2015步步高高中数学理科文档第二章 2.2

合集下载

【步步高】2015届高考数学(理科,全国通用)二轮专题配套word版练习: 立体几何]

【步步高】2015届高考数学(理科,全国通用)二轮专题配套word版练习: 立体几何]

立体几何1.一个物体的三视图的排列规则是俯视图放在正(主)视图下面,长度与正(主)视图一样,侧(左)视图放在正(主)视图右面,高度与正(主)视图一样,宽度与俯视图一样,即“长对正,高平齐,宽相等”.在画一个物体的三视图时,一定注意实线与虚线要分明.[问题1] 如图,若一个几何体的正(主)视图、侧(左)视图、俯视图均为面积等于2的等腰直角三角形,则该几何体的体积为________. 答案 432.在斜二测画法中,要确定关键点及关键线段.“平行于x 轴的线段平行性不变,长度不变;平行于y 轴的线段平行性不变,长度减半.”[问题2] 如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,则这个平面图形的面积是________. 答案 2 23.简单几何体的表面积和体积(1)S 直棱柱侧=c ·h (c 为底面的周长,h 为高). (2)S 正棱锥侧=12ch ′(c 为底面周长,h ′为斜高).(3)S 正棱台侧=12(c ′+c )h ′(c 与c ′分别为上、下底面周长,h ′为斜高).(4)圆柱、圆锥、圆台的侧面积公式 S 圆柱侧=2πrl (r 为底面半径,l 为母线), S 圆锥侧=πrl (同上),S 圆台侧=π(r ′+r )l (r ′、r 分别为上、下底的半径,l 为母线). (5)体积公式V 柱=S ·h (S 为底面面积,h 为高), V 锥=13S ·h (S 为底面面积,h 为高),V 台=13(S +SS ′+S ′)h (S 、S ′为上、下底面面积,h 为高).(6)球的表面积和体积 S 球=4πR 2,V 球=43πR 3.[问题3] 如图所示,一个空间几何体的正(主)视图和俯视图都是边长为1的正方形,侧(左)视图是一个直径为1的圆,那么这个几何体的表面积为( ) A .4π B .3π C .2π D.32π 答案 D4.空间直线的位置关系:①相交直线——有且只有一个公共点.②平行直线——在同一平面内,没有公共点.③异面直线——不在同一平面内,也没有公共点.[问题4] 在空间四边形ABCD 中,E 、F 、G 、H 分别是四边上的中点,则直线EG 和FH 的位置关系是________. 答案 相交5.空间直线与平面、平面与平面的位置关系 (1)直线与平面①位置关系:平行、直线在平面内、直线与平面相交. ②直线与平面平行的判定定理和性质定理:判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.③直线与平面垂直的判定定理和性质定理:判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. 性质定理:垂直于同一个平面的两条直线平行. (2)平面与平面①位置关系:平行、相交(垂直是相交的一种特殊情况). ②平面与平面平行的判定定理和性质定理:判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行. ③平面与平面垂直的判定定理和性质定理:判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.[问题5] 已知b ,c 是平面α内的两条直线,则“直线a ⊥α”是“直线a ⊥b ,直线a ⊥c ”的________条件. 答案 充分不必要 6.空间向量(1)用空间向量求角的方法步骤①异面直线所成的角若异面直线l 1和l 2的方向向量分别为v 1和v 2,它们所成的角为θ,则cos θ=|cos 〈v 1,v 2〉|. ②直线和平面所成的角利用空间向量求直线与平面所成的角,可以有两种方法:方法一 分别求出斜线和它在平面内的射影直线的方向向量,转化为求两条直线的方向向量的夹角(或其补角).方法二 通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角. ③利用空间向量求二面角也有两种方法:方法一 分别在二面角的两个面内找到一个与棱垂直且从垂足出发的两个向量,则这两个向量的夹角的大小就是二面角的平面角的大小.方法二 通过平面的法向量来求,设二面角的两个面的法向量分别为n 1和n 2,则二面角的大小等于〈n 1,n 2〉(或π-〈n 1,n 2〉).易错警示:①求线面角时,得到的是直线方向向量和平面法向量的夹角的余弦,容易误以为是线面角的余弦.②求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析. (2)用空间向量求A 到平面α的距离: 可表示为d =|n ·AB →||n |.[问题6] (1)已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值等于________.(2)正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则点O 到平面ABC 1D 1的距离为________. 答案 (1)64 (2)24解析 (1)方法一 取A 1C 1的中点E ,连接AE ,B 1E ,如图. 由题意知B 1E ⊥平面ACC 1A 1,则∠B 1AE 为AB 1与侧面ACC 1A 1所成的角. 设正三棱柱侧棱长与底面边长为1, 则sin ∠B 1AE =B 1E AB 1=322=64.方法二 如图,以A 1C 1中点E 为原点建立空间直角坐标系E -xyz ,设棱长为1,则A ⎝⎛⎭⎫12,0,1,B 1⎝⎛⎭⎫0,32,0, 设AB 1与平面ACC 1A 1所成的角为θ,EB 1→为平面ACC 1A 1的法向量. 则sin θ=|cos 〈AB 1→,EB 1→〉|=⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫-12,32,-1·⎝⎛⎭⎫0,32,02×32=64. (2)建立如图所示的空间直角坐标系,则A (1,0,0),B (1,1,0),D 1(0,0,1),C 1(0,1,1),O ⎝⎛⎭⎫12,12,1. 设平面ABC 1D 1的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·AB →=0,n ·AD 1→=0,∴⎩⎪⎨⎪⎧y =0,-x +z =0.令z =1,得⎩⎪⎨⎪⎧x =1,y =0,∴n =(1,0,1),又OD 1→=⎝⎛⎭⎫-12,-12,0, ∴O 到平面ABC 1D 1的距离d =|n ·OD 1→||n |=122=24.易错点1 三视图认识不清致误例1 一个空间几何体的三视图如图所示,则该几何体的表面积为( )A .48B .32+817C .48+817D .80错解 由三视图知,该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4,宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是正方形,边长为4. 所以表面积S =42×3+2×4+2×12(2+4)×4=48+8+24=80.找准失分点 不能准确把握三视图和几何体之间的数量关系,根据正视图可知,侧视图中等腰梯形的高为4,而错认为等腰梯形的腰为4.正解 由三视图知该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12 =17.所以S 表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.答案 C易错点2 对几何概念理解不透致误例2 给出下列四个命题:①有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱; ②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ③底面是平行四边形的四棱柱是平行六面体; ④底面是矩形的平行六面体是长方体.其中正确的命题是__________(写出所有正确命题的序号). 错解1 ①②③ 错解2 ②③④找准失分点 ①是错误的,因为棱柱的侧棱要都平行且相等;④是错误的,因为长方体的侧棱必须与底面垂直. 正解 ②③易错点3 对线面关系定理条件把握不准致误例3 已知m 、n 是不同的直线,α、β、γ是不同的平面.给出下列命题: ①若α⊥β,α∩β=m ,n ⊥m ,则n ⊥α,或n ⊥β; ②若α∥β,α∩γ=m ,β∩γ=n ,则m ∥n ;③若m 不垂直于α,则m 不可能垂直于α内的无数条直线; ④若α∩β=m ,n ∥m ,且n ⊄α,n ⊄β,则n ∥α,且n ∥β; ⑤若m 、n 为异面直线,则存在平面α过m 且使n ⊥α. 其中正确的命题序号是________. 错解 ②③④⑤找准失分点③是错误的;⑤是错误的.正解①是错误的.如正方体中面ABB′A′⊥面ADD′A′,交线为AA′.直线AC⊥AA′,但AC不垂直面ABB′A′,同时AC也不垂直面ADD′A′.②正确.实质上是两平面平行的性质定理.③是错误的.在上面的正方体中,A′C不垂直于平面A′B′C′D′,但与B′D′垂直.这样A′C就垂直于平面A′B′C′D′内与直线B′D′平行的无数条直线.④正确.利用线面平行的判定定理即可.⑤错误.从结论考虑,若n⊥α且m⊂α,则必有m⊥n,事实上,条件并不能保证m⊥n.故错误.答案②④1.已知三条不同直线m,n,l与三个不同平面α,β,γ,有下列命题:①若m∥α,n∥α,则m∥n;②若α∥β,l⊂α,则l∥β;③α⊥γ,β⊥γ,则α∥β;④若m,n为异面直线,m⊂α,n⊂β,m∥β,n∥α,则α∥β.其中正确命题的个数是()A.0 B.1 C.2 D.3答案 C解析因为平行于同一平面的两条直线除了平行,还可能相交或成异面直线,所以命题①错误;由直线与平面平行的定义知命题②正确;由于垂直于同一个平面的两个平面可能平行还可能相交,因此命题③错误;过两条异面直线分别作平面互相平行,这两个平面是唯一存在的,因此命题④正确.故选C.2.设m,n是空间两条直线,α,β是空间两个平面,则下列选项中不正确的是()A.当m⊂α时,“n∥α”是“m∥n”的必要不充分条件B.当m⊂α时,“m⊥β”是“α⊥β”的充分不必要条件C.当n⊥α时,“n⊥β”是“α∥β”成立的充要条件D.当m⊂α时,“n⊥α”是“m⊥n”的充分不必要条件答案 A解析当m⊂α时,若n∥α可得m∥n或m,n异面;若m∥n可得n∥α或n⊂α,所以“n∥α”是“m∥n”的既不充分也不必要条件,答案选A.3.一个几何体的三视图如图所示,则该几何体的体积是()A .64B .72C .80D .112答案 B解析 根据三视图,该几何体为下面是一个立方体、上面两个三棱锥,所以V =4×4×4+2×13×(12·4·2)×3=72,故选B.4.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P ,Q 分别是AA 1,A 1D 1,CC 1,BC 的中点,给出以下四个结论:①A 1C ⊥MN ;②A 1C ∥平面MNPQ ;③A 1C 与PM 相交;④NC 与PM 异面.其中不正确的结论是( ) A .① B .② C .③ D .④ 答案 C解析 作出过M ,N ,P ,Q 四点的截面交C 1D 1于点S ,交AB 于点R ,如图所示中的六边形MNSPQR ,显然点A 1,C 分别位于这个平面的两侧,故A 1C 与平面MNPQ 一定相交,不可能平行,故结论②不正确.5.一个几何体的三视图如图所示,则该几何体的表面积为( )A .2+ 2B .3+ 2C .1+2 2D .5答案 A解析 由三视图可知,该几何体是一个四棱锥,如图所示. 该几何体的底面是边长为1的正方形,故S 1=12=1. 侧棱P A ⊥面ABCD ,且P A =1, 故S △P AB =S △P AD =12×1×1=12,而PD ⊥DC ,CB ⊥PB ,且PB =PD =2, 所以S △PBC =S △PDC =12×2×1=22.所以该几何体的表面积为S =1+2×12+2×22=2+ 2.故选A.6.如图,已知六棱锥P —ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =2AB ,则下列结论正确的是( ) A .PB ⊥ADB .平面P AB ⊥平面PBC C .直线BC ∥平面P AED .直线PD 与平面ABC 所成的角为45° 答案 D解析 若PB ⊥AD ,则AD ⊥AB ,但AD 与AB 成60°角,A 错误;平面P AB 与平面ABD 垂直,所以平面P AB 一定不与平面PBC 垂直,B 错误;BC 与AE 是相交直线,所以BC 一定不与平面P AE 平行,C 错误;直线PD 与平面ABC 所成角为∠PDA ,在Rt △P AD 中,AD =P A , ∴∠PDA =45°,D 正确.7.对于四面体ABCD ,给出下列四个命题: ①若AB =AC ,BD =CD ,则BC ⊥AD ; ②若AB =CD ,AC =BD ,则BC ⊥AD ; ③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD ; ④若AB ⊥CD ,AC ⊥BD ,则BC ⊥AD .其中正确的是________.(填序号) 答案 ①④解析 取线段BC 的中点E ,连接AE ,DE , ∵AB =AC ,BD =CD , ∴BC ⊥AE ,BC ⊥DE , ∴BC ⊥平面ADE , ∵AD ⊂平面ADE , ∴BC ⊥AD ,故①正确.设点O 为点A 在平面BCD 上的射影, 连接OB ,OC ,OD , ∵AB ⊥CD ,AC ⊥BD , ∴OB ⊥CD ,OC ⊥BD , ∴点O 为△BCD 的垂心, ∴OD ⊥BC ,∴BC ⊥AD ,故④正确,易知②③不正确,填①④.8.如图,四面体ABCD 中,AB =1,AD =23,BC =3,CD =2,∠ABC =∠DCB =π2,则二面角A -BC -D 的大小为________.答案 π3解析 由∠ABC =∠DCB =π2知,BA →与CD →的夹角θ就是二面角A -BC -D 的平面角. 又AD →=AB →+BC →+CD →,∴AD →2=(AB →+BC →+CD →)2 =AB →2+BC 2→+CD →2+2AB →·CD →.因此2AB →·CD →=(23)2-12-32-22=-2, ∴cos(π-θ)=-12,且0<π-θ<π,则π-θ=23π,故θ=π3.9.已知直线l ,m ,平面α,β,且l ⊥α,m ⊂β,给出四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ∥m ;④若l ∥m ,则α⊥β. 其中为真命题的是________.(填序号) 答案 ①④解析 对命题①,则l ⊥α,α∥β得,l ⊥β,m ⊂β,∴l⊥m,故①正确.对命题②,l⊥mD⇒/l⊥β,则l⊥mD⇒/α∥β,故②错误.对命题③,当α⊥β时,l与m也可能相交或异面或平行,故③错误.对命题④,由l⊥α,l∥m得m⊥α,又m⊂β,∴α⊥β,故④正确.10.三棱锥D-ABC及其三视图中的正(主)视图和侧(左)视图如图所示,则棱BD的长为________.答案4 2解析由正(主)视图知CD⊥平面ABC,设AC中点为E,则BE⊥AC,且AE=CE=2;由侧(左)视图知CD=4,BE=23,在Rt△BCE中,BC=BE2+EC2=(23)2+22=4,在Rt△BCD中,BD=BC2+CD2=42+42=4 2.故答案为4 2.。

