湿法脱硫设计讲义

合集下载

湿法脱硫机组烟气消白方案介绍PPT演示课件

湿法脱硫机组烟气消白方案介绍PPT演示课件
10
2、消白原理分析
11
2、消白原理分析
12
2、消白原理分析
13
Hale Waihona Puke 3、冷凝除尘原理分析在脱硫塔出口设置氟塑料管式烟气除湿除尘器。 氟塑料管束表面由于烟气冷凝一直存在水膜,烟气中的液滴、 固体颗粒物随着管束对烟气的降温作用以及与管束的相互碰撞 作用而被润湿的管束表面捕集回收,实现除湿和除尘功能。 据已投运项目,冷凝效果较好时,除尘效率可高达70%以上。 烟气中的水蒸汽被氟塑料管束冷凝成为水,会在管束间形成 水幕,对烟气起到洗涤作用。烟气中易溶于水的SO3、Hg2+等 溶于冷凝水中,实现烟气中SO3、Hg的脱除。
3
1、湿法脱硫机组烟气冒白烟现象分析
有色烟羽:湿法脱硫后的烟气会在烟囱口形成雾状水汽, 雾状水汽会因天空景色和天空光照、观察角度等原因发生颜 色的细微变化,形成“有色烟羽”,通常为白色、灰白色或蓝 色等颜色。
石膏雨:脱硫塔出口烟气与大气混合后,烟气中部分汽 态水和污染物会发生凝结,液体状态的浆液量会增加,并在 一定区域内有液滴飘落,沉积在地面干燥后呈白色石膏斑点, 成为石膏雨。
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
名称 烟气流量 入口烟气温度 出口烟气温度 入口水温 出口水温 水侧流量 换热量 横向排数 纵向排数 横向节距 纵向节距 换热器高度 换热器宽度 换热器深度 烟气流速 水侧流速 烟气侧阻力 水侧阻力 换热面积 换热器总量
单位 万Nm3/h
℃ ℃ ℃ ℃ t/h MW m m m m m m/s m/s Pa MPa m2 t
4
2、湿法脱硫烟气消白原理分析
湿法脱硫烟气在脱 硫塔入口、脱硫塔 出口、烟囱出口的 热力学分析见左图。 A点为脱硫塔入口点, B点为脱硫塔出口点, C点、D点为脱硫塔 出口烟道及烟囱点。

湿法脱硫设计

湿法脱硫设计

1、前言众所周知,脱硫是合成氨生产中原料气净化的重要工艺环节。

目前我国大多数合成氨厂均以无烟煤为原料。

一方面随着优质低硫无烟煤的价格不断上涨,供应紧张。

而另一方面,碳铵市场又日渐萎缩,效益下滑,举步维坚。

为了适应市场竟争及追求较佳的经济效益,众多小氮肥企业纷纷对原料路线进行适当的调整。

不断地扩能改造开发新产品使其产品多样化,才不至于在市场竟争中遭到淘汰。

鉴于此,安微某公司,在3000吨合成氨装置的基础上,合成氨生产装置经过了扩能及联产甲醇的改造。

经过不断地发展,目前已具备了年产6万吨氨醇的生产能力。

产品由单一的生产碳铵走向了生产碳铵、甲醇、液氨并举之路。

企业经济效益得以大幅提高。

但是半水煤气脱硫装置存在的问题未得到根本的解决,以及没有变换气脱硫装置。

造成了精脱硫装置的活性炭、水解剂以及甲醇催化剂的寿命很短,费用高。

并且严重制约了生产的长周期稳定运行。

2006年8月,公司联系长春东狮科贸实业有限公司,决定共同对其脱硫系统进行彻底的改造,经过改造,888湿式氧化法脱硫装置投运后,取得了明显的效果,为联醇装置的稳定生产奠定了基础。

2、原脱硫装置的运行状况及存在的问题2.1工艺落后,设备陈旧,污染环境。

原半水煤气脱硫采用氨水中和法,没有再生系统,脱硫用氨水在Φ2400喷淋塔内循环吸收H2S,达到饱和后随即排放,造成环境污染。

且设备操作弹性小,只能适应半水煤气入口H2S含量0.4~0.6g/Nm3的脱硫。

否则半脱出口H2S含量将严重超指标。

2.2氨损失大,且不能适应掺烧高硫煤的要求。

氨水中和H2S的反应方程式为:NH4OH+H2S→NH4HS+H2O按反应式,理论上每吸收1kgH2S需要耗NH3量为:(35/34)(17/35)=0.5kg。

