光纤光栅传感系统的现状及发展趋势

合集下载

我国光纤传感技术发展路线图

我国光纤传感技术发展路线图

3、传输距离远:光纤传感器能够实现远距离传输,适用于大型设备的远程 监控。
4、多参数测量:光纤传感器能够同时测量多种物理量,如温度、压力、位 移等。
5、体积小、重量轻:光纤传感器结构简单,体积小,重量轻,便于携带和 安装。
四、光纤传感技术的应用
1、工业生产:在石油化工、钢铁冶炼等工业生产领域,光纤传感器被广泛 应用于生产过程的监控和产品质量控制。例如,在石油化工行业中,光纤传感器 可以用于对高温、高压、腐蚀等恶劣环境的测量和监控。
技术路线分析
1、核心技术
光纤传感技术的核心技术包括光纤制造技术、光纤传感器件设计技术、信号 处理技术等。其中,光纤制造技术是光纤传感技术的基石,包括预制棒制备、拉 丝、筛选等工艺环节,需要不断提高工艺水平和产品质量。光纤传感器件设计技 术是实现高精度、高灵敏度传感的关键,需要加强基础研究和技术创新。信号处 理技术则是提高光纤传感系统性能的重要手段,需要加强算法研究和硬件开发。
三、分布式光纤传感技术的应用
ห้องสมุดไป่ตู้
分布式光纤传感技术在测量领域具有广泛的应用前景。例如,在石油和天然 气行业中,可以利用分布式光纤传感技术对油井和气井的温度和压力进行实时监 测;在电力行业中,可以利用分布式光纤传感技术对电力传输线路的温度和振动 进行实时监测;在建筑行业中,可以利用分布式光纤传感技术对建筑物的结构和 环境进行实时监测。此外,在军事、航空航天、环保等领域也有广泛的应用前景。
重点问题研究
在我国光纤传感技术的发展过程中,存在一些重点问题需要解决。例如,核 心器件依赖进口的问题,需要加强自主研发和技术创新,提高国内光纤传感器的 制造能力和水平。此外,在市场推广方面,需要加强与各领域的合作,深入挖掘 光纤传感技术的应用潜力,促进技术与产业的融合发展。

通信与信息工程专业论文-光纤光栅传感技术应用设计

通信与信息工程专业论文-光纤光栅传感技术应用设计

天津理工大学2004届毕业设计第一章绪论光纤光栅是利用光纤材料的光敏性在光纤内建立的一种空间周期性折射率分布,其作用在于改变或控制光在该区域的传播行为与方式。

作为一种新型的光学器件,光纤光栅已经在诸多方面得到了不同的应用。

相信在不久的将来随着光纤光栅与其他技术的进一步结合,其可应用前景会更为广阔。

1.1光纤光栅的发展历史光纤技术自20 世纪60 年代末至今在不到30 年的时间里以惊人的速度发展成为信息技术领域中的支柱性高新技术。

然而, 随着现代社会对信息技术的更新更高的要求, 光纤通信、光纤传感技术正面临着新的挑战。

传统光学器件由于制作的复杂性和体积大而笨拙等原因无法适应新技术的要求。

因此光纤光栅应运而生。

光纤光栅是利用石英光纤的紫外光敏特性将光波导结构直接写在光纤中形成的光纤波导器件。

该技术最早出现于1978年,加拿大的K.O.Hill在掺锗光纤中,用488nm氩离子激光在光纤中产生驻波干涉条纹,首次发现了在掺锗光纤中的光致光栅现象,并制造出世界上第一条光纤光栅。

从此开创了光纤光栅发展的历史。

这种方法制作的Bragg光纤光栅反射滤波器的线宽可以很窄,反射率也较高,但只能制作反射波长和写入波相同的光纤反射器,通过加外力的方法使光栅的调谐范围较小,大大限制了他的应用。

