过电压及其危害与分类

过电压及其危害与分类
过电压及其危害与分类

过电压及其危害与分类

电气设备在正常运行时,所受电压为其相应的额定电压。由于受各种因素的影响,实际电压会偏离额定电压某一数值,但不能超越允许的范围。

为了考核电气设备的绝缘水平,我国有关技术标准规定了与电力系统额定电压对应的允许最高工作电压。例如:10kV对应的最高工作电压为12kV,66kV对应的最高工作电压为72.5kV。一般来说,电力系统的运行电压在正常情况下是不会超过最高工作电压的。

但是,由于雷击或电力系统中的操作、事故等原因,使某些电气设备和线路上承受的电压大大超过正常运行电压,危及设备和线路的绝缘。电力系统中这种危机绝缘的电压升高称为过电压。

过电压对电力系统的安全运行有极大危害,如雷击会造成人员伤亡。同样,雷击会造成电力线路或电气设备绝缘击穿损坏,不仅中断供电,甚至引起火灾。而且由于电气设备运行操作不当引起的内部过电压,同样也会引起电气设备绝缘击穿损坏,造成电力系统的极大破坏。一般把电力系统的过电压分成雷电过电压和内部过电压两大类。雷电过电压与气象条件有关,是外部原因造成的,因此又称之为大气过电压或外部过电压。

内部过电压是由电力系统内部能量的传递或转化引起的,与电力系统内部结构、各项参数、运行状态、停送电操作和是否发生事故等多种因数有关,十分复杂。不同原因引起的内部过电压,其过电压数值大小、波形、频率、延续时间长短也并不完全相同,防止电压、谐振过电压和操作过电压。这三类内部过电压中的工频过电压和谐振过电压又称作暂时过电压。各类过电压如下所示:

雷电过电压:直接雷击过电压;雷电反击过电压;感应雷过电压;雷电侵入波过电压。

内部过电压:

1、谐振过电压:线性谐振过电压;非线性谐振过电压;参数谐振过电压

2、操作过电压:切、合空载长线路过电压;切、合空载变压器过电压;开断感应电动机过电压;开断并联电容器过电压;弧光接地过电压。

电力系统过电压及接地装置

课程设计 设计题目:电力系统过电压与接地装置 班级:电气化铁道技术1132 姓名:刘浩 学号:201108023211 指导教师:赵永君 二〇一三年六月十九日 摘要 本课程设计中和运用高电压技术、电力系统过电压、接地技术等知识,采用理论与实践相结合的方法,研究电力系统各种过电压防护措施研究接地装置的测量方法和降阻方式,设计电力系统的接地装置等。 关键词:内部过电压雷电过电压接地保护 前言 电力系统在特定条件下所出现的超过工作电压的异常电压升高,属于电力系统中的一种电磁扰动现象。电工设备的绝缘长期耐受着工作电压,同时还必须能够承受一定幅度的过电压,这样才能保证电力系统安全可靠地运行。研究各种过电压的起因,预测其幅值,

并采取措施加以限制,是确定电力系统绝缘配合的前提,对于电工设备制造和电力系统运行都具有重要意义。 为了保护电力系统、用电设备和人员的安全,往往采用接地的方式来保证设备和人员的安全。本课程设计根据《高电压技术》简单的对电力系统的过电压与接地装置进行研究。 电力系统过电压与接地装置 一、电力系统过电压 在电力系统中,由于雷电、电磁能量的转换会使系统电压产生瞬间升高,其值可能大大超过电气设备的最高工频运行电压。其对电力系统的危害是很大的。电力系统过电压主要分以下几种类型:雷电过电压、工频过电压、操作过电压、谐振过电压。 1内部过电压 1.1工频过电压 系统中在操作或接地故障时发生的频率等于工频(50Hz)或接近工频的高于系统最高工作电压的过电压。特点是持续时间长,过电压倍数不高,一般对设备绝缘危险性不大,但在超高压、远距离输电确定绝缘水平时起重要作用当系统操作、接地跳闸后的数百毫秒之内,由于发电机中磁链不可能突变,发电机自动电压调节器的惯性作用,使发电机电动势保持不变,这段时间内的工频过电压称为暂时工频过电压。随着时间的增加,发电机自动电压调节器产生作用,使发电机电动势有所下降并趋于稳定,这时的工频过电压称为稳态工频过电压。

国内电网电压等级划分

国内电网电压等级划分 局民用电是220V,工业用电是380V,为什么同样是变电站出来的电,到了用户端就不同呢?高压与低压有什么不同呢? 工业用电与居民用电 工业用电其实就是我们经常提到的三相交流电(由三个频率相同、电势振幅相等、相位差互差 120 °角的交流电路组成的电力系统),而民用电采用的是单相220V对居民供电。 三相交流电可以使电机转动,当三相交流电流通入三相定子绕组后,在定子腔内便产生一个旋转磁场。转动前静止不动的转子导体在旋转磁场作用下,相当于转子导体相对地切割磁场的磁力线,从而在转子导体中产生了感应电流(电磁感应原理)。这些带感应电流的转子导体在磁场中便会发生运动,因此工业用电都是三相交流电。 民用电的火线与零线之间电压为220V ,工业用电则是各相线间电压380V ,相地之间电压220V。民用电其实就是三相之中的一相。电厂到居民变电站都是3相5线,变电站的作用之一就是把电分成很多个1相3线给居民使用。 高压与低压的分界线 根据GB/T 2900.50-2008中定义2.1规定,高[电]压通常指高于1000V(不含)的电压等级,低[电]压指用于配电的交流电力系统中1000V及以下的电压等级;国际上公认的高低压电器的分界线交流电压则是1000V(直流则为1500V)。 在工业上也有另外一种说法,电压为380V或以上的称之为高压电,因此我们习惯上所说的220V、380V都是低压,高于这个电压都是高压;再之前的电业规程中规定分界线为250V,虽然新的《电业安全工作规程》已经出台,但很多地方执行的还是以前的标准。 高压电器的通俗分类 1、所谓的高压、超高压、特高压并无本质区别(随着电压增高,绝缘要求、安全要求会有不同),只是人们的叫法不同而已,其分界线也是约定俗成,并无明确规定。 2、电网就是指整个供配电系统,包括发电厂,变电站,线路,用电侧。