则每天氨损失为:170×3300×(1.0-0.2)×0.5=224.4kg。

饱和了H2S的氨水直接排放,已遭到环保部门的查处。

在半水煤气中H2S含量达到1.0 g/Nm3时,则半脱出口H2S含量达到0.4~0.5g/Nm3,超指标严重。

第章典型的湿法烟气脱硫技术

第章典型的湿法烟气脱硫技术

一、石灰石(石灰)一石膏法工艺
(1)烟气系统简介
烟气系统对锅炉单独设置,来自锅炉引风机出口的烟气进 入烟道通向烟囱。在引风机出口与烟囱之间的烟道上设置 旁路挡板门,当脱硫装置运行时,烟道旁路挡板门关闭, 脱硫装置进出口挡板门打开,烟气引入脱硫系统。烟气经 过增压风机进入烟气换热器降温后进入吸收塔,从吸收塔 出来的净烟气再进入烟气换热器升温后经烟囱排入大气。 当脱硫系统停运时,旁路挡板门打开,脱硫装置进出口挡 板门关闭,烟气经旁路烟道进入烟囱直接排入大气。
一、石灰石(石灰)一石膏法工艺 1.化学原理
传统石灰石(石灰)一石膏法是以石灰石或石灰浆液与烟 气中SO2反应,脱硫产物为石膏,脱硫石膏可以综合利用。 石灰石(石灰)一石膏法脱硫的基本化学原理是:
石灰石在水中离解后,由于H+被OH-中和生成H2O,使得 反应平衡向右进行。OH-离子是由水中溶解的石灰石产生 的,鼓入的空气将生成的CO2带走:
湿式球磨机制浆系统主要作用是:磨制出细度合格的吸收剂。 (一级二级水力旋流器进行旋流分离 合格)
一、石灰石(石灰)一石膏法工艺
(4)石膏脱水系统简介
吸收塔排出的石膏浆液通过浆液 排出泵送入石膏旋流分离器,旋 流器底流进入真空皮带机脱水, 脱水后的石膏直接落入石膏仓内, 石膏经石膏仓底部的卸料装置装 入卡车外运。真空皮带脱水是石 膏脱水的第二阶段,经过水力旋 流器浓缩的石膏浆直接流入真空 皮带脱水机。经过进料和分配系 统,石膏浆被均匀地分布到真空 皮带机的整个宽度上。
一、石灰石(石灰)一石膏法工艺
(2)吸收和氧化系统简介
湿法烟气脱硫技术最核心的系统,其中最主要的设备包 括吸收塔、除雾器和氧化槽。
①吸收塔
吸收塔是烟气脱硫系统的最重要的装置,要求气液接触 面积大,气体的吸收反应良好,压力损失小,适用于大 容量烟气处理。

脱硫培训讲义

脱硫培训讲义
3、国务院对“两控区”内火电厂二氧化硫控制的要求
根据《国务院关于酸雨控制区和二氧化硫污染控制区有关问题的批复》(国函[1998]5号),对火电厂二氧化硫排放提出了明确要求,即要求“两控区”的火电厂做到:到2000年底达标排放;除以热定电的热电厂外,禁止在大中城市城区及近效区新建燃煤火电厂;新建、改造燃煤含硫量大于1%的电厂,必须建设脱硫设施;现在燃煤含硫量大于1%的电厂,要在2000年前采取减排措施;在2010年前分期分批建成脱硫设施或采取其它具有相应效果的减排二氧化硫措施。
1、法律的要求
1995年修订的《中华人民共和国大气污染防治法》提出:“在酸雨控制区和二氧化硫污染控制区内排放二氧化硫的火电厂和其它大中型企业,属于新建项目不能采用低硫煤的,必须建设配套脱硫、除尘装置或者采取其它控制二氧化硫排放、除尘的措施,属于已建企业不用低硫煤的应当采用控制二氧化硫排放、除尘措施,国家鼓励企业采用先进的脱硫、除尘技术。”
2、国家污染物排放标准的要求
《火电厂大气污染物排放标准》(GB13223—1996),根据不同时段对火电厂二氧化硫提出不同的控制要求。对1997年1月1日起环境影响报告待审查批准的新、扩、改建火电厂(第三时段),在实行全厂排放总量控制的基础上,增加了烟囱二氧化硫排放浓度限制,并与“两控区”和煤的含硫量挂钩。煤的含硫量大于10%的,最高允许排放浓度为1200mg/m3N,小于或等于1%的,2100mg/m3N,即要求位于“两控区”的电厂当燃煤的含硫量大于1%必须脱硫,否则无法达标排放。对于煤的含硫量在1%时以下的电厂,要根据电厂的允许排放总量和区域控制总量及当地地环境质量的要求,通过环境影响评价后确定是否脱硫。
第一节烟气脱硫系统简要介绍40
第二节烟气系统41
第三节石灰石浆液系统46