此后由于制作工艺及应用的局限这项技术一直未得到进一步的发展,历经十年进展缓慢。

直到1989年,美国的Meltz等人利用两束干涉的紫外光从光纤的侧面成功地写入了光栅,研制成功Bragg光纤光栅滤波器。

Archambult等人也报道了用单个准分子激光器制作近100%反射率的Bragg光纤光栅滤波器的方法。

这标志着光纤光栅技术进入了快速发展的阶段。

此后随着写入方法的不断改善;光敏性的逐渐提高;各种特种光栅也相继问世;同时光纤光栅的应用前景也得到了广泛的关注。

特别是近年来光纤光栅在光通信、光纤激光器和光纤传感器等领域的应用越来越受到人们的重视,取得了令人瞩目的成就。

2024年光纤温度传感器市场发展现状

2024年光纤温度传感器市场发展现状

2024年光纤温度传感器市场发展现状摘要光纤温度传感器是一种基于光纤的传感器技术,在温度监测领域有着广泛的应用。

本文旨在探讨光纤温度传感器市场的发展现状,并分析其趋势和前景。

简介光纤温度传感器是通过测量光纤的温度变化来实现温度监测的一种传感器技术。

与传统的温度传感器相比,光纤温度传感器具有体积小、防水、防电磁干扰等优势,被广泛应用于工业、医疗、航天等领域。

市场规模目前,光纤温度传感器市场规模不断扩大。

根据市场调研公司的数据显示,2019年全球光纤温度传感器市场规模达到XX亿美元,并预计在未来几年内将以每年X%的复合增长率增长。

其中,光纤温度传感器在工业自动化领域应用最为广泛。

市场驱动因素光纤温度传感器市场的快速发展离不开以下几个驱动因素:1. 工业自动化的增长随着工业自动化程度的提高,对温度监测精度和稳定性的要求也越来越高。

光纤温度传感器以其高精度、长寿命等特点,成为工业自动化领域不可或缺的组成部分。

2. 能源行业的需求能源行业对温度监测有着极高的需求,光纤温度传感器能够在高温、高压等恶劣条件下稳定工作,因此在石油化工、核电等领域得到广泛应用。

3. 医疗领域的发展随着医疗技术的不断进步,对温度监测的需求也在增加。

光纤温度传感器具备非接触、高灵敏度等特点,被广泛应用于体温测量、手术过程监测等诸多方面。

市场挑战光纤温度传感器市场在发展过程中面临一些挑战:1. 技术难题光纤温度传感器技术相对较为复杂,需要解决光纤损耗、温度漂移等问题,提高传感器的可靠性和精度。

2. 价格竞争光纤温度传感器的市场竞争激烈,价格也是影响其发展的一个重要因素。

降低成本、提高性价比是一个亟待解决的问题。

3. 法规标准的制定光纤温度传感器作为一种新兴技术,尚未建立统一的法规和标准体系,这给市场发展带来了不确定性。

市场趋势和前景光纤温度传感器市场在未来具有广阔的发展前景:1. 技术创新随着光纤技术的不断发展,光纤温度传感器将进一步提高其精度和可靠性。

光纤光栅

光纤光栅

光纤光栅与结构集成工艺原理方法及国内外研究现状概述 概述光纤传感器种类繁多,能以高分辨率测量许多物理参数,与传统的机电类传感器相比具有很多优势,如:本质防爆、抗电磁干扰、抗腐蚀、耐高温、体积小、重量轻、灵活方便等,因此其应用范围非常广泛,并且特别适于恶劣环境中的应用。

但是因为裸光纤纤细、质脆、尤其是剪切能力差,直接将光纤光栅作为传感器在工程中遇到了铺设工艺上的难题。

因此,对裸FBG 进行封装,是将FBG 传感器在实际应用中推广的一个重要环节,对于研制满足航空航天领域需要的体积小、质量轻FBG 传感器具有重要意义。

一、光纤光栅工作原理光纤光栅的最基本原理是相位匹配条件:β1、β2是正、反向传输常数,Λ是光纤光栅的周期,在写入光栅的过程中确定下来。

当一束宽谱带光波在光栅中传输时,入射光在相应的频率上被反射回来,其余的不受影响从光栅的另外一端透射出来。

光纤光栅起到了光波选频的作用,反射的条件称为布拉格条件。

由光纤光栅相位匹配条件得到反射中心波长(布拉格波长)表达式:二、光纤光栅的写入2.1 短周期光纤光栅的写制内部写入法(又称驻波法) 将波长488nm 的基模氢离子激光从一个端面祸合到锗掺杂光纤中,经过光纤另一端面反射镜的反射,使光纤中的入射和反射激光相干涉形成驻波。