过电压保护

过电压及过电压保护 一什么是过电压 在电力系统中由于某种原因出现的对设备绝缘有危害,暂时性的电压升高现象。 二过电压的分类 分为:内部过电压和外部过电压 (1)系统运行中由于由于断路器的正常操作或系统发生事故时,因电磁能转换所以起的过电压,叫内部过电压。如操作过电压和谐振过电压. 工频过电压 (2)外部过电压(也叫大气过电压)它有两种形式:直击雷(雷电直接对建筑物或其他物体放电,其过电压所以起的雷电流通过这些物体流入大地,产生破坏性很大的热效应和机械效应)。感应雷就是雷电的静电感应或电磁感应所引起得过电压 内部过电压 操作过电压产生主要有3种形式(1)切除空载变压器。(在切除空载变压器时,因断路器可能在电流未过零点时分断,变压器绕组中的磁场能量转换为电能,从而产生过电压。这种过电压与变压器空载电流的大小和断路器的灭弧能力有关。)(2)分合空载长线路。(分合空载长线路时由于断路器触头间电弧多次重燃引起的过电压)(3)弧光接地(在中性点不接地系统中,当发生间歇性的弧光接地时,再发在非故障相引发的高频振荡过电压)工频过电压产生主要有3种形式(1)空载长线路的电压升高(2)三相中性点不接地系统发生单相接地时非故障相对地电压的升高(3)超高大容量线路从满载状态突然甩掉负荷时的电压升高。这种过电压对电器设备的绝缘影响不大,但是操作过电压一般是在工频过电压的基础上发展起来的。 谐振过电压产生主要有2种形式(1)当电网参数选择不当,因某一线路或母线的自振频率与电源谐波频率之一接近,就会产生谐振过电压。(2)高压真空开关的同期性差 三过电压保护 (1)外部过电压保护(也就是防雷保护) 雷电的危害 1.热效应。烧断导线,烧毁电器设备。 2.机械效应。当雷电直接击中房屋、电杆、树木,雷电电流经过木质纤维时,会产生高热,将其炸裂破坏。 3.电磁场效应。在雷电电流通过的周围,将产生很大的电磁场,使附近的导线或金属结构产生很高的感应电压,击穿电气设备一引起火灾和爆炸从而产生极其严重的破坏作用。 4.雷电的闪络放电。烧毁绝缘子造成断路器跳闸,线路停电等供电事故 防雷保护装置 避雷针.(用来保护发电厂,变电所) 作用:将雷电吸引到金属针上,安全的导入大地,从而保护附近的建筑和 设施免受雷击。 原理:在雷雨天气,建筑物上空出现带电云层时,迅雷针被感应上大量电荷,由于避雷针针头是尖的,而静电感应时,导体尖端总是聚集了最多的电荷.这样,避雷针就聚集了大部分电荷.避雷针又与这些带电云层形成了一个电

电缆可以按照电压等级来划分资料

电缆可以按照电压等 级来划分

电缆可以按照电压等级来划分:380V/220V~660V为低压电缆,6kV~35kV 为中压电缆,110kV~220kV为高压电缆,330kV~500kV为超高压电缆。也可以按照绝缘材料来划分:PVC绝缘、PP绝缘、PE绝缘、XLPE(交联聚乙烯)等。按照载体材料来分还可以分为:铜芯/铝芯电缆、光电复合电缆、超导电缆等。从电缆生产工艺上看,可分为悬链生产线、立塔生产线。如果按照用途来划分那就更多了:输电电缆、装备电缆、建筑电缆、矿用电缆、船用电缆、轨道交通电缆、风电电缆、核电电缆、海底电缆等(不包括专用于弱电系统的通信电缆和控制电缆)。 对于普通投资者来说,最初的认识就是“生产电线的”,而深入研究时又会对纷繁复杂的品种无所适从。为了在投资时删繁就简、清晰界定,在此可以简单地把所有强电电缆分为两大类——常规电缆、特种电缆。(资本市场投资分析所需,非专业分类!) 常规电缆——即在现有电网和用户中大量使用的常规意义上的电缆产品,包括几乎所有低压电缆、大部分中压电缆。这也是我们以前包括目前对“电缆”概念的基本认识。这部分产品由于准入门槛低,成本波动大,同业低价竞争异常惨烈,产品利润空间被反复挤压,前景不容乐观。 特种电缆——包括中低压电缆中采用新型绝缘材料的品种、高压超高压电缆、新能源电站电缆,工业特种用途电缆,轨道交通、海底传输电缆等。总之,技术含量高、应用领域新、发展前景好、有进口产品替代需求的电缆,都可以划入特种电缆。相比常规电缆,特种电缆的利润空间较高,竞争对手较少。