脱硫专业培训讲义

脱硫专业培训讲义

2、石灰石的消溶 CaCO3(固) -- Ca2++CO32- CO32- + H+ -- H CO31- H CO31- + H+ -- H2O+CO2 (液) CO2 (液) -- CO2 (气)
3、亚硫酸盐的氧化 HSO3-+1/2O2 --H+ +SO42CO32- +H+ -- HCO3Ca2++2 HCO3- --Ca (HCO3- ) 2 Ca2+ + SO32- --CaSO3 Ca2+ + SO42- -- CaSO4
吸收塔出口烟道 除雾器 2级 喷淋区 3-4层

入口段烟道


吸收塔反应槽设计
池分离器 氧化空气管 脉冲悬浮系统
反应池
氧化区
池分离器 氧化空气 石膏浆液
结晶区
吸收剂 去喷淋层
脉冲悬浮
脉冲搅拌系统
功能 使浆液悬浮

– 石灰石颗粒分布均匀

优点
– 搅拌无死区 – 塔内无转动机械 – 在停机时不耗电 – 维修时无需停运FGD

流程叙述
吸收塔浆液池中的石膏浆液通过吸收塔排出泵泵入石膏缓冲 箱。通过石膏浆液缓冲泵进入水力旋流器, 石膏水力旋流站具有双 重作用:即石膏浆液预脱水和石膏晶体分级。进入水力旋流器的 石膏悬浮液切向流动产生离心运动,细小的微粒从旋流器的中心 向上流动形成溢流,水力旋流器中重的固体微粒被抛向旋流器壁, 并向下流动,形成含固浓度为50%的底流。旋流器顶流回到回流 水箱,大部分通过回流水泵返回吸收塔,小部分经废水给料泵旋流 器送至废水旋流器;废水旋流器顶流自流至废水箱,通过废水泵 送废水处理系统处理,底流回到回流水箱。 3台石膏水力旋流器 的底流自流至3台真空皮带脱水机过滤。石膏经皮带机送到仓储外 运. 经真空带式过滤机脱水后的石膏滤饼通过皮带输送机运往石 膏库。石膏库设有必要的转堆和装车装置(如皮带机用卸料小车、 桥式抓斗等)。石膏由卡车运出电厂。

石灰石(石灰)湿法脱硫技术

石灰石(石灰)湿法脱硫技术

石灰石(石灰)湿法脱硫技术湿法脱硫中所应用的脱硫系统位于烟道的末端,脱硫过程中的反应温度低于露点,因此,脱硫后的烟气需要进行加热处理才能排出。

由于脱硫过程中的反应类型为气液反应,其脱硫效率和所用脱硫添加剂的使用效率均较高,因此,在许多大型燃煤电站中都已建成使用。

一、石灰石(石灰)湿法脱硫技术概述根据最新的技术统计资料显示,到目前为止投入使用的脱硫技术种类已经超过200种,在形式多样的脱硫技术中,湿法脱硫技术是应用范围最广、脱硫效率最高的一种应用技术,占脱硫设备总装机量的80%以上,始终占据着脱硫技术领域的主导地位。

石灰石(石灰)湿法脱硫技术作为最成熟的一种脱硫技术,其脱硫效率可到90%以上,成为效果最显著的脱硫方法。

石灰石(石灰)湿法脱硫技术经过几十年的发展,已被应用于600MW 烟气单塔的烟气处理系统中,脱硫剂的利用效率基本稳定在95%以上,反应过程所消耗的电能不足电厂出力的1.5%,与十多年前的脱硫系统相比,在脱硫成本轻微上升的条件下脱硫效果却得到了质的飞跃。