2015高中数学精讲精练 第二章 函数 第2课 函数的表示方法

2015高中数学精讲精练  第二章 函数 第2课 函数的表示方法

2015高中数学精讲精练 第二章 函数第2课 函数的表示方法【考点导读】1.会根据不同的需要选择恰当的方法(如图像法,列表法,解析法)表示函数.2.求解析式一般有四种情况:(1)根据某个实际问题须建立一种函数关系式;(2)给出函数特征,利用特定系数法求解析式;(3)换元法求解析式;(4)解方程组法求解析式.【基础练习】1.设函数()23f x x =+,()35g x x =-,则()()f g x = ;()()g f x = .2.设函数()11f x x=+,()22g x x =+,则()1g -= ;()2f g =⎡⎤⎣⎦ , ()f g x =⎡⎤⎣⎦ .3.已知函数()f x 是一次函数,且()37f =,()51f =-,则()1f = .4.设()2121111x x f x x x ⎧--⎪=⎨>⎪+⎩,,,≤则12f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦. 5.如图所示的图象所表示的函数解析式为 .【范例解析】例1.已知二次函数()y f x =的最小值等于4,且()()026f f ==,求()f x 的解析式.分析:给出函数特征,可用待定系数法求解.解法一:设()()20f x ax bx c a =++>,264264 4.4c a b c ac b a⎧⎪=⎪⎪++=⎨⎪-⎪=⎪⎩,,解得246.a b c =⎧⎪=-⎨⎪=⎩,,例2 甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2km ,甲10时出发前往乙家.如图,表示甲从出发到乙家为止经过的路程()km y 与时间x (分)的关系.试写出()y f x =的函数解析式.【反馈演练】1.若()e e 2x x f x --=,()e e 2x xg x -+=,则()2f x = A .()2f xB .()()2f x g x +⎡⎤⎣⎦C .()2g xD .()()2f x g x ⋅⎡⎤⎣⎦2.已知11232f x x ⎛⎫-=+ ⎪⎝⎭,且()6f m =,则m 等于 . 3.已知函数()f x 和()g x 的图象关于原点对称,且()22f x x x =+.求函数()g x 的解析式.。