三、特种电缆需求 1、城乡电网大面积改造对耐水树电缆的放量需求 如果说“智能电网”对普通老百姓还是个陌生的新概念的话,身处全国各地的每一个人,应该都体会到了居住地电网的扩建改造正紧锣密鼓地展开。尤其在城网改造中,配网入地已成趋势。大城市双环网供电、空间走廊日益狭小、市中心地下电缆率的目标提升(80%以上),都给中压配电电缆带来极大的需求。而电缆的免维护要求和绝缘耐压的寿命关注,又对配电电缆的绝缘介质、性能指标、品牌信誉提出更高的要求。 常规电缆的绝缘介质在电场、水分和杂质等绝缘缺陷的协同作用下,逐步产生树枝状早期劣化。当树枝状劣化贯穿介质或转变成电树枝,将导致电力电缆线路的电缆本体或附件发生试验击穿或运行击穿故障。所以,如何防止水树(WT)和电树(ET)的产生,避免电缆绝缘击穿,是电缆选型的关键。 因此,具有特殊工艺的耐水树电缆自然就得到青睐。虽然目前在整个中压电缆中,耐水树电缆的份额只有10%,但优越的抗击穿性能和免维护性决定着耐水树份额的大幅拉高指日可待。 2、高压超高压电缆的局部应用 高压超高压电网历来以架空裸线为主。近年来,随着电网容量的扩大,原有区域主干网110kV已经让位于220kV,大量的110kV线路已经变身为主力配网,城市负荷中心、商业中心、居民中心对负荷的需求越来越大,在城市负荷中心兴建110kV变电站已经大力开展,虽说居民对电场辐射的恐惧给城市中

电力系统电压等级与变电站种类

1.电力系统电压等级与变电站种类 电力系统电压等级有220/380V(0.4kV),3kV、6kV、10kV、20kV、35kV、66kV、110kV、220kV、330kV、500kV。随着电机制造工艺的提高,10kV电动机已批量生产,所以3kV、6kV已较少使用,20kV、66kV也很少使用。供电系统以10kV、35kV为主。输配电系统以110kV以上为主。发电厂发电机有6kV与10kV两种,现在以10kV为主,用户均为220/380V(0.4kV)低压系统。 根据《城市电力网规定设计规则》规定:输电网为500kV、330kV、220kV、110kV,高压配电网为110kV、66kV,中压配电网为20kV、10kV、6kV,低压配电网为0.4kV(220V/380V)。 发电厂发出6kV或10kV电,除发电厂自己用(厂用电)之外,也可以用10kV电压送给发电厂附近用户,10kV供电范围为10Km、35kV为20~50Km、66kV为30~100Km、110kV 为50~150Km、220kV为100~300Km、330kV为200~600Km、500kV为150~850Km。 2.变配电站种类 电力系统各种电压等级均通过电力变压器来转换,电压升高为升压变压器(变电站为升压站),电压降低为降压变压器(变电站为降压站)。一种电压变为另一种电压的选用两个线圈(绕组)的双圈变压器,一种电压变为两种电压的选用三个线圈(绕组)的三圈变压器。 变电站除升压与降压之分外,还以规模大小分为枢纽站,区域站与终端站。枢纽站电压等级一般为三个(三圈变压器),550kV/220kV/110kV。区域站一般也有三个电压等级(三圈变压器),220kV/110kV/35kV或110kV/35kV/10kV。终端站一般直接接到用户,大多数为两个电压等级(两圈变压器)110kV/10kV或35kV/10kV。用户本身的变电站一般只有两个电压等级(双圈变压器)110kV/10kV、35kV/0.4kV、10kV/0.4kV,其中以10kV/0.4kV 为最多。 3.变电站一次回路接线方案 1)一次接线种类:变电站一次回路接线是指输电线路进入变电站之后,所有电力设备(变压器及进出线开关等)的相互连接方式。其接线方案有:线路变压器组,桥形接线,单母线,单母线分段,双母线,双母线分段,环网供电等。 2)线路变压器组:变电站只有一路进线与一台变压器,而且再无发展的情况下采用线路变压器组接线。 3)桥形接线:有两路进线、两台变压器,而且再没有发展的情况下,采用桥形接线。针对变压器,联络断路器在两个进线断路器之内为内桥接线,联络断路器在两个进线断路器之外为外桥接线。 4)单母线:变电站进出线较多时,采用单母线,有两路进线时,一般一路供电、一路备用(不同时供电),二者可设备用电源互自投,多路出线均由一段母线引出。 5)单母线分段:有两路以上进线,多路出线时,选用单母线分段,两路进线分别接到两段母线上,两段母线用母联开关连接起来。出线分别接到两段母线上。 单母线分段运行方式比较多。一般为一路主供,一路备用(不合闸),母联合上,当主供断电时,备用合上,主供、备用与母联互锁。备用电源容量较小时,备用电源合上后,要断开一些出线。这是比较常用的一种运行方式。 对于特别重要的负荷,两路进线均为主供,母联开关断开,当一路进线断电时,母联合上,来电后断开母联再合上进线开关。 单母线分段也有利于变电站内部检修,检修时可以停掉一段母线,如果是单母线不分段,检修时就要全站停电,利用旁路母线可以不停电,旁路母线只用于电力系统变电站。 6)双母线:双母线主要用于发电厂及大型变电站,每路线路都由一个断路器经过两个隔离开关分别接到两条母线上,这样在母线检修时,就可以利用隔离开关将线路倒在一条件母线上。双母线也有分段与不分段两种,双母线分段再加旁路断路器,接线方式复杂,但检