二、石灰石(石灰)湿法脱硫技术的应用原理(一)工艺流程石灰石(石灰)湿法脱硫技术的基本过程是:烟气经锅炉排出后进入除尘器,之后进入脱硫塔,脱硫塔内的石灰石浆液与烟气中的SO2进行气液反应,生成CaCO3和CaCO4。

在反应之后的浆液中充入氧气,可将CaCO3氧化成CaCO4和石膏,石膏经脱水处理后可作为脱硫反应的副产品被回收利用。

工业实践中采用最多的脱硫塔方式是单塔,在单塔中可完成脱硫反应的全过程,脱硫成本和运行费用也更低。

(二)反应过程烟气中的SO2在脱硫塔内的反应过程可用下面两个方程表示,其中,第二个反应过程中生产的CaSO3会被烟气中的氧气氧化生成CaSO4,形成副产品被回收利用。

SO2+CaCO3—CaSO3+CO2 石灰石浆液(1)SO2+Ca(OH)2—CaSO3+H2O 石灰浆液(2)(三)脱硫效率脱硫效率受到诸多因素的影响,其中,脱硫塔中的pH值对脱硫效率会产生较大的影响。

石灰石石灰法湿法烟气脱硫技术 ppt课件

石灰石石灰法湿法烟气脱硫技术 ppt课件
淋量; V —烟气流速(m / s),烟气在吸收塔内的流速; C t—吸收剂浓度(k g / m3 ); α、β、γ—常数,1>α> β> γ> 0; y1、y 2—吸收塔入口、出口处SO2浓度(mg/L); y θ—吸收塔内SO2平衡浓度(m g / L); η—吸收塔脱硫效率(% )。
影响传质单元数的主要因素为:液气比、烟气流速、钙硫比 (吸收剂浓度)、吸收塔的结构等。
吸收区高度为5~15m, 如按塔内流速3m/s计算, 接触反应时间2~5s。区内设 3~6个喷淋层, 每个喷淋层都装有多个雾化喷嘴, 交叉布置, 覆盖率达 200%~300%。喷嘴人口压力不能太高, 在0.5×105~2×105Pa之间。喷嘴出口 流速约10m/s。雾滴直径约1320~2950μm,大水滴在塔内的滞留时间1~10s, 小 水滴在一定条件下呈悬浮状态。喷嘴用碳硅制造, 耐磨性好, 使用寿命10年以上。
① 液气比的影响
液气比决定酸性气体吸收所需要的吸收表面。在其它参数 恒定的情况下,提高液气比相当于增大了吸收塔内的喷淋密度使 液气间的接触面积增大,传质单元数将随之增大,脱硫效率也将 增大。在实际工程中,提高液气比将使浆液循环泵的流量增大, 从而增加设备的投资和能耗。同时,高液气比还会使吸收塔内压 力损失增大,增加风机能耗。
吸收塔试验器脱硫系统的核心装置,要求有持液量大、气液相间的相对速 度高、气液接触面积大、内部构件少、压力降小等特点。目前较常用的吸收塔 主要有喷淋塔、调料塔、配设鼓泡塔、道尔顿型塔4类。其中喷淋塔是湿法脱 硫工艺的主流塔形。一般SO2去除率高的洗涤塔,往往是操度:在吸收塔浆液供给量一定的情况下,由于吸收剂 (的C提a高CO,3会)引的起溶吸解收度剂较的低过,饱其和供凝给聚量,的最增终加使将反导应致的浆表液面浓积度减 少,影响脱硫效率。实践也证明了这点。一般认为吸收塔的浆 液浓度选择在20%~30% 为宜。