【步步高 学案导学设计】2014-2015学年高中数学 第2章 平面解析几何初步章末检测(A)苏教版

【步步高 学案导学设计】2014-2015学年高中数学 第2章 平面解析几何初步章末检测(A)苏教版

第2章 平面解析几何初步(A )(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.如果直线ax +2y +2=0与直线3x -y -2=0平行,则系数a 的值为________. 2.下列叙述中不正确的是________.①若直线的斜率存在,则必有倾斜角与之对应; ②每一条直线都有唯一对应的倾斜角;③与坐标轴垂直的直线的倾斜角为0°或90°; ④若直线的倾斜角为α,则直线的斜率为tan α.3.若三点A (3,1),B (-2,b ),C (8,11)在同一直线上,则实数b 等于________. 4.过点(3,-4)且在两坐标轴上的截距相等的直线的方程是____________.5.设点A (2,-3),B (-3,-2),直线过P (1,1)且与线段AB 相交,则l 的斜率k 的取值X 围是_______________________________________________________________________.6.已知直线l 1:ax +4y -2=0与直线l 2:2x -5y +b =0互相垂直,垂足为(1,c ),则a +b +c 的值为________.7.过点A ⎝ ⎛⎭⎪⎫0,73与B (7,0)的直线l 1与过点(2,1),(3,k +1)的直线l 2和两坐标轴围成的四边形内接于一个圆,则实数k 等于________.8.已知圆C :x 2+y 2-4x -5=0,则过点P (1,2)的最短弦所在直线l 的方程是____________.9.已知直线l 与直线y =1,x -y -7=0分别相交于P 、Q 两点,线段PQ 的中点坐标为(1,-1),那么直线l 的斜率为________.10.在空间直角坐标系Oxyz 中,点B 是点A (1,2,3)在坐标平面yOz 内的正射影,则OB =________.11.若直线y =kx +1与圆x 2+y 2+kx -y -9=0的两个交点恰好关于y 轴对称,则k =________.12.若x ∈R ,y 有意义且满足x 2+y 2-4x +1=0,则y x的最大值为________. 13.直线x -2y -3=0与圆(x -2)2+(y +3)2=9交于E ,F 两点,则△EOF (O 是原点)的面积为________.14.从直线x -y +3=0上的点向圆x 2+y 2-4x -4y +7=0引切线,则切线长的最小值为________.二、解答题(本大题共6小题,共90分)15.(14分)已知△ABC 的顶点是A (-1,-1),B (3,1),C (1,6).直线l 平行于AB ,且分别交AC ,BC 于E ,F ,△CEF 的面积是△CAB 面积的14.求直线l 的方程.16.(14分)已知直线l经过直线2x+y-5=0与x-2y=0的交点.若点A(5,0)到l 的距离为3,求直线l的方程.17.(14分)已知△ABC的两条高线所在直线方程为2x-3y+1=0和x+y=0,顶点A(1,2).求(1)BC边所在的直线方程;(2)△ABC的面积.18.(16分)求圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点P(3,-2)的圆的方程.19.(16分)三角形ABC 中,D 是BC 边上任意一点(D 与B ,C 不重合),且AB 2=AD 2+BD ·DC .求证:△ABC 为等腰三角形.20.(16分)已知坐标平面上点M (x ,y )与两个定点M 1(26,1),M 2(2,1)的距离之比等于5. (1)求点M 的轨迹方程,并说明轨迹是什么图形;(2)记(1)中的轨迹为C ,过点M (-2,3)的直线l 被C 所截得的线段的长为8,求直线l 的方程.第2章 平面解析几何初步(A) 答案1.-6解析 当两直线平行时有关系a 3=2-1≠2-2,可求得a =-6.2.④3.-9解析 由k AB =k AC 得b =-9. 4.4x +3y =0或x +y +1=0解析 当截距均为0时,设方程为y =kx ,将点(3,-4),代入得k =-43;当截距不为0时,设方程为x a +ya =1,将(3,-4)代入得a =-1.5.k≥34或k≤-4解析如图:k PB =34,k PA =-4,结合图形可知 k≥34或k≤-4. 6.-4解析 垂足(1,c)是两直线的交点,且l 1⊥l 2,故-a 4·25=-1,∴a=10.l :10x +4y -2=0.将(1,c)代入,得c =-2;将(1,-2)代入l 2:得b =-12.则a +b +c =10+(-12)+(-2)=-4. 7.3解析 由题意知l 1⊥l 2,∴kl 1·kl 2=-1.即-13k =-1,k =3.8.x -2y +3=0解析 化成标准方程(x -2)2+y 2=9,过点P(1,2)的最短弦所在直线l 应与PC 垂直,故有k l ·k PC =-1,由k PC =-2得k l =12,进而得直线l 的方程为x -2y +3=0.9.-23解析 设P(x,1)则Q(2-x ,-3),将Q 坐标代入x -y -7=0得,2-x +3-7=0.∴x=-2,∴P(-2,1),∴k l =-23.10.13解析 易知点B 坐标为(0,2,3),故OB =13. 11.0解析 将两方程联立消去y 后得(k 2+1)x 2+2kx -9=0,由题意此方程两根之和为0,故k =0. 12. 3解析 x 2+y 2-4x +1=0(y≥0)表示的图形是位于x 轴上方的半圆,而y x 的最大值是半圆上的点和原点连线斜率的最大值,结合图形易求得最大值为3.13.655解析 弦长为4,S =12×4×35=655.14.142解析 当圆心到直线距离最短时,可得此时切线长最短.d =322,切线长=⎝ ⎛⎭⎪⎫3222-12=142. 15.解 由已知得,直线AB 的斜率k =12,因为EF∥AB,所以直线l 的斜率也为12,因为△CEF 的面积是△CAB 面积的14,所以E 是CA 的中点,由已知得,点E 的坐标是⎝ ⎛⎭⎪⎫0,52, 直线l 的方程是y -52=12x ,即x -2y +5=0.16.解 方法一 联立⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0得交点P(2,1),当直线斜率存在时,设l 的方程为y -1=k(x -2), 即kx -y +1-2k =0, ∴|5k +1-2k|k 2+1=3,解得k =43, ∴l 的方程为y -1=43(x -2),即4x -3y -5=0.当直线斜率不存在时,直线x =2也符合题意. ∴直线l 的方程为4x -3y -5=0或x =2.方法二 经过两已知直线交点的直线系方程为(2x +y -5)+λ(x-2y)=0, 即(2+λ)x+(1-2λ)y-5=0,∴|52+λ-5|2+λ2+1-2λ2=3, 即2λ2-5λ+2=0,解得λ=2或12,∴直线l 的方程为4x -3y -5=0或x =2.17.解 (1)∵A 点不在两条高线上,由两条直线垂直的条件可设k AB =-32,k AC =1.∴AB、AC 边所在的直线方程为3x +2y -7=0, x -y +1=0. 由⎩⎪⎨⎪⎧3x +2y -7=0x +y =0得B(7,-7). 由⎩⎪⎨⎪⎧x -y +1=02x -3y +1=0得C(-2,-1).∴BC 边所在的直线方程2x +3y +7=0. (2)∵BC=117,A 点到BC 边的距离d =1513,∴S △ABC =12×d×BC=12×1513×117=452.18.解 由于过P(3,-2)垂直于切线的直线必定过圆心,故该直线的方程为 x -y -5=0.由⎩⎪⎨⎪⎧x -y -5=0,y =-4x ,得⎩⎪⎨⎪⎧x =1,y =-4,故圆心为(1,-4),r =1-32+-4+22=22,∴所求圆的方程为(x -1)2+(y +4)2=8. 19.证明作AO⊥BC,垂足为O ,以BC 边所在的直线为x 轴,为OA 所在的直线为y 轴,建立直角坐标系,如右图所示.设A(0,a),B(b,0),C(c,0),D(d,0),因为AB 2=AD 2+BD·DC,所以,由两点间距离公式可得b 2+a 2=d 2+a 2+(d -b)·(c-d),即-(d -b)(b +d)=(d -b)(c -d),又d -b≠0,故-b -d =c -d ,即c =-b , 所以△ABC 为等腰三角形.20.解 (1)由题意,得M 1MM 2M=5.x -262+y -12x -22+y -12=5, 化简,得x 2+y 2-2x -2y -23=0.即(x -1)2+(y -1)2=25.∴点M 的轨迹方程是(x -1)2+(y -1)2=25, 轨迹是以(1,1)为圆心,以5为半径的圆. (2)当直线l 的斜率不存在时,l :x =-2,此时所截得的线段的长为252-32=8, ∴l:x =-2符合题意.当直线l 的斜率存在时,设l 的方程为 y -3=k(x +2),即kx -y +2k +3=0,圆心到l 的距离d =|3k +2|k 2+1,由题意,得⎝ ⎛⎭⎪⎫|3k +2|k 2+12+42=52, 解得k =512.∴直线l 的方程为512x -y +236=0.即5x -12y +46=0. 综上,直线l 的方程为x =-2,或5x -12y +46=0.。