第二章 电压波动与闪变的概念 危害

第二章电压波动与闪变的概念 2.1 电压波动 电压波动和闪变(voltagefluetuationandflicker)一系列电压随机变动或工颇电压包络线的周期性变化,以及由此引起的照明闪变。它是电能质量的一个重要技术指标。电压波动是指电压均方根值一系列相对快速变动或连续改变的现象,其变化周期大于工频周期。电压闪变是指电压波动造成灯光照度不稳定的人眼视感反应,不属于电磁现象,同时也反映了电压波动引起的灯光闪烁对人视感产生的影响。电压闪变是电压波动引起的结果,它不属于电磁现象。 描述电压均方根值变化特性的参数通常有2个:相对电压波动值(RelativeVoltage Fluctuation)和电压变动频度(VoltageVariation Frequency)。相对电压波动值d定义为一系列电压均方根值变化中相邻2个极值Umax、Umin之差与标称电压的百。分比,即d =Umax- Umi你UN×100% (1 电压变动频度是指单位时间内电压变动的次数。标准规定,电压由大到小或由小到大的变化各算一次变动。 在电力系统中具有冲击性功率的负荷(如轧机、电弧炉)时,电力网中的电压降将发生相应变化,导致电压波动。冲击性负荷可分为周期性冲击负荷和非周期性冲击负荷两类。其中周期性或近似周期性的冲击性负荷的影响更为严重。电压波动使电能用户不能正常工作,在人民生活中最受影响的是白炽灯的闪变(flieker)。频率在5~12Hz范围内的电压波动值,即使只有额定电压的1%,其引起的白炽灯照明的闪变,已足以使人感到不舒适,所以选白炽灯的工况作为判断电压波动值,把电压变动而引起人对灯闪的主观感觉叫“闪变”。广义的闪变包括电压波动的全部有害作用,但不能以电压波动来代替闪变,因为闪变是人对照度波动的主观视感。闪变的主要决定因素:①供电电压波动的幅值、频度和波形,②照明装!,以对白炽灯的照度波动形响最大,而且与白炽灯的功率和额定电压等有关 2.2电压波动与闪变的产生原因

下面是各电压等级安全距离

下面是各电压等级安全距离 1千伏以下 1."0米 1-10千伏 1."5米 35千伏 3."0米 66-110千伏 4."0米 154-220千伏 5."0米 330千伏 6."0米 500千伏 8."5米 一是无害论: 专家们在省电力试验研究院现场测试结果表明,当模拟电场强度达到国家标准的4千伏/米时,在场记者亲身体验了一下其影响,发现确实没有任何不适情况。而在离该变电站不远处的500千伏线路下,测试人员测得的电场强度为 3."3千伏/米,低于4千伏/米的国家限值标准。环境辐射监测站副站长兼总工程师季成富介绍,我国的限值标准高于国际标准。因此,只要按照我国

输变电设施建设的相关规定,输变电设施产生的工频电场、工频磁场对人体健康就不会产生损害。规划局的一位负责人告诉记者,目前有两种情况,一种是高压线塔修建在前,居民楼审批在后,另外一种情况是小区修建在前,高压线塔审批在后。 如果是前者,应根据《城市规划相关规定》,一般1万伏的高压线塔与居民楼的水平距离是5米,11万伏的10米,22万伏的15米,50万伏的25米,超出这些距离,即使还存在辐射,也应该是在安全范围之内了。如果是后者,高压线塔则应尽量避开居民楼。 以某条220kV输电线路为例,环保部门实测的220kV该输电线路进变电站段最低点附近电磁场强度如下: 与220kV线路距离(米)0 10 20 30国家推荐标准 电场强度(kV/m) 1."25 0."7387 0."2865 0."1196 4 磁感应强度(μT ) 3."03 2."26 1."39 0."95 100 注: 表中数据为离地

1."5米处。对比国家规定的城市架空电力线路接近或跨越建筑物的安全距离和环保部门实测的架空电力线路电磁辐射强度,可以发现,架空电力线路电磁辐射强度不但在安全距离内是达标的,就是在比安全距离更小的地方也是符合国家标准的。 二是有害论: 低频磁场辐射的强度和累积量都会影响致病的概率。1992年,瑞士对 200KV-400KV高压输电线沿线500米范围内居住1~25年的50万名居民进行医学调查,发现肿瘤、特别是儿童白血病的发生与高压电磁场有直接关系。世界卫生组织所属的国际癌症研究机构(IARC)于 2001年6月将工频电磁场(即输电线路及设备所产生的电磁场)归为人类可疑致癌物(分类号为2B)。并且,有些人是在潜伏期长达10-15年才发病的。电磁辐射就像太阳和紫外线一样的关系一样,你要享受阳光就不可避免接受紫外线的辐射。从电子闹钟、吹风机、微波炉、电熨斗到计算机、传真机、电话机,我们无时不刻不在接触电磁的“抚慰”。走出门外,电力线、各种电机设备又使我们十分容易的处于电磁场中。研究证实,生活在 0."2微斯特拉以上的低频磁场环境中将对人体产生影响,造成中枢神经机能的紊乱、心血管系统的失调、影响人的正常生活。400千伏高压线下,磁感应强度可达13微斯特拉。 国际卫生标准中规定,可以容许的磁感应强度上限为100微特斯拉(与我国的标准相同),但英国国家辐射保护委员会和美国一些专家们已于1995年提出,把国际卫生标准中规定的标准(100微特斯拉)修改为 0."2微特斯拉,瑞典规定不超过 0."2微特斯拉。 许多迹象都使研究人员强烈地怀疑低频磁场的辐射对人体健康会产生严重后果,但人们目前的知识水平又不足以对此作用充分明确的解释。调查和统计分析的结果尚不足以论证居民可以长期持续承受的低频辐射的最高限制。以及在这方面应采取哪些必要的限制。但许多专家仍然提出忠告:

风力发电引起的电压波动和闪变

风力发电引起的电压波动和闪变 孙涛1,王伟胜1,戴慧珠1,杨以涵2 (1.中国电力科学研究院,北京 100085;2.华北电力大学电力工程系,北京 102206) 摘要:并网风电机组在持续运行和切换操作过程中都会产生电压波动和闪变,对当地电网的电能质量有不良影响。从并网风电机组输出的功率波动出发,分析了风力发电引起电压波动和闪变的主要原因。介绍了关于并网风电机组电能质量的国际电工标准IEC 61400-21,给出了风电机组在持续运行与切换操作期间引起的闪变值和相对电压变动的计算公式。然后综述了有关风力发电引起的电压波动和闪变的计算方法和影响因素等方面的研究成果,最后展望了未来的 研究方向和研究重点。 关键词:风力发电;电能质量;电压波动;闪变 1 引言 随着越来越多的风电机组并网运行,风力发电对电网电能质量的影响引起了广泛关注。风资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,可能影响电网的电能质量,如电压偏差、电压波动和闪变、谐波等。电压波动和闪变是风力发电对电网电能质量的主要负面影响之一。电压波动的危害表现在照明灯光闪烁、电视机画面质量下降、电动机转速不均匀和影响电子仪器、计算机、自动控制设备的正常工况等[1,2]。 电压波动为一系列电压变动或工频电压包络线的周期性变化。闪变是人对灯光照度波动的主观视感。人对照度波动的最大觉察频率范围为0.05~35Hz,其中闪变敏感的频率范围约为6~12Hz[1]。衡量闪变的指标有短时间闪变值P st和长时间闪变值P l t。短时间闪变值是衡量短时间(若干分钟)内闪变强弱的一个统计量值。短时间闪变值的计算不仅要考虑电压波动造成的白炽灯照度变化,还要考虑到人的眼和脑对白炽灯照度波动的视感。长时间闪变值由短时间闪变值推出,反映长时间(若干小时)闪变强弱的量值。 本文从并网风电机组输出的功率波动着手,分析了风力发电引起电压波动和闪变的主要原因,并介绍了关于并网风电机组电能质量的国际电工标准IEC 61400-21[3],总结了风力发电引起的电压波动和闪变的计算方法和影响因素,最后对未来的研究方向和研究重点进行了展望。 2机理分析 风力发电引起电压波动和闪变的根本原因是并网风电机组输出功率的波动,下面将分析并网风电机组输出功率波动引起电压波动和闪变的机理[4]。 图1为风电机组并网示意图,其中?为风电机组出口电压相量,为电 网电压相量,R 1、X 1 分别为线路电阻和电抗,分别为线路上流动的有功电 流和无功电流相量。一般而言,有功电流要远大于无功电流。

电力系统过电压实验指导

电力系统过电压实验指导书 电气与电子工程学院高电压与绝缘技术专业 2011年9月 实验一MATLAB/SIMULINK软件应用基础 一.实验目的: 1.了解MATLAB/SIMULINK软件以及SimPowerSyetems库的特点。 2.熟练掌握SIMULINK模块的基本操作。 3.掌握振荡电路的暂态过程的仿真方法。 二.实验内容: 1.MATLAB/SIMULINK软件的特点: MathWorks公司推出的MATLAB,具有优秀的数值计算能力和卓越的数据可视化能力,并以交互式程序设计的方式为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的科学计算环境。 SIMULINK是MATLAB中的一种基于框图设计思想的可视化仿真工具,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统,具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,已被广泛应用于控制理论、数字信号处理以及图像处理等领域中。 2.SimPowerSyetems库的特点: SimPowerSystems库是SIMULINK中的一个专用模块库,是在SIMULINK环境下进行电力、电子系统建模和仿真的先进工具。它提供了一种类似电路建模的方式进行模型绘制,在仿真前自动将仿真系统图变化成状态方程描述的系统形式,然后在SIMULINK下进行

仿真分析,可为电路、电力电子系统、电机系统、发电系统、输变电系统和配电计算提供了强有力的解决方法。 3.SIMULINK模块的基本操作: 1)移动: 选中需要移动的模块后,按住鼠标左键不放,将其拖拽到所需位置即可。 2)改变大小: 选中需要改变大小的模块后,直接拖拽模块四角出现的4个黑色标记即可。 3)旋转: 选中需要旋转的模块,然后选择菜单命令“Format”中的“Rotate”,模块将顺时针方向旋转90度,而“FlipBlock”可将模块旋转180度。 4)复制: 选中需要复制的模块后,按住鼠标右键不放,将其拖拽到所需的位置即可,也可通过“Edit”菜单下的“Copy”和“Paste”命令来实现。 5)删除: 选中需要删除的模块,按Delete键可直接将其删除 6)选中多个模块: 当需要对多个模块同时进行操作时(如移动、复制和删除等),可按住Shift键,并用鼠标单击想要选中的模块。 7)模块标签: 在标签的位置上双击鼠标,则模块标签进行编辑状态。编辑完标签后,在标签外的任意位置上单击鼠标,则出现新的合法标签。 8)参数设定: 在SIMULINK中,几乎所有模块的参数都允许用户自行设置,只要双击要设置的模块或在模块上按鼠标键,在弹出的快捷菜单中选择相应的模块参数设置命令,就会弹出参数模块参数设置对话框,利用此对话框就可实现模块参数的设置。 4.振荡电路的暂态过程的仿真电路图: 三.实验要求: 在振荡电路的暂态过程的仿真电路中,已知电阻R = 2kΩ,电容C = 2.5μF,电感L = 2H,电压源V s = 100sin(100πt+π/3)。试建立仿真电路,并观察电路中电流变化情况。 四.实验步骤:

电压等级划分详细

电压等级(voltage class)电力系统及电力设备的额定电压级别系列。 额定电压是电力系统及电力设备规定的正常电压,即与电力系统及电力设备某些运行特性有关的标称电压。 电力系统各点的实际运行电压允许在一定程度上偏离其额定电压,在这一允许偏离范围内,各种电力设备及电力系统本身仍能能正常运行。 在我国电力系统中,把标称电压1kV及以下的交流电压等级定义为低压,把标称电压1kV以上、330kV以下的交流电压等级定义为高压,把标称电压330 kV及以上、1000 kV以下的交流电压等级定义为超高压,把标称电压1000 kV及以上的交流电压等级定义为特高压,把标称电压±800 kV以下的直流电压等级定义为高压直流,把标称电压±800 kV及以上的直流电压等级定义为特高压直流。通常还有一个“中压”的名称,美国电气和电子工程师协会(IEEE)的标准文件中把2.4 kV至69 kV的电压等级称为中压,我国国家电网公司(SG)的规范性文件中把1 kV 以上至20 kV 的电压等级称为中压。 目前我国常用的电压等级:220V、380V、6kV、10kV、35kV、60kV、110kV、220kV、330kV、500kV。