由于纤芯材料具有光敏性,其折射率发生相应的周期变化,于是形成了与干涉周期一样的立体折射率光栅。

此方法是早期使用的,该方法要求122πββ-=ΛΛ=n B 2λ锗含量很高,芯径很小,并且只能够制作布拉格波长与写入波长相同的光纤光栅,因此目前很少被采用。

全息成删法(又称外侧写入法) 1989年,Meltz等人首次用此方法制作了横向侧面曝光的光纤光栅。

用两束相干紫外光束在掺锗光纤的侧面相干,形成干涉图,利用光纤材料的光敏性形成光纤光栅。

写制设备装置如图2.1所示。

通过改变入射光波长或两相干光束之间的夹角,可以得到不同栅格周期的光纤光栅。

但是要得到高反射率的光栅,则对所用光源及周围环境有较高的要求。

光纤光栅传感器的原理应用

光纤光栅传感器的原理应用

光纤光栅传感器的原理应用1. 光纤光栅传感器的基本原理光纤光栅传感器是一种基于光纤光栅原理的传感器,主要用于测量和监测光纤中的温度、应变、压力等物理量。

其基本原理如下:•光纤光栅构造:光纤光栅由一段光纤中定期布置的光栅构成,其中光栅中的折射率周期性变化,形成了一个光栅结构。

•光栅反射与折射:当光线传播通过光纤光栅时,一部分光线会被光栅反射回来,另一部分光线会因为光栅的折射而偏转。

•光栅中的相位偏移:当外界物理量(如温度、应变、压力)作用于光栅光纤时,会引起光栅的折射率发生改变,从而导致光栅中的相位偏移。

•相位偏移的测量:通过测量光纤光栅反射光的相位,可以间接得到光栅中的相位偏移,进而推导出外界物理量的变化。

2. 光纤光栅传感器的应用领域光纤光栅传感器在各个领域都有广泛的应用,包括但不限于以下方面:2.1 温度传感•石油和化工工业:用于测量和监测油井和化工过程中的温度变化,以确保设备的正常运行和安全性。

•电力系统:用于测量电力设备和输电线路中的温度,以保护设备并及时发现故障。

•环境监测:用于测量大气温度、水温等环境参数,用于气象和环境保护研究。

2.2 应变传感•结构安全监测:用于测量桥梁、建筑物等结构的应变变化,以预防和监测结构的损坏。

•航天航空领域:用于测量飞机、火箭等复杂结构的应变,以保证其安全性和稳定性。

•汽车工业:用于测量汽车和列车等交通工具的应变,以确保车辆的安全性和性能。

2.3 压力传感•工业自动化:用于测量和监测工业设备中的压力变化,以控制和调节设备的运行状态。

•化工过程:用于测量化工过程中的压力,以确保设备的正常运行和安全性。

•石油勘探:用于测量油井中的压力变化,以评估油井的产量和储量。

3. 光纤光栅传感器的优势和特点光纤光栅传感器具有以下优势和特点:•高灵敏度:光纤光栅传感器能够实现高精度的物理量测量,具有很高的灵敏度和分辨率。

•远距离传输:光纤传输具有低损耗和高带宽的特点,可实现长距离传输和分布式测量。

光纤光栅传感技术在航空航天领域中的应用与发展

光纤光栅传感技术在航空航天领域中的应用与发展

光纤光栅传感技术在航空航天领域中的应用与发展作者:李婧怡朱振华来源:《中国新通信》 2018年第4期一、引言20 世纪70 年代末, 光纤传感技术伴随着光纤通信技术的发展而迅速兴起的。

近20 年,光纤光栅作为一种微型光学元件得到迅速发展, 从而使得光纤传感技术的发展得到一个质的飞跃。

在航空航天领域内, 对于各类传感器的使用极其密集。

而对它的灵敏度、体积和重量都有较高的要求。

对于一架飞行器的结构健康监测需要的传感器数量庞大, 因此传感器的尺寸、重量就变得尤为重要。

尤其是当先进的飞行器在飞行的过程中, 传统传感技术已无法满足实时准确监测大气数据这一需求。

另外, 飞行器在飞行期间都会受到极其严酷的飞行环境( 包括高温、强磁场等) 的影响。

现有的传统电类传感器, 很容易受环境因素的限制不能在极端的飞行环境下正常工作,这必然会影响飞行器的使用安全,导致灾难性事故。

而光纤光栅传感器则因其质量轻、体积小、耐高温、耐腐蚀、抗电磁干扰等优点, 很大程度上可以克服环境因素的影响,能够准确监测飞行器结构的各种参量, 及时作出判断, 防止事故的发生。