烟气脱硫脱硝除尘工程经验总结--湿法脱硫工艺及设计

烟气脱硫脱硝除尘工程经验总结--湿法脱硫工艺及设计

工程经验笔记(废气治理篇)2020年12月编制目录第6章湿法脱硫工艺及设计 (3)1. 基本常识 (3)2. 湿式脱硫常用工艺 (5)2.1 湿式钙法脱硫 (5)2.2 电石渣脱硫 (7)2.3 氨法脱硫 (8)2.4 镁法脱硫 (10)2.5 钠碱法 (11)3. 设备选型及设计 (11)3.1 风机 (11)3.2 浆液制备及供给系统 (12)3.3 吸收及循环系统 (14)3.4 副产物后处理系统 (23)3.5 滤液及地坑系统 (24)3.6 工艺水系统 (25)3.7 电气及仪控 (25)3.8 管路及管口 (25)4. 湿式磨机相关知识 (27)5. 物料消耗 (28)6. 工艺流程图 (28)7. 湿烟囱相关 (31)8. 工程案例及相关问题 (31)8.1 案例一 (31)8.2 案例二 (34)第6章湿法脱硫工艺及设计1. 基本常识(1)酸雨的形成及其危害1)由于CO2是排放,天然降水的本底pH值是5.65,一般将pH值小于5.6的降水称为酸雨。

2)SO2湿沉降有三条途径:①SO2经液相氧化反应生成SO42-,被降水洗脱降到地面;②SO2经气相氧化并与水汽反应生成SO42-,被降水洗脱降到地面;③气态的SO2被降水吸收,生成HSO3-降到地面。

(2)浆液中氯浓度的控制原则不能过高。

氯离子浓度的增高会带来两个不利的影响:(1)降低了吸收液的pH 值,增大SO2的吸收阻力,从而引起脱硫效率的下降和CaSO4结垢倾向的增大;同时,pH值过低会腐蚀设备。

(2)在生产商用石膏的回收工艺中,对副产品石膏的杂质含量有一定的要求,氯离子浓度过高将影响石膏的品质。

一般控制吸收液中氯离子含量低于20000~70000ppm(20~70g/L)。

我国近年建成的湿法石灰石FGD系统一般规定反应罐浆液Cl-浓度的设计者不超20g/L。

FGD 装置的废水主要来自石膏脱水系统的旋流溢流液、真空皮带机的滤液或冲洗水。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

烟气脱硫技术专题研修班培训教材石灰石-石膏法烟气脱硫湿法系统设计讲义目录1.概述 (1)2.典型的系统构成 (1)3反应原理 (2)4 系统描述 (5)5.FGD系统设计条件的确认 (14)6.物料平衡计算、热平衡计算 (19)7.设备选型计算................................ 错误!未定义书签。

7.1 设备选型依据.......................... 错误!未定义书签。

7.2 增压风机.............................. 错误!未定义书签。

7.3 GGH(略) .............................. 错误!未定义书签。

7.4 吸收塔............................... 错误!未定义书签。

7.5 除雾器................................ 错误!未定义书签。

7.6 吸收塔浆液循环泵 ..................... 错误!未定义书签。

7.7 氧化风机.............................. 错误!未定义书签。

7.8 石灰石卸料装置........................ 错误!未定义书签。

7.9 湿式球磨机............................ 错误!未定义书签。

7.10 真空皮带脱水机....................... 错误!未定义书签。

7.11 石膏输送皮带......................... 错误!未定义书签。

7.12 空气压缩机........................... 错误!未定义书签。

7.13 箱, 坑............................... 错误!未定义书签。

7.14 泵................................... 错误!未定义书签。

7.15 搅拌器............................... 错误!未定义书签。

8.脱硫岛平面布置一般要求...................... 错误!未定义书签。

9.浆液管道布置要求............................ 错误!未定义书签。

10.脱硫装置常见故障及原因(案例分析)......... 错误!未定义书签。

1.概述石灰石-石膏法烟气脱硫技术已经有几十年的发展历史,技术成熟可靠,适用范围广泛,据有关资料介绍,该工艺市场占有率已经达到85%以上。

由于反应原理大同小异,本培训教材总结了一些通用的规律和设计准则,基本适用于目前市场上常用的各种石灰石-石膏法烟气脱硫技术,包括喷淋塔、鼓泡塔、液柱塔等。

2.典型的系统构成典型的石灰石/石灰-石膏湿法烟气脱硫工艺流程如图2-1所示,实际运用的脱硫装置的范围根据工程具体情况有所差异。

图2-13反应原理3.1 吸收原理吸收液通过喷嘴雾化喷入吸收塔,分散成细小的液滴并覆盖吸收塔的整个断面。

这些液滴与塔内烟气逆流接触,发生传质与吸收反应,烟气中的SO2、SO3及HCl 、HF被吸收。

SO2吸收产物的氧化和中和反应在吸收塔底部的氧化区完成并最终形成石膏。

为了维持吸收液恒定的pH值并减少石灰石耗量,石灰石被连续加入吸收塔,同时吸收塔内的吸收剂浆液被搅拌机、氧化空气和吸收塔循环泵不停地搅动,以加快石灰石在浆液中的均布和溶解。