电力系统一般是由发电厂、输电线路、变电所、配电线路及用电设备构成。 通常将35kV及35kV以上的电压线路称为送电线路。(35KV、60KV 线路为输电线路,110KV、220KV线路为高压线路,330KV以上线路称为超高压线路。把60KV以下电网称为地域电网,110KV、220KV电网称为区域电网,330KV以上电网称为超高压电网。把电力用户从系统所取用的功率称为负荷。) 10kV及其以下的电压线路称为配电线路。 将额定1kV以上电压称为“高电压”,额定电压在1kV以下电压称为“低电压”。 我国规定安全电压为36V、24V、12V三种。

电器的分类.

电器的分类 电器是接通和断开电路或调节、控制和保护电路及电气设备用的电工器具。完成由控制电器组成的自动控制系统,称为继电器—接触器控制系统,简称电器控制系统。 电器的用途广泛,功能多样,种类繁多,结构各异。下面是几种常用的电器分类。 1.按工作电压等级分类 (1)高压电器用于交流电压1200V、直流电压1500V及以上电路中的电器。例如高压断路器、高压隔离开关、高压熔断器等。 (2)低压电器用于交流50Hz(或60Hz),额定电压为1200V以下;直流额定电压1500V 及以下的电路中的电器。例如接触器、继电器等。 2.按动作原理分类 1)手动电器用手或依靠机械力进行操作的电器,如手动开关、控制按钮、行程开关等主令电器。 2)自动电器借助于电磁力或某个物理量的变化自动进行操作的电器,如接触器、各种类型的继电器、电磁阀等。 3.按用途分类 (1)控制电器用于各种控制电路和控制系统的电器,例如接触器、继电器、电动机起动器等。 (2)主令电器用于自动控制系统中发送动作指令的电器,例如按钮、行程开关、万能转换开关等。 (3)保护电器用于保护电路及用电设备的电器,如熔断器、热继电器、各种保护继电器、避雷器等。 (4)执行电器指用于完成某种动作或传动功能的电器,如电磁铁、电磁离合器等。 (5)配电电器用于电能的输送和分配的电器,例如高压断路器、隔离开关、刀开关、自动空气开关等。 4.按工作原理分类 1)电磁式电器依据电磁感应原理来工作,如接触器、各种类型的电磁式继电器等。

2)非电量控制电器依靠外力或某种非电物理量的变化而动作的电器,如刀开关、行程开关、按钮、速度继电器、温度继电器等。 接触器的符号与型号说明 1.接触器的符号 接触器的图形符号如图l所示,文字符号为KM。 图1 接触器的图形符号 a)线圈b)主触点c)辅助触点 2.接触器的型号说明 例如:CJl0Z-40/3 为交流接触器,设计序号10,重任务型,额定电流40A主触点为3极。CJl2T-250/3为改型后的交流接触器,设计序号12,额定电流250A,3个主触点。 我国生产的交流接触器常用的有CJl0,CJl2,CJX1,CJ20等系列及其派生系列产品,CJ0系列及其改型产品已逐步被CJ20、CJX系列产品取代。上述系列产品一般具有三对常开

电压波动和闪变的检测与控制方法

电压波动和闪变的检测与控制方法 摘要:由冲击性功率负荷引起的电压波动与闪变是电能质量问题的重要方面之一。本文论述了电压波动和闪变的常用检测方法,比较分析了几种改善电压波动和闪变补偿装置的性能特点,为电力系统电压波动与闪变的监测及抑制提供参考。 关键词:电压波动;闪变;检测;抑制;电能质量 Detection and Suppression Methods for Voltage Fluctuation and Flicker GUO Shang-hua,HUANG Chun,WANG Lei,CAO Guo-jian (College of Electricity & Information Engineering of Hunan University, Changsha 410082,China) Abstract:Voltage fluctuation and flicker, caused by fast-speed varying load, is one of the most important aspects of power quality. In this paper, the methods of detecting voltage flicker are detailed, and the performances of some common device that suppressed the voltage fluctuation are analyzed and compared. All the study is helpful for the supervision and control of voltage fluctuation and flicker. Key words: voltage fluctuation; flicker; detection; suppression; power quality 0 引言 随着大量的基于计算机系统的控制设备和自动化程度很高的用电设备相继投入使用,工 业用户对电能质量的要求越来越高,甚至几分之一秒的不正常就可造成的巨大的损失。据统计,自动化程度很高的工业用户一般每年要遭受10~50次与电能质量问题有关的干扰,其中因包括电压波动和闪变在内的动态电压质量问题造成的事故数约占事故总数的83%[1]。电压波动和闪变已成为威胁许多重要用户供电可靠性的主要原因之一,必须对其进行有效地监视与抑制。 电力系统的电压波动和闪变主要是由具有冲击性功率的负荷引起的[2],如变频调速装置、炼钢电弧炉、电气化铁路和轧钢机等。这些非线性、不平衡冲击性负荷在生产过程中有功和无功功率随机地或周期性地大幅度变动,当其波动电流流过供电线路阻抗时产生变动的压降,导致同一电网上其它用户电压以相同的频率波动。这种电压幅值在一定范围内(通常为额定值的90%~110%)有规律或随即地变化,即称为电压波动。电压波动通常会引起许多电工设备不能正常工作,如影响电视画面质量、使电动机转速脉动、使电子仪器工作失常、使白炽灯光发生闪烁等等。由于一般用电设备对电压波动的敏感度远低于白炽灯,为此,选择人对白炽灯照度波动的主观视感,即“闪变”,作为衡量电压波动危害程度的评价指标。 1 电压波动与闪变的检测 1.1 调幅波检测 要对电压波动与闪变进行有效的抑制,首先的任务就是要准确的提取出波动信号,通常将波动电压看成以工频额定电压为载波、其电压的幅值受频率范围在0.05~35Hz的电压波动分量调制的调幅波。因此,电压波动分量的检出方法可采用通信理论中大功率载波调制信号解调方法,用与载波信号同频同相的周期信号乘以被调信号,将电压波动分量与工频载波电压分离,通过带通滤波器得到波动分量。