2015届高考数学(人教,理科)大一轮配套第二章函数、导数及其应用第4节函数的图像

2015届高考数学(人教,理科)大一轮配套第二章函数、导数及其应用第4节函数的图像

2009~2013年高考真题备选题库 第2章 函数、导数及其应用第4节 函数的图像考点 函数解析式与图象1.(2013江西,5分)如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l ∥l 1,l 与半圆相交于F ,G 两点,与三角形ABC 两边相交于E ,D 两点.设弧的长为x (0<x <π),y =EB +BC +CD ,若l 从l 1平行移动到l 2,则函数y =f (x )的图象大致是( )解析:本题为江西的特色题——图形题,考查三角函数的定义及三角恒等变换,意在考查考生的识图能力.由题图知正三角形的高为1,则边长为2 33,显然当x =0时,y =2 33,且函数y =f (x )是递增函数,可排除B ;由平行线分线段成比例定理可知BEAB =1-cosx21,即BE=2 33⎝⎛⎭⎫1-cos x 2,而BE =CD ,所以y =2EB +BC =2 3-4 33 cos x2(0<x <π),排除A ,C ,故选D.答案:D2.(2013北京,5分)函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=( )A .e x +1B .e x -1C .e-x +1D. e-x -1解析:选D 本题考查函数的平移及对称性,意在考查考生对基础知识的掌握情况.与曲线y =e x 关于y 轴对称的曲线为y =e -x ,函数y =e -x 的图象向左平移一个单位长度即可得到函数f (x )的图象,即f (x )=e-(x +1)=e-x -1.答案:D3.(2013四川,5分)函数y =x 33x -1的图象大致是( )解析:本题考查函数的图象及其性质,意在考查考生对函数的定义域及值域等知识的理解与掌握.因为函数的定义域是非零实数集,所以A 错;当x <0时,y >0,所以B 错;当x →+∞时,y →0,所以D 错,故选C.答案:C4.(2013浙江,4分)已知函数f (x )=x -1.若f (a )=3,则实数a =________.解析:本题主要考查函数的概念与函数值的计算,属于简单题,意在考查考生对基础知识的掌握程度.由f (a )=a -1=3,得a =10.答案:105. (2012新课标全国,5分)已知函数f (x )=1ln (x +1)-x ,则y =f (x )的图像大致为( )解析:函数的定义域是(-1,0)∪(0,+∞),值域是(-∞,0),所以其图像为B. 答案:B6. (2011山东,5分)函数y =x2-2sin x 的图像大致是( )解析:y ′=12-2cos x ,令y ′=0,得cos x =14,根据三角函数的知识知这个方程有无穷多解,即函数y =x 2-2sin x 有无穷多个极值点,函数y =x2-2sin x 是奇函数,图像关于坐标原点对称,故只能是选项C 的图像.答案:C7.(2010新课标全国,5分)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )解析:法一:(排除法)当t =0时,P 点到x 轴的距离为2,排除A 、D ,由角速度为1知,当t =π4或t =5π4时,P 点落在x 轴上,即P 点到x 轴的距离为0,故选C. 法二:由题意知P (2cos(t -π4),2sin(t -π4)),∴P 点到x 轴的距离为d =|y 0|=2|sin(t -π4)|,当t =0时,d =2; 当t =π4时,d =0.故选C.答案:C8.(2010陕西,5分)某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =[x10]B .y =[x +310]C .y =[x +410]D .y =[x +510]解析:当各班人数除以10的余数大于6时再增选一名代表,可以看作先用该班人数除以10再用这个余数与3相加,若和大于等于10就增选一名代表,将二者合并便得到推选代表人数y 与该班人数x 之间的函数关系,用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为y =[x +310].答案:B9. (2009·安徽,5分)设a <b ,函数y =(x -a )2(x -b )的图象可能是( )解析:当x >b 时,y >0,由数轴穿根法可知,从右上向左下穿,奇次穿偶次不穿可知,只有C 正确.答案:C。

【步步高】高中数学 第二章 2.1.3两条直线的平行与垂直(二)配套课件 苏教版必修2

【步步高】高中数学 第二章 2.1.3两条直线的平行与垂直(二)配套课件 苏教版必修2
∴kOP=kQR,kOR=kPQ, 从而 OP∥QR,OR∥PQ.∴四边形 OPQR 为平行四边形.
又 kOP· kOR=-1,∴OP⊥OR,
故四边形 OPQR 为矩形.
研一研· 问题探究、课堂更高效
例 3 在路边安装路灯,路宽 23 m,灯杆长 2.5 m,且与灯 柱成 120° 角, 路灯采用锥形灯罩, 灯罩轴线与灯杆垂直. 当 灯柱高 h 为多少米时,灯罩轴线正好通过道路路面的中 线?(精确到 0.01 m) 解 记灯柱顶端为 B,灯罩顶为 A,灯杆为
研一研· 问题探究、课堂更高效
问题 2 若 l1⊥l2 且直线 l1,l2 有一条与 x 轴垂直,那么两条 直线的斜率如何?
答 有一条直线与 x 轴垂直,则另一条与 x 轴平行,所以 两条直线中有一条直线斜率不存在, 另一条直线的斜率为 0.
研一研· 问题探究、课堂更高效
问题 3 吗?
对任意两条直线,如果 l1⊥l2,一定有 k1· k2 =-1
研一研· 问题探究、课堂更高效
跟踪训练 1
已知 A(5,-1),B(1,1),C(2,3)三点,试判断
△ABC 是否为直角三角形.
1--1 1 解 AB 边所在直线的斜率 kAB= =- , 2 1-5 3-1 BC 边所在直线的斜率 kBC= =2. 2-1 由 kAB· kBC=-1,得 AB⊥BC, 即∠ABC=90° .所以△ABC 是直角三角形.
研一研· 问题探究、课堂更高效
探究点二 例1
两条直线垂直关系的应用
(1)已知四点 A(5,3),B(10,6),C(3,-4),D(-6,11),
求证:AB⊥CD. 3 (2)已知直线 l1 的斜率 k1= ,直线 l2 经过点 A(3a,-2), 4 B(0,a2+1)且 l1⊥l2,求实数 a 的值.