光纤光栅传感技术在航空航天领域内的广泛应用将会对航空航天的发展具有重要的促进作用。

二、光纤光栅传感技术的原理光纤光栅是利用紫外曝光技术在光纤纤芯内形成的折射率的周期性分布结构,当一定带宽的光通过环形器入射到光纤光栅中,由于光纤光栅具有波长选择性,只能使特定波长的光发生反射,然后通过解调仪或光谱仪来测量反射光的波长变化,就可以实现被测结构的应变和温度的测量, 其传感原理如图1 所示。

光纤光栅周期的改变量和有效折射率neff会影响光纤光栅的反射光谱。

任何使这两个参量发生改变的物理过程都将引起光栅布格波长的漂移,它们与波长改变量ΔλB 之间存在如下的关系式ΔλB=2neff ΔΛ+2ΔneffΛ (2-1)基于光纤光栅的传感过程是通过外界物理参量对光纤光栅的周期或有效折射率的影响,引起发射光中心波长的飘移。

(完整版)光纤光栅温度传感器

(完整版)光纤光栅温度传感器
探测系统 ❖ 中石化茂名石化分公司油罐消防监测 ❖ 中石化青岛炼油厂 ❖ 首都钢铁股份有限公司焦化变电站温度监测系统
应用前景
光纤光栅具有耐腐蚀、防水、抗电磁干扰、集传感与传输 于一体、易 于埋到材料内部;
具有波长分离能力强、长期稳定性好、传感准确度和灵敏度极高;
可实现远距离和分布式传感,易于集成分布传感网络系统;
可广泛应用于航空航天、土木工程、复合材料、石油化工等领域;
对工程结构的应力、应变、温度,以及结构蠕变、裂缝、整体性等结构 参数的实时在线监测,实现对结构内多目标信息的监控和提取;
依据安装环境定制各种不同用途的传感器,实现多参量多、远距离、同
一仪器监测的“物联网”技术。
传感器出厂时对应唯T0 一的温度系数 T ;传感器安装后记录环境初始温度
和传感T0 器初始波长值 ,并将T0该温度值及初始波长值记录于解调仪作为起 始值。今后传感器每一个波长值对应环境一个温度值。
温度传感器技术数据
温度监测:
光纤光栅温度传感器置于被测环境中,监测环境 温度的变化,并对预设温度极限进行报警。
❖ 电力方面 电力电缆的表面温度检测监控、事故点定位 电缆隧道、夹层的火情监测 发电厂和变电站的温度监测、故障点的检测和火灾报警 (原理:高压线等腐蚀点、接触不良故障点由于电阻偏大,温度异常)
❖ 水利土木方面 大坝、河堤的渗漏(渗漏点温度异常) 大坝、河堤、桥梁的混凝土凝固与养护温度
工程案例
❖ 国家游泳中心—水立方 ❖ 胜利油田CB32A海洋平台 ❖ 秦皇岛热电厂开关柜温度监测 ❖ 安钢动力厂电缆温度监测系统 ❖ 中石油新疆独山子/塔里木石化油罐群感温火灾
温度/℃
温度曲线
100
y = 26.847x - 41204

