光学性质 (低反射指数)和良好的摩擦性能[6-10]。

与此同时,含氟聚丙烯酸酯也保留了聚丙烯酸酯的特性,如良好的粘结力[11]。

因此含氟丙烯酸酯广泛地应用在各种不同的领域,如纺织品、纸张以及皮革表面涂层[12-13]等。

可逆加成-断裂转移自由基聚合(RAFT)

可逆加成-断裂转移自由基聚合(RAFT)

卧式镗铣床运行速度越来越高,快速 移动速 度达
到25~30m/min,镗杆 最高转 速6000r/min。 而卧式 加工中 心的速 度更高 ,快速 移动高 达50m/min, 加速度5m/s2, 位置精 度0.008~0.01m m, 重复定 位精度 0.004~ 0.005mm。
落地式铣镗床铣刀
由于落地式铣镗床以加工大型零件 为主, 铣削工 艺范围 广,尤 其是大 功率、 强力切 削是落 地铣镗 床的一 大加工 优势, 这也是 落地铣 镗床的 传统工 艺概念 。而当 代落地 铣镗床 的技术 发展, 正在改 变传统 的工艺 概念与 加工方 法,高 速加工 的工艺 概念正 在替代 传统的 重切削 概念, 以高速 、高精 、高效 带来加 工工艺 方法的 改变, 从而也 促进了 落地式 铣镗床 结构性 改变和 技术水 平的提 高。
传统的铣削是通过镗杆进行加工, 而现代 铣削加 工,多 由各种 功能附 件通过 滑枕完 成,已 有替代 传统加 工的趋 势,其 优点不 仅是铣 削的速 度、效 率高, 更主要 是可进 行多面 体和曲 面的加 工,这 是传统 加工方 法无法 完成的 。因此 ,现在 ,很多 厂家都 竞相开 发生产 滑枕式 (无镗 轴)高速 加工中 心,在 于它的 经济性 ,技术 优势很 明显, 还能大 大提高 机床的 工艺水 平和工 艺范围 。同时 ,又提 高了加 工精度 和加工 效率。 当然, 需要各 种不同 型式的 高精密 铣头附 件作技 术保障 ,对其 要求也 很高。
当今,落地式铣镗床发展的最大特点是 向高速 铣削发 展,均 为滑枕 式(无 镗轴)结 构,并 配备各 种不同 工艺性 能的铣 头附件 。该结 构的优 点是滑 枕的截 面大, 刚性好 ,行程 长,移 动速度 快,便 于安装 各种功 能附件 ,主要 是高速 镗、铣 头、两 坐标
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六氟丙烯论文:三氟氯乙烯和六氟丙烯的活性/可控自由基聚合研究
【中文摘要】自从上世纪40年代杜邦公司发明聚四氟乙烯以来,含氟聚合物一直吸引着众多科学家的兴趣。

由于含氟聚合物具有耐热和耐化学腐蚀性能好、折射率和表面能低等众多优点,因而作为高性能高分子材料被广泛应用,例如高性能弹性体、高性能表面活性剂、高性能涂料以及燃料电池膜等。

把活性/可控自由基聚合方法用于含氟聚合物的合成,不仅可以精确控制聚合物的分子量及其分布,而且可以设计、制备各种复杂结构的含氟聚合物,例如嵌段共聚物、接枝共聚物、星形共聚物及超支化共聚物等。

在过去二十年间,活性/可控自由基聚合取得了重大的进展,先后发现了氮氧稳定自由基聚合(NMP),原子转移自由基聚合(ATRP)和可逆加成-断裂链转移(RAFT)聚合。