【步步高】2015届高三数学人教B版【配套文档】 专题二 高考中的三角函数的综合问题

【步步高】2015届高三数学人教B版【配套文档】  专题二    高考中的三角函数的综合问题

专题二 高考中的三角函数的综合问题1. (2013·北京)“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 当φ=π时,y =sin(2x +φ)=-sin 2x 过原点.当曲线过原点时,φ=k π,k ∈Z ,不一定有φ=π.∴“φ=π”是“曲线y =sin(2x +φ)过原点”的充分不必要条件. 2. 已知向量a =(2,sin x ),b =(cos 2x,2cos x ),则函数f (x )=a·b 的最小正周期是( )A.π2 B .π C .2π D .4π 答案 B解析 f (x )=2cos 2x +2sin x cos x =1+cos 2x +sin 2x =1+2sin ⎝⎛⎭⎫2x +π4,T =2π2=π. 3. 若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为( )A .1B .2 C.3+1 D.3+2答案 B解析 依题意,得f (x )=cos x +3sin x =2sin(x +π6),当0≤x <π2时,π6≤x +π6<2π3,f (x )的最大值是2.4. 已知向量OB →=(2,0),向量OC →=(2,2),向量CA →=(2cos α,2sin α),则向量OA →与向量OB→的夹角的取值范围是( )A.⎣⎡⎦⎤0,π4B.⎣⎡⎦⎤π4,512π C.⎣⎡⎦⎤512π,π2 D.⎣⎡⎦⎤π12,512π答案 D解析 由题意,得:OA →=OC →+CA →=(2+2cos α,2+2sin α),所以点A 的轨迹是圆(x -2)2+(y -2)2=2,如图,当A 位于使向量OA →与圆相切时,向量OA →与向量OB →的夹角分别达到最大、最小值,故选D.5. (2012·四川改编)如图,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连接EC 、ED ,则sin ∠CED =__________. 答案1010解析 方法一 应用两角差的正弦公式求解. 由题意知,在Rt △ADE 中,∠AED =45°, 在Rt △BCE 中,BE =2,BC =1, ∴CE =5,则sin ∠CEB =15,cos ∠CEB =25. 而∠CED =45°-∠CEB , ∴sin ∠CED =sin(45°-∠CEB ) =22(cos ∠CEB -sin ∠CEB ) =22×⎝⎛⎭⎫25-15=1010.方法二 利用余弦定理及同角三角函数基本关系式求解. 由题意得ED =2,EC =12+22= 5. 在△EDC 中,由余弦定理得cos ∠CED =CE 2+DE 2-DC 22CE ·DE =31010,又0<∠CED <π,∴sin ∠CED =1-cos 2∠CED =1-⎝⎛⎭⎫310102=1010.题型一 三角函数的图象和性质例1 已知函数f (x )=sin(ωx +π6)+sin(ωx -π6)-2cos 2ωx2,x ∈R (其中ω>0).(1)求函数f (x )的值域;(2)若函数y =f (x )的图象与直线y =-1的两个相邻交点间的距离为π2,求函数y =f (x )的单调增区间.思维启迪 对三角函数的性质的讨论,首先要化成y =A sin(ωx +φ)+k (一角、一次、一函数)的形式;根据(2)中条件可确定ω. 解 (1)f (x )=32sin ωx +12cos ωx +32sin ωx -12cos ωx -(cos ωx +1) =2(32sin ωx -12cos ωx )-1=2sin(ωx -π6)-1. 由-1≤sin(ωx -π6)≤1,得-3≤2sin(ωx -π6)-1≤1,所以函数f (x )的值域为[-3,1].(2)由题设条件及三角函数图象和性质可知,y =f (x )的周期为π, 所以2πω=π,即ω=2.所以f (x )=2sin(2x -π6)-1,再由2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ).所以函数y =f (x )的单调增区间为[k π-π6,k π+π3](k ∈Z ).思维升华 三角函数的图象和性质是高考考查的重点,通常先将三角函数化为y =A sin(ωx +φ)+k 的形式,然后将t =ωx +φ视为一个整体,结合y =sin t 的图象求解.已知函数f (x )=sin 2x -2sin x cos x +3cos 2x .(1)求函数f (x )的最小正周期;(2)当x ∈[19π24,π]时,求函数f (x )的最大值和最小值.解 f (x )=sin 2x -2sin x cos x +3cos 2x =1-sin 2x +2cos 2x =2+cos 2x -sin 2x =2+2cos(2x +π4).(1)函数f (x )的最小正周期T =π.(2)因为19π24≤x ≤π,所以116π≤2x +π4≤9π4.所以22≤cos(2x +π4)≤1. 所以3≤2+2cos(2x +π4)≤2+2,即3≤f (x )≤2+ 2.所以函数f (x )的最小值为3,最大值为2+ 2. 题型二 三角函数和解三角形例2 (2013·重庆)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2+2ab =c 2.(1)求C ;(2)设cos A cos B =325,cos (α+A )cos (α+B )cos 2α=25,求tan α的值. 思维启迪 (1)利用余弦定理求C ;(2)由(1)和cos A cos B =325可求得A +B ,代入求tan α.解 (1)因为a 2+b 2+2ab =c 2,由余弦定理有cos C =a 2+b 2-c 22ab =-2ab 2ab =-22.又0<C <π,故C =3π4.(2)由题意得(sin αsin A -cos αcos A )(sin αsin B -cos αcos B )cos 2α=25. 因此(tan αsin A -cos A )(tan αsin B -cos B )=25, tan 2αsin A sin B -tan α(sin A cos B +cos A sin B )+cos A cos B =25, tan 2αsin A sin B -tan αsin(A +B )+cos A cos B =25.① 因为C =3π4,所以A +B =π4,所以sin(A +B )=22,因为cos(A +B )=cos A cos B -sin A sin B , 即325-sin A sin B =22, 解得sin A sin B =325-22=210.由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4.思维升华 三角函数和三角形的结合,一般可以利用正弦定理、余弦定理先确定三角形的边角,再代入到三角函数中,三角函数和差公式的灵活运用是解决此类问题的关键.(2012·安徽)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,且有2sinB cos A =sin A cosC +cos A sin C . (1)求角A 的大小;(2)若b =2,c =1,D 为BC 的中点,求AD 的长. 解 (1)方法一 由题设知,2sin B cos A =sin(A +C )=sin B .因为sin B ≠0,所以cos A =12.由于0<A <π,故A =π3.方法二 由题设可知,2b ·b 2+c 2-a 22bc =a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc ,于是b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.由于0<A <π,故A =π3.(2)方法一 因为AD →2=⎝ ⎛⎭⎪⎫AB→+AC →22=14(AB →2+AC →2+2AB →·AC →) =14(1+4+2×1×2×cos π3)=74, 所以|AD →|=72.从而AD =72.方法二 因为a 2=b 2+c 2-2bc cos A =4+1-2×2×1×12=3,所以a 2+c 2=b 2,B =π2.因为BD =32,AB =1,所以AD = 1+34=72. 题型三 三角函数与平面向量的综合应用例3 已知向量m =⎝⎛⎭⎫3sin x 4,1,n =⎝⎛⎭⎫cos x 4,cos 2x 4. (1)若m·n =1,求cos ⎝⎛⎭⎫2π3-x 的值;(2)记f (x )=m·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.思维启迪 (1)由向量数量积的运算转化成三角函数式,化简求值.(2)在△ABC 中,求出∠A 的范围,再求f (A )的取值范围. 解 (1)m·n =3sin x 4·cos x 4+cos 2x 4=32sin x2+1+cosx22=sin ⎝⎛⎭⎫x 2+π6+12,∵m·n =1,∴sin ⎝⎛⎭⎫x 2+π6=12.∵cos ⎝⎛⎭⎫x +π3=1-2sin 2⎝⎛⎭⎫x 2+π6=12, ∴cos ⎝⎛⎭⎫2π3-x =-cos ⎝⎛⎭⎫x +π3=-12. (2)∵(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C , ∴2sin A cos B -sin C cos B =sin B cos C . ∴2sin A cos B =sin(B +C ).∵A +B +C =π,∴sin(B +C )=sin A ≠0. ∴cos B =12,∵0<B <π,∴B =π3.∴0<A <2π3.∴π6<A 2+π6<π2,sin ⎝⎛⎭⎫A 2+π6∈⎝⎛⎭⎫12,1. 又∵f (x )=sin ⎝⎛⎭⎫x 2+π6+12. ∴f (A )=sin ⎝⎛⎭⎫A 2+π6+12.故函数f (A )的取值范围是⎝⎛⎭⎫1,32. 思维升华 (1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响.已知a =(53cos x ,cos x ),b =(sin x,2cos x ),设函数f (x )=a ·b +|b |2+32.(1)当x ∈[π6,π2]时,求函数f (x )的值域;(2)当x ∈[π6,π2]时,若f (x )=8,求函数f (x -π12)的值;(3)将函数y =f (x )的图象向右平移π12个单位后,再将得到的图象上各点的纵坐标向下平移5个单位,得到函数y =g (x )的图象,求函数g (x )的表达式并判断奇偶性. 解 (1)f (x )=a ·b +|b |2+32=53sin x cos x +2cos 2x +4cos 2x +sin 2x +32=53sin x cos x +5cos 2x +52=532sin 2x +5×1+cos 2x 2+52=5sin(2x +π6)+5.由π6≤x ≤π2,得π2≤2x +π6≤7π6, ∴-12≤sin(2x +π6)≤1,∴当π6≤x ≤π2时,函数f (x )的值域为[52,10].(2)f (x )=5sin(2x +π6)+5=8,则sin(2x +π6)=35,所以cos(2x +π6)=-45,f (x -π12)=5sin 2x +5=5sin(2x +π6-π6)+5=332+7.(3)由题意知f (x )=5sin(2x +π6)+5→g (x )=5sin[2(x -π12)+π6]+5-5=5sin 2x ,即g (x )=5sin 2x ,g (-x )=5sin(-2x )=-5sin 2x =-g (x ), 故g (x )为奇函数.(时间:80分钟)1. 函数y =sin(ωx +φ)(ω>0,|φ|<π2)在同一个周期内,当x =π4时,y 取最大值1,当x =7π12时,y 取最小值-1.(1)求函数的解析式y =f (x );(2)函数y =sin x 的图象经过怎样的变换可得到y =f (x )的图象;(3)若函数f (x )满足方程f (x )=a (0<a <1),求在[0,2π]内的所有实数根之和. 解 (1)∵T =2(712π-π4)=23π,∴ω=3,又∵sin(34π+φ)=1,∴3π4+φ=2k π+π2,k ∈Z .又|φ|<π2,得φ=-π4,∴函数的解析式为f (x )=sin(3x -π4).(2)y =sin x 的图象向右移π4个单位,得到y =sin(x -π4)的图象,再由y =sin(x -π4)的图象上所有点的横坐标变为原来的13,纵坐标不变,得到y =sin(3x -π4)的图象. (3)∵f (x )=sin(3x -π4)的最小正周期为23π,∴f (x )=sin(3x -π4)在[0,2π]内恰有3个周期,∴sin(3x -π4)=a (0<a <1)在[0,2π]内有6个实数根且x 1+x 2=π2.同理,x 3+x 4=11π6,x 5+x 6=196π,故所有实数根之和为π2+11π6+19π6=11π2.2. (2013·安徽)已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)讨论f (x )在区间⎣⎡⎦⎤0,π2上的单调性. 解 (1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4 =22sin ωx ·cos ωx +22cos 2ωx =2(sin 2ωx +cos 2ωx )+ 2 =2sin ⎝⎛⎭⎫2ωx +π4+ 2. 因为f (x )的最小正周期为π,且ω>0. 从而有2π2ω=π,故ω=1. (2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增; 当π2≤2x +π4≤5π4, 即π8≤x ≤π2时,f (x )单调递减.综上可知,f (x )在区间⎣⎡⎦⎤0,π8上单调递增, 在区间⎣⎡⎦⎤π8,π2上单调递减.3. (2013·四川)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2A -B2cos B -sin(A -B )sin B +cos(A +C )=-35.(1)求cos A 的值;(2)若a =42,b =5,求向量BA →在BC →方向上的投影.解 (1)由2cos 2A -B 2cos B -sin(A -B )sin B +cos(A +C )=-35,得[cos(A -B )+1]cos B -sin(A -B )sin B -cos B =-35,即cos(A -B )cos B -sin(A -B )sin B =-35.则cos(A -B +B )=-35,即cos A =-35.(2)由cos A =-35,0<A <π,得sin A =45,由正弦定理,有a sin A =b sin B ,所以,sin B =b sin A a =22. 由题知a >b ,则A >B ,故B =π4,根据余弦定理,有(42)2=52+c 2-2×5c ×⎝⎛⎭⎫-35, 解得c =1或c =-7(舍去).故向量BA →在BC →方向上的投影为|BA →|cos B =22.4. 已知向量a =(cos α,sin α),b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),其中0<α<x <π.(1)若α=π4,求函数f (x )=b ·c 的最小值及相应x 的值;(2)若a 与b 的夹角为π3,且a ⊥c ,求tan 2α的值.解 (1)∵b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),α=π4,∴f (x )=b ·c=cos x sin x +2cos x sin α+sin x cos x +2sin x cos α =2sin x cos x +2(sin x +cos x ). 令t =sin x +cos x ⎝⎛⎭⎫π4<x <π,则2sin x cos x =t 2-1,且-1<t < 2. 则y =t 2+2t -1=⎝⎛⎭⎫t +222-32,-1<t <2, ∴t =-22时,y min =-32,此时sin x +cos x =-22, 即2sin ⎝⎛⎭⎫x +π4=-22, ∵π4<x <π,∴π2<x +π4<54π, ∴x +π4=76π,∴x =11π12.∴函数f (x )的最小值为-32,相应x 的值为11π12.(2)∵a 与b 的夹角为π3,∴cos π3=a ·b |a |·|b |=cos αcos x +sin αsin x =cos(x -α).∵0<α<x <π,∴0<x -α<π,∴x -α=π3.∵a ⊥c ,∴cos α(sin x +2sin α)+sin α(cos x +2cos α)=0, ∴sin(x +α)+2sin 2α=0,即sin ⎝⎛⎭⎫2α+π3+2sin 2α=0. ∴52sin 2α+32cos 2α=0,∴tan 2α=-35.5. 函数f (x )=A sin(ωx +φ)(x ∈R ,A >0,ω>0,0<φ<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)设g (x )=[f (x -π12)]2,求函数g (x )在x ∈[-π6,π3]上的最大值,并确定此时x 的值.解 (1)由题图知A =2,T 4=π3,则2πω=4×π3,∴ω=32.又f (-π6)=2sin[32×(-π6)+φ]=2sin(-π4+φ)=0,∴sin(φ-π4)=0,∵0<φ<π2,∴-π4<φ-π4<π4,∴φ-π4=0,即φ=π4,∴f (x )=2sin(32x +π4).(2)由(1)可得f (x -π12)=2sin[32(x -π12)+π4]=2sin(32x +π8), ∴g (x )=[f (x -π12)]2=4×1-cos (3x +π4)2=2-2cos(3x +π4), ∵x ∈[-π6,π3],∴-π4≤3x +π4≤5π4, ∴当3x +π4=π,即x =π4时,[g (x )]max =4. 6. 设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =2b sin A .(1)求B 的大小;(2)求cos A +sin C 的取值范围.解 (1)由a =2b sin A ,根据正弦定理得sin A =2sin B sin A ,所以sin B =12,由△ABC 为锐角三角形可得B =π6. (2)由(1)可知A +C =π-B =5π6,故C =5π6-A . 故cos A +sin C =cos A +sin ⎝⎛⎭⎫5π6-A =cos A +sin ⎝⎛⎭⎫π6+A =cos A +12cos A +32sin A =32cos A +32sin A =3⎝⎛⎭⎫32cos A +12sin A =3sin ⎝⎛⎭⎫A +π3, 由△ABC 为锐角三角形可得,0<C <π2, 故0<5π6-A <π2,解得π3<A <5π6, 又0<A <π2,所以π3<A <π2. 故2π3<A +π3<5π6,所以12<sin ⎝⎛⎭⎫A +π3<32, 所以32<3sin ⎝⎛⎭⎫A +π3<32, 即cos A +sin C 的取值范围为⎝⎛⎭⎫32,32.。