GB/T-电能质量-电压波动和闪变

、GB/T-电能质量-电压波动和闪变

————————————————————————————————作者:————————————————————————————————日期:

电能质量电压波动和闪变 Power quality—Voltage fluctuation and flicker GB12326—2000 代替GB12326—1990 前言 本标准是电能质量系列标准之一,目前已制定颁布的电能质量系列国家标准有:《供电电压允许偏差》(GB 12325—1990);《电压允许波动和闪变》(GB 12326—1990);《公用电网谐波》(GB/T 14549—1993);《三相电压允许不平衡度》(GB/T 15543—1995)和《电力系统频率允许偏差》(GB/T 15945—1995)。 本标准参考了国际电工委员会(IEC)电磁兼容(EMC)标准IEC 61000-3-7等(见参考资料),对国标GB 12326—1990进行了全面的修订。 和GB 12326—1990相比,这次修订的主要内容有: 1)将系统电压按高压(HV)、中压(MV)和低压(LV)划分,分别规定了相关的限值,以及对用户指标的分配原则。 2)将国标中闪变指标由引用日本ΔV10改为IEC的短时间闪变P st和长时间闪变P lt 指标,以和国际标准接轨,并符合中国国情。 3)将电压波(变)动限值和变动频度相关联,使标准对此指标的规定更切合实际波动负荷对电网的干扰影响。 4)将原标准中以电压波(变)动为主,改为以闪变值为主(原标准中ΔV10均为推荐值),以和国际标准相对应。 5)对于单个用户闪变允许指标按其协议容量占总供电容量的比例分配,并根据产生干扰量及系统情况分三级处理(原标准中无此内容),既使指标分配较合理,又便于实际执行。 6)引入了闪变叠加、传递等计算公式,高压系统中供电容量的确定方法以及电压变动的计算和闪变的评估等内容,并给出一些典型的实例分析。 7)对IEC 61000-4-15规定的闪变测量仪作了介绍,并作为标准的附录A,以利于测量仪器的统一。 8)整个标准按国标GB/T1.1和GB/T1.2有关规定作编写。原标准名称的引导要素“电能质量”英译为“Power quality of electric energy supply”改为国际上通用的“Power quality”,并将本标准名称改为《电能质量电压波动和闪变》。 作为电磁兼容(EMC)标准,IEC 61000-3-7等涉及的内容相对较多,论述上不够简洁。在国标修订中选取相关内容,基本上删去对概念和原理的解释部分,因为国内将陆续发布等同于IEC 61000的EMC系列标准,可作为执行电能质量国家标准参考。对于国标中所需要的一些定义、符号和缩略语,以及相关闪变测量仪规范和闪变(Pst)的表达式等,主要参考了IEC 61000-3-3、IEC 61000-4-15。 须指出,在采用IEC 61000相关内容中,本标准对于下列几点作了修改: 1)按IEC标准,对闪变P st、P lt指标,每次评定测量时间至少为一个星期,取99%概率大值衡量。这样规定,在电网中实际上难以执行。本标准中对闪变P st指标规定取1天(24h)测量,而且取95%概率大值衡量;对P lt指标,原则上规定不得超标。

电力系统过电压分类和特点

电力系统过电压分类和特点 电力系统过电压主要分以下几种类型:大气过电压、工频过电压、操作过电压、谐振过电压。 产生的原因及特点是: 大气过电压:由直击雷引起,特点是持续时间短暂,冲击性强,与雷击活动强度有直接关系,与设备电压等级无关。因此,220KV以下系统的绝缘水平往往由防止大气过电压决定。 工频过电压:由长线路的电容效应及电网运行方式的突然改变引起,特点是持续时间长,过电压倍数不高,一般对设备绝缘危险性不大,但在超高压、远距离输电确定绝缘水平时起重要作用。 操作过电压:由电网内开关操作引起,特点是具有随机性,但最不利情况下过电 压倍数较高。因此30KV及以上超高压系统的绝缘水平往往由防止操作过电压决定。 谐振过电压:由系统电容及电感回路组成谐振回路时引起,特点是过电压倍数高、持续时间长。 变压器中性点接地方式的安排一般如何考虑? 变压器中性点接地方式的安排一般如何考虑? 答:变压器中性点接地方式的安排应尽量保持变电所的零序阻抗基本不变。遇到因变压器检修等原因使变电所的零序阻抗有较大变化的特殊运行方式时,应根据规程规定或实际情况临时处理。 (1)变电所只有一台变压器,则中性点应直接接地,计算正常保护定值时,可只考虑变压器中性点接地的正常运行方式。当变压器检修时,可作特殊运行方式处理,例如改定值或按规定停用、起用有关保护段。 (2)变电所有两台及以上变压器时,应只将一台变压器中性点直接接地运行,当该变压器停运时,将另一台中性点不接地变压器改为直接接地。如果由于某些原因,变电所正常必须有两台变压器中性点直接接地运行,当其中一台中性点直接接地的变压器停运时,若有第三台变压器则将第三台变压器改为中性点直接接地运行。否则,按特殊运行方式处理。