这些聚合方法已被广泛用于制备具有特定分子量,窄分子量分布,以及具有各种不同精确结构的聚合物。

尽管这些方法已成功被用于氟化苯乙烯,氟化丙烯酸酯等侧链氟化单体,但关于氟烯烃(如三氟氯乙烯,六氟丙烯等)的活性/可控聚合研究的报道却非常少。

在本论文中,我们合成了多种ATRP引发剂和RAFT链转移剂,分别探索研究了六氟丙烯和三氟氯乙烯单体的活性/可控自由基聚合反应,并获得了一些十分有意义的实验结果。

一.合成了...
【英文摘要】Since the invention of the first perfluoropolymer, polytetrafluoroethylene (PTFE) by DuPont
Company, fluorinated polymers have attracted much attention in the field of polymer. Due to the fluorinated polymers exhibiting many high-performance features, such as heat and chemical resistance, low surface energy, low dielectric constants, low refractive index, excellent inertness to acids or bases, and long durability, they have been widely used in many applications such as fuel cell membranes, protective coatin...
【关键词】六氟丙烯三氟氯乙烯可逆加成-断裂链转移(RAFT)聚合原子转移自由基聚合(ATRP) 齐聚反应
【英文关键词】hexafluoropropylene (HFP) chlorotrifluoroethylene (CTFE) atom transfer radical polymerization (ATRP) reversible addition-fragmentation chain transfer (RAFT) polymerization hexafluoropropylene dimmer 【索购全文】联系Q1:138113721 Q2:139938848
【目录】三氟氯乙烯和六氟丙烯的活性/可控自由基聚合研究
摘要4-6ABSTRACT6-7第一章绪论11-35 1.1 引言11-12 1.2 活性自由基聚合12-17 1.2.1 碘转移
自由基聚合(ITP)13-14 1.2.2 氮氧稳定自由基聚合(NMP)14-15 1.2.3 原子转移自由基聚合(ATRP)15-16 1.2.4 可逆加成-断裂链转移(RAFT)聚合16-17 1.3 氟化侧基单体
的活性自由基聚合17-25 1.3.1 氟化侧链单体的原子转移自由基聚合18-22 1.3.2 含氟单体的氮氧稳定自由基聚合
22-24 1.3.3 含氟单体的可逆加成断裂链聚合
24-25 1.4 氟烯烃的活性自由基聚合25-29 1.4.1 氟烯烃的碘转移自由基聚合25-28 1.4.2 氟烯烃的硼氧稳定自由基聚合28 1.4.3 氟烯烃的原子转移自由基聚合
28-29 1.4.4 氟烯烃的可逆加成-断裂链转移聚合
29 1.5 本论文的设计思想及研究内容29-31参考文献31-35第二章三氟氯乙烯和乙烯基丁醚的可逆-加成断裂链转移聚合35-48 2.1 引言35-36 2.2 实验部分
36-37 2.2.1 主要原料36 2.2.2 测试仪器
36 2.2.3 RAFT链转移剂的合成36-37 2.2.4 三氟氯乙烯和乙烯基丁醚的RAFT共聚37 2.2.5
poly(CTFE-alt-BVE)-b-PVAc嵌段共聚物的合成37 2.2.6 poly(CTFE-alt-BVE)-b-PVAc嵌段共聚物的水解37 2.3 结果与讨论37-45 2.3.1 RAFT链转移剂(BEDTC)的合成
38-39 2.3.2 三氟氯乙烯和丁基乙烯基醚的RAFT共聚
39-43 2.3.3 嵌段共聚物poly(CTFE-alt-BVE)-b-PVAc的合成43-44 2.3.4 嵌段共聚物水解44-45 2.3.5 溶剂对于氟烯烃活性聚合的影响45 2.4 本章小结45-47参考文献47-48第三章三氟氯乙烯和醋酸乙烯酯的可逆加成-断裂链转移聚合48-59 3.1 引言48 3.2 实验部分
48-49 3.2.1 实验原料48-49 3.2.2 测试设备
49 3.2.3 RAFT链转移剂(BEDTC)的合成49 3.2.4 醋酸乙烯酯和三氟氯乙烯的RAFT共聚49 3.2.5 嵌段共聚物poly(CTFE-co-VAc)-b-PVAc的合成49 3.3 结果与讨论
49-57 3.3.1 CTFE和VAc的RAFT共聚50-56 3.3.2 嵌段共聚物poly(CTFE-co-VAc)-bPVAc的合成56-57 3.4 本章小结57-58参考文献58-59第四章通过六氟丙烯的ATRP和RAFT聚合来制备新型氟磺酸聚合物的探索59-67 4.1 引言59 4.2 实验部分59-61 4.2.1 主要原料
59-60 4.2.2 测试仪器60 4.2.3 溴代聚苯醚(BrPPO)的合成60 4.2.4 大分子RAFT链转移剂(RPPO)的合成
60 4.2.5 RPPO接枝六氟丙烯聚合60 4.2.6 3,5-二溴苄溴的合成60 4.2.7 六氟丙烯的原子转移自由基聚合
60-61 4.3 结果与讨论61-65 4.3.1 六氟丙烯的RAFT 聚合63 4.3.2 六氟丙烯的ATRP聚合63-65 4.4 本章小结65-66参考文献66-67第五章溴化亚铜/2,2’-联吡啶络合物催化六氟丙烯二聚反应的研究67-75 5.1 引言67-68 5.2 实验部分68-69 5.2.1 试验原料与仪器
68 5.2.2 测试表征68-69 5.2.3 六氟丙烯二聚体的合成69 5.3 结果和讨论69-73 5.3.1 齐聚反应及产物表征69-70 5.3.2 催化剂用量对二聚体产率的影响
70-71 5.3.3 反应温度对六氟丙烯二聚体产率的影响
71-72 5.3.4 反应时间对六氟丙烯二聚体产率的影响
72 5.3.5 催化原理的初步探究72-73 5.4 本章小结73-74参考文献74-75论文结论75-76攻读学位期间发表的论文76-77致谢77。

相关文档
最新文档