【步步高 学案导学设计】高中数学 第二章 变化率与导数章末总结 北师大版选修2-2

【步步高学案导学设计】2014-2015学年高中数学第二章变化率与导数章末总结北师大版选修2-2知识点一导数的概念平均变化率表示函数在某个区间内变化的快慢,瞬时变化率(导数)表示函数在某一点处变化的快慢.f′(x0)=limΔx→0f x0+Δx-f x0Δx.例1求函数y=f(x)=2x2+4x在x=3处的导数.例2航天飞机发射后的一段时间内,第t时的高度h(t)=5t3+30t2+45t+4,其中h 的单位为m,t的单位为s.(1)h(0),h(1)分别表示什么;(2)求第1 s内高度的平均变化率;(3)求第1 s末高度的瞬时变化率,并说明它的意义.知识点二 导数的几何意义函数y =f (x )在x 0处的导数,是曲线y =f (x )在点(x 0,f (x 0))处切线的斜率,利用导数可以求曲线的切线斜率和切线方程.例3 已知曲线方程为y =x 2,(1)求过点A (2,4)且与曲线相切的直线方程;(2)求过点B (3,5)且与曲线相切的直线方程.例4 已知函数f (x )=ax 3+bx 2的图像经过点M (1,4),曲线在点M 处的切线恰好与直线x +9y =0垂直.(1)求实数a ,b 的值;(2)求过已知函数图像上某点处切线的斜率的取值范围.知识点三 导数的计算导数的计算主要考查导数公式的应用和导数的四则运算,复合函数的求导.在求导数时,一定要认清函数的形式,然后选择适当的公式和法则进行计算.例5 (1)求函数f (x )=4x 3在x =16处的导数;(2)求函数y =x 5+x +sin x x 2的导数; (3)求函数y =e sin(2x +3)的导数.知识点四 导数的实际意义实际生活中存在大量的变化率问题,我们可以根据导数计算并表示变化的快慢,在实际问题中理解导数的意义.例6 在受到制动后的t 秒内飞轮转过的角度(弧度)由函数φ(t )=4t -0.3t 2给出.求:(1)t =2秒时,飞轮转过的角度;(2)飞轮停止旋转的时刻.例7 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如第x h 时,原油的温度(单位:℃)为f (x )=x 2-7x +15 (0≤x ≤18).求函数y =f (x )在x=6处的导数f ′(6),并解释它的实际意义.答 案重点解读例1 解 f ′(x )=lim Δx →0 x +Δx 2+x +Δx -x 2+4x Δx=lim Δx →0 4x ·Δx +Δx 2+4Δx Δx=lim Δx →0(4x +2Δx +4)=4x +4, ∴y ′|x =3=f ′(3)=4×3+4=16.例2 解 (1)h (0)表示航天飞机未发射时的高度,h (1)表示航天飞机发射1 s 后的高度.(2)Δh Δt =h -h 1-0=80(m/s), 即第1 s 内高度的平均变化率为80 m/s.(3)h ′(1)=lim Δt →0 Δh Δt =lim Δt →0 h +Δt -h Δt=lim Δt →0[5(Δt )2+45Δt +120]=120, 即第1 s 末高度的瞬时变化率为120 m/s.它说明在第1 s 末附近,航天飞机的高度大约以120 m/s 的速度增加.例3 解 (1)∵A (2,4)在y =x 2上.由y =x 2得,y ′=lim Δx →0 f x +Δx -f x Δx=2x . ∴f ′(2)=4.∴切线方程为y -4=4(x -2),即4x -y -4=0.(2)设切点坐标为(x 0,x 20).由(1)得y ′=2x ,∴f ′(x 0)=2x 0.∴切线方程为y -x 20=2x 0(x -x 0).∵点(3,5)在切线上,∴5-x 20=2x 0(3-x 0).即x 20-6x 0+5=0.解得x 0=1或x 0=5,∴切线方程为2x -y -1=0或10x -y -25=0.例4 解 (1)因为y ′=f ′(x )=lim Δx →0 a x +Δx 3+b x +Δx 2-ax 3-bx 2Δx=3ax 2+2bx .∵f (x )=ax 3+bx 2的图像过点M (1,4),∴a +b =4.又∵曲线在点M 处的切线与直线x +9y =0垂直,∴f ′(1)=9,∴3a +2b =9.由⎩⎪⎨⎪⎧ a +b =43a +2b =9得,⎩⎪⎨⎪⎧a =1b =3. (2)由(1)知y ′=f ′(x )=3ax 2+2bx =3x 2+6x=3(x +1)2-3≥-3.∴过已知函数图像上某点处的切线的斜率的取值范围是k ≥-3.例5 解 (1)∵f ′(x )=(4x 3)′=(x 34)′=34x -14=344x, ∴f ′(16)=34·416=34×2=38. (2)∵y =x 3+x -32+sin x x 2, ∴y ′=(x 3)′+(x -32)′+x x 2-x 2x x 4 =3x 2-32x -52+x 2cos x -2x sin x x 4=3x 2-32x -52+x -2cos x -2x -3sin x . (3)设y =e u ,u =sin t ,t =2x +3,则y ′=y ′u ·u ′t ·t ′x =e u cos t ×2=2e sin(2x +3)·cos(2x +3).例6 解 (1)t =2秒时,飞轮转过的角度φ(2)=8-1.2=6.8(弧度).(2)由题意得,φ′(t )=4-0.6t ,飞轮停止旋转,即瞬时角速度为0,所以令4-0.6t =0⇒t =203. 所以在t =203秒时飞轮停止转动. 例7 解 ∵f ′(x )=2x -7,∴f ′(6)=5.导数f ′(6)=5表示当x =6 h 时原油温度的瞬时变化率,即原油温度的瞬时变化速度.也就是说,如果保持6 h 时温度的变化速度,每经过1 h ,原油温度将升高5 ℃.。