3.2 化学过程强制氧化系统的化学过程描述如下:(1)吸收反应烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分SO2,反应如下:SO2+H2O→H2SO3(溶解)H 2SO3⇋H++HSO3-(电离)吸收反应的机理:吸收反应是传质和吸收的的过程,水吸收SO2属于中等溶解度的气体组份的吸收,根据双膜理论,传质速率受气相传质阻力和液相传质阻力的控制,吸收速率=吸收推动力/吸收系数(传质阻力为吸收系数的倒数)强化吸收反应的措施:a)提高SO2在气相中的分压力(浓度),提高气相传质动力。

b)采用逆流传质,增加吸收区平均传质动力。

c)增加气相与液相的流速,高的Re数改变了气膜和液膜的界面,从而引起强烈的传质。

d)强化氧化,加快已溶解SO2的电离和氧化,当亚硫酸被氧化以后,它的浓度就会降低,会促进了SO2的吸收。

e)提高PH值,减少电离的逆向过程,增加液相吸收推动力。

f)在总的吸收系数一定的情况下,增加气液接触面积,延长接触时间,如:增大液气比,减小液滴粒径,调整喷淋层间距等。

g)保持均匀的流场分布和喷淋密度,提高气液接触的有效性。

(2)氧化反应一部分HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化,反应如下:HSO3-+1/2O2→HSO4-HSO4-⇋H++SO42-氧化反应的机理:氧化反应的机理基本同吸收反应,不同的是氧化反应是液相连续,气相离散。

水吸收O2属于难溶解度的气体组份的吸收,根据双膜理论,传质速率受液膜传质阻力的控制。

强化氧化反应的措施:a)降低PH值,增加氧气的溶解度b)增加氧化空气的过量系数,增加氧浓度c)改善氧气的分布均匀性,减小气泡平均粒径,增加气液接触面积。

(3)中和反应吸收剂浆液被引入吸收塔内中和氢离子,使吸收液保持一定的pH值。

中和后的浆液在吸收塔内再循环。

中和反应如下:Ca2++CO32-+2H++SO42-+H2O→CaSO4·2H2O+CO2↑2H++CO32-→H2O+CO2↑中和反应的机理:中和反应伴随着石灰石的溶解和中和反应及结晶,由于石灰石较为难溶,因此本环节的关键是,如何增加石灰石的溶解度,反应生成的石膏如何尽快结晶,以降低石膏过饱和度。

中和反应本身并不困难。

强化中和反应的措施:a)提高石灰石的活性,选用纯度高的石灰石,减少杂质。

b)细化石灰石粒径,提高溶解速率。

c)降低PH值,增加石灰石溶解度,提高石灰石的利用率。

d)增加石灰石在浆池中的停留时间。

e)增加石膏浆液的固体浓度,增加结晶附着面,控制石膏的相对饱和度。

f)提高氧气在浆液中的溶解度,排挤溶解在液相中的CO2,强化中和反应。

(4)其他副反应烟气中的其他污染物如SO3、Cl、F和尘都被循环浆液吸收和捕集。

SO3、HCl和HF与悬浮液中的石灰石按以下反应式发生反应:SO3+H2O→2H++SO42-CaCO3 +2 HCl<==>CaCl2+CO2↑+H2OCaCO3 +2 HF <==>CaF2+CO2↑+H2O副反应对脱硫反应的影响及注意事项:脱硫反应是一个比较复杂的反应过程,其中一些副反应,有些有利于反应的进程,有些会阻碍反应的发生,下列反应应当在设计中予以重视:a)Mg的反应浆池中的Mg元素,主要来自于石灰石中的杂质,当石灰石中可溶性Mg含量较高时(以MgCO3形式存在),由于MgCO3活性高于CaCO3会优先参与反应,对反应的进行是有利的,但过多时,会导致浆液中生成大量的可溶性的MgSO3,它过多的存在,使的溶液里SO32-浓度增加,导致SO2吸收化学反应推动力的减小,而导致SO2吸收的恶化。