光纤传感调研报告

光纤传感调研报告

光纤传感调研报告光纤传感调研报告一、引言光纤传感是指利用光纤作为传感元件的一种传感技术。

光纤传感的基本原理是通过探测光纤中光信号的变化来检测和测量各种参数或物理量。

光纤传感技术具有高灵敏度、长距离传输、耐腐蚀等优点,因此在许多领域得到广泛应用。

本报告旨在对光纤传感技术进行调研,并介绍其主要应用领域和发展趋势。

二、主要应用领域1. 环境监测光纤传感可以用于环境监测领域,例如温度、湿度、气体浓度等参数的监测。

通过将光纤布设在需要监测的环境中,可以实时、远程地监测环境的变化情况,为环境保护和自然灾害预警提供有效手段。

2. 结构健康监测光纤传感可以用于建筑、桥梁、管道等结构的健康监测。

通过将光纤嵌入到结构中,可以实时监测结构的应变、挠度等参数,及时发现结构的变形和破损情况,提前预警并进行维修。

3. 工业检测光纤传感可以用于工业生产过程的检测和控制。

例如,在高温、高压等恶劣环境下,使用光纤传感技术可以实现对工业设备的温度、压力、流量等参数进行监测,提高工业生产的安全性和效率。

4. 医疗领域光纤传感在医疗领域也有重要应用。

例如,通过将光纤引入人体,可以实现心率监测、血氧监测等生理参数的测量,对健康状态进行监控。

三、发展趋势1. 多功能化光纤传感技术正朝着多功能化方向发展。

将不同类型的传感技术与光纤传感结合,可以实现多种参数的监测,提高光纤传感技术的综合应用能力。

2. 远程监测随着物联网和远程监测技术的发展,光纤传感技术也向着远程监测方向发展。

通过将光纤接入网络,可以实现对远程位置的监测和控制,提高监测的效率和灵活性。

3. 小型化光纤传感器的小型化是发展的重要趋势。

小型化的光纤传感器能够更方便地嵌入到各种设备和结构中,实现对各种参数的实时监测。

4. 智能化光纤传感技术正朝着智能化方向发展。

通过与人工智能、大数据分析等技术结合,可以实现光纤传感数据的智能分析和预测,提高传感系统的智能化水平。

四、结论光纤传感技术是一种非常有潜力的传感技术,具有广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤光栅传感系统的现状及发展趋势 自1978年,加拿大的Hill等人首次在掺锗石英光纤中发现光敏现象并采用驻波法制造出世界上第一根光纤光栅和1989年美国的Melt等人实现了光纤Bragg光栅(FBG)的UV激光侧面写入技术以来,光纤光栅的制造技术不断完善,人们对光纤光栅在光传感方面的研究变得更为广泛和深入。光纤光栅传感器具有一般传感器抗电磁干扰、灵敏度高、尺寸小、重量轻、成本低,适于在高温、腐蚀性等环境中使用的优点外,还具有本征自相干能力强和在一根光纤上利用复用技术实现多点复用、多参量分布式区分测量的独特优势。故光纤光栅传感器已成为当前传感器的研究热点。由光源、光纤光栅传感器和信号解调系统为主构成的光纤光栅系统如何能够在降低成本、提高测量精度、满足实时测量等方面的前提下,使各部分达到最优匹配,满足光纤光栅传感系统在现代化各个领域实用化的需要也是研究人员重点考虑的问题。

本文对光纤光栅传感系统进行了介绍,对光纤光栅系统的宽带光源进行了说明,重点分析了光纤光栅传感器的传感原理及如何区分测量技术,对信号常用的信号解调方法进行了总结,最后,提出为适应未来的需要对系统各部分的优化措施。

1 光纤光栅传感系统 光纤光栅传感系统主要由宽带光源、光纤光栅传感器、信号解调等组成。宽带光源为系统提供光能量,光纤光栅传感器利用光源的光波感应外界被测量的信息,外界被测量的信息通过信号解调系统实时地反映出来。

1.1 光 源 光源性能的好坏决定着整个系统所送光信号的好坏。在光纤光栅传感中,由于传感量是对波长编码,光源必须有较宽的带宽和较强的输出功率与稳定性,以满足分布式传感系统中多点多参量测量的需要。光纤光栅传感系统常用的光源的有LED,LD和掺杂不同浓度、不同种类的稀土离子的光源。LED光源有较宽的带宽,可达到几十个纳米,有较高的可靠性,但光源的输出功率较低,且很难与单模光纤耦合。LD光源具有单色性好、相干性强、功率高的特点。但LD光谱的稳定性差(4×10-4/℃)。因此,这2种光源自身的缺点制约了它们在光传感中的应用。掺杂不同种类、不同浓度的稀土离子的光源研究最广泛的是掺铒光源。现在C波段掺铒光源已经研制成功并使用,随着光通信中对通信容量和速度的要 求及分布式光纤传感密集布点对光源带宽要求,L波段的研究越来越重要。有研究者提出C+L波段的研制方案以提高光源的带宽和功率。掺铒光源在温度稳定性方面比半导体光源提高2个数量级,同时,能提供较高的功率、宽的带宽和较长的使用寿命,因此,可以扩大光纤光栅传感器的测量范围,提高检测的信噪比。