2014-2015学年高中数学(人教版选修1-2)课时训练第二章 2.2.2反 证 法


栏 目 链 接

栏 目 链 接

题型一
用反证法证明否定性命题
例1 设{an},{bn}分别是公比为 p,q(p,q∈R,且 p≠q)的两个等比
数列,如果 cn=an+bn,证明数列{cn}不可能是等比数列.
栏 分析:因为结论是否定的,所以用反证法证明. 目 2 证明:假设{cn}是等比数列,则 c2=c1c3, 链 2 2 2 接 即(a1p+b1q) =(a1+b1)(a1p +b1q ), 展开并整理得 a1b1(p-q)2=0. 由于 a1,b1 是等比数列中的项, 所以 a1≠0,b1≠0,那么 p=q,这与已知条件矛盾,所以,数 列{cn}不可能是等比数列.
分析:由于不知道到底是哪条抛物线一定与 x 轴有交点, 因而直接证明很难入手,可采取间接证明的方法来完成. 证明:假设三条抛物线都与 x 轴无交点,则方程 ax2+2bx +c=0 的判别式 Δ1=4b2-4ac<0. 同理,Δ2=4c2-4ab<0,Δ3=4a2-4bc<0, 栏 则 Δ1+Δ2+Δ3<0,即 目 链 Δ1+Δ2+Δ3=4a2+4b2+4c2-4ab-4bc-4ac 接 2 2 2 =2(a-b) +2(b-c) +2(c-a) <0, 这与 2(a-b)2+2(b-c)2+2(c-a)2≥0 相矛盾, 故假设错误. 所以,三条抛物线 y = ax2 + 2bx + c , y = bx2 + 2cx + a , +b(a,b,c 为非零实数)中至少有一条与 x 轴有交 点.
证明:假设 1, 3,2 是公差为 d 的等差数列 的三项,则 1= 3-md,2= 3+nd,其中 m,n 为 正整数. 由上面两式消去 d, 得 n+2m= 3(n+m).栏 目 因为 n+2m 为有理数, 而 3(n+m)为无理数,链 所以 3(n+m),因此假设不成立,即 1, 3,2 不能是同一等差数列中的三项.

高中数学步步高必修2习题部分Word版文档1.2.1-1.2.2

§1.2空间几何体的三视图和直观图1.2.1中心投影与平行投影1.2.2空间几何体的三视图一、选择题1.下列命题正确的是() A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段中点的平行投影仍是这条线段投影的中点2.如图所示的一个几何体,哪一个是该几何体的俯视图()3.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④4.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为()5. 如图所示的正方体中,M、N分别是AA1、CC1的中点,作四边形D1MBN,则四边形D1MBN 在正方体各个面上的正投影图形中,不可能出现的是()6.一个长方体去掉一角的直观图如图所示,关于它的三视图,下列画法正确的是()二、填空题7.根据如图所示俯视图,找出对应的物体.(1)对应________;(2)对应________;(3)对应________;(4)对应________;(5)对应________.8.若一个三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是________和________.9.用小正方体搭成一个几何体,如图是它的正视图和侧视图,搭成这个几何体的小正方体的个数最多为________个.三、解答题10.在下面图形中,图(b)是图(a)中实物画出的正视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出侧视图(尺寸不作严格要求).11.画出如图所示的四棱锥和三棱柱的三视图.12. 如图,螺栓是棱柱和圆柱的组合体,画出它的三视图.四、探究与拓展13.用小立方体搭成一个几何体,使它的正视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?答案1.D 2.C 3.D 4.C 5.D 6.A 7.(1)D(2)A(3)E(4)C(5)B8.249.710.解图(a)是由两个长方体组合而成的,正视图正确,俯视图错误,俯视图应该画出不可见轮廓线(用虚线表示),侧视图轮廓是一个矩形,有一条可视的交线(用实线表示),正确画法如图所示.11.解三视图如图所示:12. 解该物体是由一个正六棱柱和一个圆柱组合而成的,正视图反映正六棱柱的三个侧面和圆柱侧面,侧视图反映正六棱柱的两个侧面和圆柱侧面,俯视图反映该物体投影后是一个正六边形和一个圆(中心重合).它的三视图如图所示.13.解由于正视图中每列的层数即是俯视图中该列的最大数字,因此,用的立方块数最多的情况是每个方框都用该列的最大数字,即如图①所示,此种情况共用小立方块17块.而搭建这样的几何体用方块数最少的情况是每列只要有一个最大的数字,其他方框内的数字可减少到最少的1,即如图②所示,这样的摆法只需小立方块11块.。

2015-2016学年高中数学 第2章 2导数的概念及其几何意义课件 北师大版选修2-2


导数 有定义 1.定义:y=f(x)在x0点附近 __________,对自变量的任一
Δy 改变量Δx,函数改变量为Δy=f(x0+Δx)-f(x0),若极限 lim Δx Δx→0 fx0+Δx-fx0 lim Δx =_____________________ 存在 ,称该极限值为f(x)在x0点的导 Δx→0 ..
第二章
变化率与导数
第二章
§2 导数的概念及其几何意义
1
课前自主预习
2
课堂典例探究
4
课 时 作 业
课前自主预习
1.理解导数的概念和定义,会求函数的导数.
2 .理解导数的几何意义,并会求出曲线在某点处的切线
方程. 本节重点:导数的概念及导数的几何意义. 本节难点:会求函数的导数及曲线在某点处的切线方程.
[误解] ①②③④ [正解] 确的. [点评] 错解没有正确理解导数的定义及其几何意义,即 对曲线的切线、切线的斜率、导数三者之间的关系理解不透 根据导数的定义及其几何意义可知,只有③是正
彻.事实上,①和②是一样的,它互为逆否命题,讨论的是
“f′(x0)存在与否”与“切线存在与否”的关系,而导数的几何 意义中讨论的是“f′(x0)”与“切线的斜率”之间的关系.根据 导数的几何意义,只有“若 f′(x0) 不存在,则曲线 y = f(x) 在点 (x0,f(x0))处的切线的斜率不存在”这一说法正确.
π 5.曲线y=f(x)在点(x0,f(x0))处的切线的倾斜角为 4 ,则 f′(x0)=________.
[答案] 1
[ 解析] π f′(x0)=tan4=1.
求函数f(x)在点x0处的导数
1 利用导数的定义,求函数y=f(x)= x2 +2在点x =1处的导数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.2 函数的单调性与最值 1.函数的单调性 (1)单调函数的定义 增函数 减函数

定义 一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2 当x1f(x2),那么就说函数f(x)在区间D上是减函数

图象描述 自左向右看图象是上升的 自左向右看图象是下降的 (2)单调区间的定义 如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间. 2.函数的最值 前提 设函数y=f(x)的定义域为I,如果存在实数M满足

条件 (1)对于任意x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0)=M. (3)对于任意x∈I,都有f(x)≥M ; (4)存在x0∈I,使得f(x0)=M. 结论 M为最大值 M为最小值

1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数y=1x的单调递减区间是(-∞,0)∪(0,+∞). ( × )