《电力系统过电压复习重点内容》

电力系统过电压复习重点内容 1. 过电压:由于雷电、电磁能量的转换会使系统电压产生瞬间升高,其值可能大大超过电 气设备的最高工频运行电压 2. 按其不同能量来源分类: 3.行波的折射与反射 212211221Z Z Z Z Z Z Z αβαβ?= ? +?-?=?+?? =+?? 4.串联电感 折射电压波 u2f 的陡度: /2f 1f 2d 2e d t T u u Z t L -= t = 0 时陡度有最大值: 21f 2 max d 2d t f u u Z t L ==

并联电容:在Z2线路中折射电压的最大陡度: 2f1f max1 d2 d t u u t Z C = = 5. 入口电容: T0000 000 1d1 () d x x Q u C K K U U U x U K α α = = ==== === 6.绕组初始电压分布不均匀的主要原因是电容链中对地电容的分流作用。 改善绕组初始电位分布,使之接近稳态电位分布的方法主要有两种:一是补偿对地电容的影响,并联补偿;二是增大纵向电容,采用纠结式绕组或内屏蔽式绕组。 7.冲击电压在变压器绕组间的传播包括静电感应,电磁感应 8.雷电放电过程:先导放电阶段,主放电阶段,余辉放电阶段 雷暴日Td 是指该地区平均一年内有雷电放电的平均天数,单位d/a 。 雷暴小时Th 雷暴小时是指平均一年内的有雷电的小时数,单位h/a。 雷电流陡度是指雷电流随时间上升的速度。雷电流陡度 2.6 a I = 衡量输电线路防雷性能的重要指标是耐雷水平和雷击跳闸率。 (1)雷击输电线路时,线路绝缘不发生冲击闪络的最大雷电流幅值称为输电线路的“耐雷水平”,以kA为单位。 (2)输电线路的雷击跳闸率是指标准雷暴日数为40时,每年每100km长的线路因雷击引起的跳闸次数,单位为次/100km·年。 输电线路的直击雷过电压: (1)雷击杆塔塔顶或附近避雷线时的过电压(2)雷绕击导线时的过电压(3)雷击档距中央避雷线时的过电压 雷击杆塔时的耐雷水平I1为 50% 1 (1)()(1) 2.6 2.6 g a t c i t c U I h h L h k R k k h h ββ = -+-+- 当忽略避雷线与横担高度的差别,即ht≈ha、且hg≈hc时, 50% 1 (1)() 2.6 2.6 t c i U I L h k R β = ??-++ ?? ?? 9.为了防止避雷针与被保护的配电构架或设备之间的空气间隙Sa被击穿而造成反击事故,必须要求Sa大于一定距离,取空气的平均耐压强度为500kV/m;为了防止避雷针接地装置和被保护设备接地装置之间在土壤中的间隙Se被击穿,必须要求Se大于一定距离,取土壤的平均耐电强度为300kV/m,Sa和Se应满足下式要求: Sa≥0.2Ri+0.1h Se≥0.3Ri 在一般情况下,间隙距离Sa不得小于5m;Se不得小于3m。 10. 构架避雷针注意事项: (1)严禁将照明线、电话线、广播线及天线等装在避雷针或其构架上; (2)如在避雷针的构架上设置照明灯,灯的电源线必需用铅护套电缆或将导线装在金属管内,并将引下的电缆或金属管直接埋入地中,其长度在10m以上,这样才允许与屋内低压配电装置相连,以免雷击构架上的避雷针时,威胁人身和设备的安全;

电力知识-变电站分类

变电站分类 1.按电压等级可分为超高压、高压、中压变电站和低压变电站。电压在1kV以下的称为低压;电压为1~10kV的称为中压;电压高于10kV低于330kV的称为高压;电压在330kV以上的称为超高压。 2.按供电对象的差异可分为城镇变电站、工业变电站和农业变电站。 3.根据其在电力系统中的低位和作用,可以分为枢纽变电站、中间变电站、区域(地方)变电站、企业变电站和末端(用户)变电站。 (1)枢纽变电站:枢纽变电站位于电力系统的枢纽点,电压等级一般为330kV及以上,联系多个电源,出现回路多,变电容量大;全站停电后将造成大面积停电,或系统瓦解,枢纽变电站对电力系统运行的稳定和可靠性起到重要作用。 (2)中间变电站:中间变电站位于系统主干环行线路或系统主要干线的接口处,电压等级一般为330~220kV,汇集2~3个电源和若干线路。全站停电后,将引起区域电网的解列。?? (3)地区变电站:地区变电站是一个地区和一个中、小城市的主要变电站,电压等级一般为220kV,全站停电后将造成该地区或城市供电的紊乱。 ??(4)?企业变电站:企业变电站是大、中型企业的专用变电站,电压等级35~220kV,1~2回进线。 4.按其容量和馈线的多少可分为大、中、小型变电站。 5.按是否有人正常运行值班可分为有人值班变电站和无人值班变电站。目前,我国变电站按电压等级分为3.5万伏变电站、11万伏变电站、22万伏变电站和50万伏变电站。还有根据变电站围护结构分为土建变电站和箱式变电站。箱式变电站又称户外成套变电站,也有称做组合式变电站,它是发展于20世纪60年代至70年代欧美等西方发达国家推出的一种户外成套变电所的新型变电设备,由于它具有组合灵活,便于运输、迁移、安装方便,施工周期短、运行费用低、无污染、免维护等优点,受到世界各国电力工作者的重视。进入20世纪90年代中期,国内开始出现简易箱式变电站,电力部也相应制定了部颁标准,但应用并不广泛,到90年代末期,特别是农网改造工程启动后,科研开发、制造技术及规模等都进入了高速发展,被广泛应用于城区、农村10~110kv中小型变(配)电站、厂矿及流动作业用变电站的建设与改造,因其易于深入负荷中心,减少供电半径,提高末端电压质量,特别适用于农村电网改造,被誉为21世纪变电站建设的目标模式"。箱式变电站分为两大流派:欧式箱变和美式箱变。

相关文档
最新文档