1.2 光纤光栅传感器 光纤光栅传感器可以实现对温度、应变等物理量的直接测量。由于光纤光栅波长对温度与应变同时敏感,即温度与应变同时引起光纤光栅耦合波长移动,使得通过测量光纤光栅耦合波长移动无法对温度与应变加以区分。因此,解决交叉敏感问题,实现温度和应力的区分测量是传感器实用化的前提。通过一定的技术来测定应力和温度变化来实现对温度和应力区分测量。这些技术的基本原理都是利用两根或者两段具有不同温度和应变响应灵敏度的光纤光栅构成双光栅温度与应变传感器,通过确定2个光纤光栅的温度与应变响应灵敏度系数,利用2个二元一次方程解出温度与应变。区分测量技术大体可分为两类,即,多光纤光栅测量和单光纤光栅测量。

多光纤光栅测量主要包括混合FBG/长周期光栅(long period grating)法、双周期光纤光栅法、光纤光栅/F-P腔集成复用法、双FBG重叠写入法。各种方法各有优缺点。FBG/LPG法解调简单,但很难保证测量的是同一点,精度为9×10-6,1.5℃。双周期光纤光栅法能保证测量位置,提高了测量精度,但光栅强度低,信号解调困难。光纤光栅/F-P腔集成复用法传感器温度稳定性好、体积小、测量精度高,精度可达20×10-6,1℃,但F-P的腔长调节困难,信号解调复杂。双FBG重叠写入法精度较高,但是,光栅写入困难,信号解调也比较复杂。

单光纤光栅测量主要包括用不同聚合物材料封装单光纤光栅法、利用不同的FBG组合和预制应变法等。用聚合物材料封装单光纤光栅法是利用某些有机物对温度和应力的响应不同增加光纤光栅对温度或应力灵敏度,克服交叉敏感效应。这种方法的制作简单,但选择聚合物材料困难。利用不同的FBG组合法是把光栅写于不同折射率和温度敏感性或不同温度响应灵敏度和掺杂材料浓度的2种光纤的连接处,利用不同的折射率和温度灵敏性不同实现区分测量。这种方法解调简单,且解调为波长编码避免了应力集中,但具有损耗大、熔接处易断裂、测量范围偏小等问题。预制应变法是首先给光纤光栅施加一定的预应变,在预应变的情况下将光纤光栅的一部分牢固地粘贴在悬臂梁上。应力释放后,未粘贴部分的光纤光栅形变恢复,其中心反射波长不变;而粘贴在悬臂梁上的部分形变不能恢复,从而导致了这部分光纤光栅的中心反射波长改变,因此,这个光纤光栅有2个反射峰,一个反射峰(粘贴在悬臂梁上的部分)对应变和温度都敏感;另一个反射峰(未粘贴部分)只对温度敏感,通过测量这2个反射峰的波长漂移可以同时测量温度和应变。

1.3 信号解调 在光纤光栅传感系统中,信号解调一部分为光信号处理,完成光信号波长信息到电参量的转换;另一部分为电信号处理,完成对电参量的运算处理,提取外界信息,并以人们熟悉的方式显示出来。其中,光信号处理,即传感器的中心反射波长的跟踪分析是解调的关键。光纤光栅传感器中心反射波长最直接的检测仪器是光谱仪。这种方法的优点是结构简单、使用方便。缺点是精度底、价格高、体积大,而且,不能直接输出对应于波长变化的电信号。因此,不能满足实用化自动控制的需要。为此,人们研究并提出了多种解调方法,以实现信号的快速、精确提取。可分为滤波法、干涉法、可调窄带光源法和色散法等。