另一方面,吸收塔浆液中Mg+浓度增加,会导致浆液中的MgSO4(L)的含量增加,既浆液中的SO42-增加,会对导致吸收塔中的悬浮液的氧化困难,从而需要大幅度增加氧化空气量,氧化反应原理如下:HSO3-+1/2O2→HSO4-(1)HSO4-⇋H++SO42-(2)因为(2)式的反应为可逆反应,从化学反应动力学的角度来看,如果SO42-的浓度太高的话,不利于反应向右进行。

因此喷淋塔一般会控制Mg+离子的浓度,当高于5000ppm时,需要通过排出更多的废水,此时控制准则不再是CL-小于20000ppmb)AL的反应AL主要来源于烟气中的飞灰,可溶解的AL在F离子浓度达到一定条件下,会形成氟化铝络合物(胶状絮凝物),包裹在石灰石颗粒表面,形成石灰石溶解闭塞,严重时会导致反应严重恶化的重大事故。

c)Cl的反应在一个封闭系统或接近封闭系统的状态下,FGD工艺的运行会把吸收液从烟气中吸收溶解的氯化物增加到非常高的浓度。

这些溶解的氯化物会产生高浓度的溶解钙,主要是氯化钙,如果高浓度的溶解的钙离子存在FGD系统中,就会使溶解的石灰石减少,这是由于”共同离子作用”而造成的,在”共同离子作用”下,来自氯化钙的溶解钙就会妨碍石灰石中碳酸钙的溶解。

控制CL离子的浓度在12000-20000ppm是保证反应正常进行的重要因素。

4 系统描述4.1 FGD系统构成烟气脱硫(FGD)装置采用高效的石灰石/石膏湿法工艺,整套系统由以下子系统组成:吸收系统(1)SO2(2)烟气系统(3)石灰石浆液制备系统(4)石膏脱水系统(5)供水和排放系统(6)废水处理系统(7)压缩空气系统4.2 SO吸收系统2烟气由进气口进入吸收塔的吸收区,在上升过程中与石灰石浆液逆流接触,烟气中所含的污染气体绝大部分因此被清洗入浆液,与浆液中的悬浮石灰石微粒发生化学反应而被脱除,处理后的净烟气经过除雾器除去水滴后进入烟道。

吸收塔塔体材料为碳钢内衬玻璃鳞片。

吸收塔烟气入口段为耐腐蚀、耐高温合金。

吸收塔内烟气上升流速为 3.2-4m/s。

塔内配有喷淋层,每组喷淋层由带连接支管的母管制浆液分布管道和喷嘴组成。

喷淋组件及喷嘴的布置设计成均匀覆盖吸收塔上流区的横截面。

喷淋系统采用单元制设计,每个喷淋层配一台与之相连接的吸收塔浆液循环泵。

每台吸收塔配多台浆液循环泵。

运行的浆液循环泵数量根据锅炉负荷的变化和对吸收浆液流量的要求来确定,在达到要求的吸收效率的前提下,可选择最经济的泵运行模式以节省能耗。

的再循环浆液落入吸收塔反应池。

吸收塔反应池装有多台搅拌机。

吸收了SO2氧化风机将氧化空气鼓入反应池。

氧化空气分布系统采用喷管式,氧化空气被分布管注入到搅拌机桨叶的压力侧,被搅拌机产生的压力和剪切力分散为细小的气-在吸收塔喷淋区被烟气中的氧气氧化,其余部泡并均布于浆液中。

一部分HSO3-在反应池中被氧化空气完全氧化。

分的HSO3吸收剂(石灰石)浆液被引入吸收塔内中和氢离子,使吸收液保持一定的pH 值。

中和后的浆液在吸收塔内循环。

吸收塔排放泵连续地把吸收浆液从吸收塔送到石膏脱水系统。

通过排浆控制阀控制排出浆液流量,维持循环浆液浓度在大约8-25wt%。

脱硫后的烟气通过除雾器来减少携带的水滴,除雾器出口的水滴携带量不大于75mg/Nm3。

两级除雾器采用传统的顶置式布置在吸收塔顶部或塔外部,除雾器由聚丙烯材料制作,型式为z型,两级除雾器均用工艺水冲洗。

冲洗过程通过程序控制自动完成。

吸收塔入口烟道侧板和底板装有工艺水冲洗系统,冲洗自动周期进行。

相关文档
最新文档