(2)对于函数f(x),x∈D,若x1,x2∈D,且(x1-x2)[f(x1)-f(x2

)]>0,则函数f(x)在D上是增

函数. ( √ ) (3)函数y=|x|是R上的增函数. ( × ) (4)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞). ( × ) (5)函数f(x)=log5(2x+1)的单调增区间是(0,+∞). ( × ) (6)函数y=1-x21+x2的最大值为1. ( √ )

2.函数y=x2-6x+10在区间(2,4)上是 ( ) A.递减函数 B.递增函数 C.先递减再递增 D.先递增再递减 答案 C 解析 作出函数y=x2-6x+10的图象(图略), 根据图象可知函数在(2,4)上是先递减再递增. 3.(2013·安徽)“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 答案 C 解析 本题利用函数的图象确定字母的取值范围,再利用充要条件的定义进行判断. 当a=0时,f(x)=|(ax-1)x|=|x|在区间(0,+∞)上单调递增; 当a<0时,结合函数f(x)=|(ax-1)x|=|ax2-x|的图象知函数在(0,+∞)上单调递增,如图(1)所示;

当a>0时,结合函数f(x)=|(ax-1)x|=|ax2-x|的图象知函数在(0,+∞)上先增后减再增,不符合条件,如图(2)所示. 所以,要使函数f(x)=|(ax-1)x|在(0,+∞)上单调递增只需a≤0. 即“a≤0”是“函数f(x)=|(ax-1)x|在(0,+∞)上单调递增”的充要条件. 4.函数f(x)=2xx+1在[1,2]的最大值和最小值分别是___________________________________.

答案 43,1 解析 f(x)=2xx+1=2x+1-2x+1=2-2x+1在[1,2]上是增函数,∴f(x)max=f(2)=43,f(x)min=f(1)=1. 5.函数y=log2112(2x2-3x+1)的单调减区间为________.

答案 (1,+∞) 解析 由2x2-3x+1>0, 得函数的定义域为(-∞,12)∪(1,+∞). 令t=2x2-3x+1,则y=log21t,

∵t=2x2-3x+1=2(x-34)2-18, ∴t=2x2-3x+1的单调增区间为(1,+∞). 又y=log21t在(1,+∞)上是减函数,

∴函数y=log21 (2x2-3x+1)的单调减区间为(1,+∞).

题型一 函数单调性的判断 例1 讨论函数f(x)=axx2-1(a>0)在x∈(-1,1)上的单调性.

思维启迪 可根据定义,先设-1解 设-1则f(x1)-f(x2)=ax1x21-1-ax2x22-1

=ax1x22-ax1-ax2x21+ax2x21-1x22-1=ax2-x1x1x2+1x21-1x22-1. ∵-1∴x2-x1>0,x1x2+1>0,(x21-1)(x22-1)>0. 又∵a>0,∴f(x1)-f(x2)>0, ∴函数f(x)在(-1,1)上为减函数. 思维升华 利用定义法证明或判断函数单调性的步骤:

(1)已知a>0,函数f(x)=x+ax (x>0),证明:函数f(x)在(0,a]上是减函数,在[a,+∞)上是增函数; (2)求函数y=x2+x-6的单调区间. (1)证明 设x1,x2是任意两个正数,且0则f(x1)-f(x2)=x1+ax1-x2+ax2 =x1-x2x1x2(x1x2-a). 当0所以f(x1)-f(x2)>0,即f(x1)>f(x2), 所以函数f(x)在(0,a]上是减函数; 当a≤x1a,又x1-x2<0, 所以f(x1)-f(x2)<0,即f(x1)所以函数f(x)在[a,+∞)上是增函数. (2)解 令u=x2+x-6,y=x2+x-6可以看作有y=u与u=x2+x-6的复合函数. 由u=x2+x-6≥0,得x≤-3或x≥2. ∵u=x2+x-6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y=u在(0,+∞)上是增函数. ∴y=x2+x-6的单调减区间为(-∞,-3],单调增区间为[2,+∞). 题型二 利用函数的单调性求参数 例2 (1)如果函数f(x)=ax2+2x-3在区间(-∞,4)上是单调递增的,则实数a的取值范围是 ( ) A.a>-14 B.a≥-14

C.-14≤a<0 D.-14≤a≤0

(2)已知f(x)= 2-ax+1,x<1,ax,x≥1,满足对任意x1≠x2,都有fx1-fx2x1-x2>0成立,那么a的取值范围是________. 思维启迪 利用函数的单调性求参数或参数的取值范围,解题思路为视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参. 答案 (1)D (2)[32,2)

解析 (1)当a=0时,f(x)=2x-3,在定义域R上是单调递增的,故在(-∞,4)上单调递增; 当a≠0时,二次函数f(x)的对称轴为x=-1a,

因为f(x)在(-∞,4)上单调递增, 所以a<0,且-1a≥4,解得0>a≥-14.

综合上述得-14≤a≤0. (2)由已知条件得f(x)为增函数,

∴ 2-a>0a>12-a×1+1≤a, 解得32≤a<2,∴a的取值范围是[32,2). 思维升华 已知函数的单调性确定参数的值或范围要注意以下两点:①若函数在区间[a,b]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值. (1)函数y=x-5x-a-2在(-1,+∞)上单调递增,则a的取值范围是 ( )

A.a=-3 B.a<3 C.a≤-3 D.a≥-3

(2)已知f(x)= ax x>1,4-a2x+2 x≤1是R上的单调递增函数,则实数a的取值范围为 ( ) A.(1,+∞) B.[4,8) C.(4,8) D.(1,8) 答案 (1)C (2)B 解析 (1)y=x-5x-a-2=1+a-3x-a+2,

由函数在(-1,+∞)上单调递增, 有 a-3<0a+2≤-1,解得a≤-3. (2)因为f(x)是R上的单调递增函数,

所以可得 a>1,4-a2>0,a≥4-a2+2.解得4≤a<8,故选B. 题型三 函数的单调性和最值 例3 已知定义在区间(0,+∞)上的函数f(x)满足fx1x2=f(x1)-f(x2),且当x>1时,f(x)<0.

(1)求f(1)的值; (2)证明:f(x)为单调递减函数; (3)若f(3)=-1,求f(x)在[2,9]上的最小值. 思维启迪 抽象函数的问题要根据题设及所求的结论来适当取特殊值,证明f(x)为单调减函数的首选方法是用单调性的定义来证.问题(3)用函数的单调性即可求最值. (1)解 令x1=x2>0, 代入得f(1)=f(x1)-f(x1)=0,故f(1)=0. (2)证明 任取x1,x2∈(0,+∞),且x1>x2,则x1x2>1, 由于当x>1时,f(x)<0,所以fx1x2<0, 即f(x1)-f(x2)<0,因此f(x1)所以函数f(x)在区间(0,+∞)上是单调递减函数. (3)解 ∵f(x)在(0,+∞)上是单调递减函数. ∴f(x)在[2,9]上的最小值为f(9). 由fx1x2=f(x1)-f(x2)得,

f93=f(9)-f(3),而f(3)=-1,所以f(9)=-2. ∴f(x)在[2,9]上的最小值为-2. 思维升华 (1)抽象函数的单调性的判断要紧扣单调性的定义,结合题目所给性质和相应的条件,对任意x1,x2在所给区间内比较f(x1)-f(x2)与0的大小,或fx1fx2与1的大小.有时根据需

要,需作适当的变形:如x1=x2·x1x2或x1=x2+x1-x2等;(2)利用函数单调性可以求函数最值,若函数f(x)在[a,b]上单调递增,则f(x)的最小值是f(a),最大值是f(b). (1)如果函数f(x)对任意的实数x,都有f(1+x)=f(-x),且当x≥12时,f(x)=log2(3x

-1),那么函数f(x)在[-2,0]上的最大值与最小值之和为 ( ) A.2 B.3 C.4 D.-1 (2)函数f(x)=1x-1在区间[a,b]上的最大值是1,最小值是13,则a+b=________.

答案 (1)C (2)6 解析 (1)根据f(1+x)=f(-x),可知函数f(x)的图象关于直线x=12对称.

又函数f(x)在[12,+∞)上单调递增, 故f(x)在(-∞,12]上单调递减, 则函数f(x)在[-2,0]上的最大值与最小值之和为 f(-2)+f(0)=f(1+2)+f(1+0)=f(3)+f(1)=log28+log22=4. (2)易知f(x)在[a,b]上为减函数,

∴ fa=1,fb=13,即 1a-1=1,1b-1=13,∴ a=2,b=4. ∴a+b=6. 函数单调性的应用 典例:(12分)函数f(x)对任意的m、n∈R,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有

相关文档
最新文档