滤波法包括体滤波法、匹配光栅滤波法、可调谐F-P滤波法。体滤波法的元件是波分复用器。工作原理是从耦合器出射的光分成等强度的两束,一束经与波长有关的滤波器滤波;另一束作为参考光束,两束出射光经过光电探测器变成电信号,经过处理消除光功率变化的影响,最后,得到与光纤光栅中心波长有关的输出值。该方法可以实现动态和静态参量的测量。分辨力为375x10-6,动态应变测量响应速度不超过100Hz匹配光栅滤波法是利用其他的FBG或带通滤波光器件,在驱动元件的作用下跟踪FBG的波长变化,然后,通过测量驱动元件的驱动信号来获得被测应力或温度。该方法结构简单、线性度好,分辨力可达0.4×10-6。该方法可以实现静态测量。但这种方法的不足之处是2个光栅要严格匹配,且传感光栅的测量范围不大。可调谐F-P滤波器法是传感阵列FBG的反射信号进入可调光纤F-P滤波器(FFP),调节FFP的透射波长至FBG的反射峰值波长时,滤波后的透射光强达到最大值,由FFP驱动电压—透射波长关系可得FBG的反射峰值波长。扫描加上扰动信号构成波长锁定闭环,其应力分辨力可达0.3×10-6。该解调法可实现动态和静态的测量。由于FFP滤波器腔的调谐范围很宽,可以实现多传感器的解调。但高精度FFP成本较高。

滤波解调法结构简单,但很难进一步提高其传感精度。干涉法却具有更高精度,可以大大提高传感分辨力。可调窄带光源解调法可获得很高的信噪比和分辨力,实验所得最小波长分辨力约为2.3pm,对应温度分辨力约为0.2℃,但由于目前的光纤激光器的稳定性及可调谐范围不太理想,在一定程度上限制了光纤光栅传感器的个数和使用范围。

2 光纤光栅传感系统的发展趋势 为了适应未来光纤光栅传感系统网络化、大范围、准分布式测量。许多研究者正在光纤光栅传感系统的各方面进行不断的研究,使系统得到优化。光纤光栅传感系统的优化主要从三方面考虑,即,光源、光纤光栅传感器及信号解调。对于传感系统的优化,主要是根据传感器的数目、传感器的灵敏度和解调系统的分辨力,根据实际的测量需要,配置不同的光源、传感器和解调系统,使得成本低、测量误差小、测量精度高。针对未来光纤光栅传感系统网络化的要求,应使用稳定性好、宽带、高输出功率的光源。掺铒、掺钕、掺镱等离子的光源是今后发展的重点。光纤光栅传感器既能实现单参量的测量,又能实现多参量的测量。当单参量测量时,应提高传感器的灵敏度和测试精度。在实际应用中,要注意传感器的灵敏度和量程之间的折中。灵敏度高了,量程自然小了。这是因为光纤光栅的应变有一个极限值,超过这个极限值光栅就会被破坏。为实现准分布式测量,传感器复用数目较多,在布置传感器时,有时一个点要布置灵敏度不同的多个传感 器,以实现温度和压力的大范围测量。由于传感量主要是微小波长偏移为载体,所以,一个实用的信号解调方案必须具有极高的波长分辨力。其次,要解决动态与静态信号的检测问题,尤其是二者的结合性检测已成为光栅传感实用解调技术中的难点。光纤光栅传感系统应用最大的优势在于很好地进行传感器的复用实现分布式传感,如,美国的Micron Optics公司,新推出的FBGSLI采用可调激光扫描方法,利用时分技术,可以同时对四路光纤多达256个Bragg光栅进行查询。因此,未来的光纤光栅传感系统将能满足单点高精度的实时测量,又能适应网络化的准分布式的多点、多参量的测试要求,在未来的传感领域发挥更大的作用。

3 结束语 随着对光纤光栅传感系统的深入研究,其研究的重点:一是对传感器能同时感测应变和温度变化的研究;二是对信号解调系统的研究;三是对光纤光栅传感器的封装技术、温度补偿技术、光源稳定性、传感系统网络化等实际应用研究。特别是随着全光网络的发展,光纤光栅传感系统可以应用成熟的波分复用、时分复用和空分复用技术,以实现准分布式光纤传感,复用数目多、测量精度高、灵敏度高的光纤光栅系统网将会在生产领域中有更广泛的应用。(作者:禹大宽,乔学光,贾振安,王敏)

相关文档
最新文档