统计学第六章课后习题

合集下载

《统计学》-第6章-习题答案

《统计学》-第6章-习题答案

第六章课后题解答1.与参数检验相比,非参数检验有哪些优缺点?主要适用于那些场合?答:(1)非参数检验不需要严格假设条件,因而比参数检验有更广泛的适用面;非参数检验几乎可以处理包括定类数据和定序数据在内的所有类型的数据,而参数检验通常只能用于定量数据的分析;在参数检验和非参数检验都可以使用的情况下,非参数检验的功效(power)要低于参数检验方法。

(2)参数检验中的假设条件不满足;检验中涉及的数据为定类或定序数据;所涉及的问题中并不包含参数;对各种资料的初步分析。

2.使用“学生调查.sav”文件中的数据检验:(1)能否认为总体中学生的学习兴趣呈均匀分布?(2)能否认为总体中学生的身高服从正态分布?答:(1)利用2拟合优度检验,计算出的2统计量的值为2.000,自由度为4,相应的p值(渐近显著性)为0.736。

由于0.736大于0.05,所以在5% 的显著性水平下不能拒绝原假设,也就是说根据样本数据不能认为总体数据是非均匀的。

乱0伞单疋(0.0%)貝有型于5的期峑a单」T:晨小7.0(2)利用单样本K-S检验法,计算出的D max统计量的值为0.899,相应的p值(渐近显著性)为0.394。

由于0.394大于0.05,所以在5%的显著性水平下不能拒绝原假设,也就是说根据样本数据不能认为总体数据是非正态的。

单样進Kolmogor ov-Smirnov 攪腌亂检验分芜为正悲分布乱根据救摇计算得到*表2.23.某企业生产一种钢管,规定长度的中位数是10米。

现随机地从正在生产的生产线上选取10根进行测量,结果为:9.8,10.1,9.7,9.9, 9.8,10.0, 9.7, 10.0,9.9, 9.8。

问该企业的生产过程是否需要调整。

答:单样本中位数的符号检验法检验钢管长度的中位数是否为50,各个数值与中位数比较的结果,有7个值小于10, 1个值大于10, 2个等于10。

样本量较少,输出双侧检验的p值(精确显著性)为0.070。

统计学第六章课后题及答案解析

统计学第六章课后题及答案解析

第六章一、单项选择题1.下面的函数关系是()A现代化水平与劳动生产率 B圆周的长度决定于它的半径C家庭的收入和消费的关系 D亩产量与施肥量2.相关系数r的取值范围( )A -∞< r 〈+∞B -1≤r≤+1C —1〈 r < +1D 0≤r≤+13.年劳动生产率x(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )A增加70元 B减少70元 C增加80元 D减少80元4.若要证明两变量之间线性相关程度高,则计算出的相关系数应接近于( )A +1B -1C 0.5 D5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )A线性相关还是非线性相关 B正相关还是负相关C完全相关还是不完全相关 D单相关还是复相关6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建立线性回归方程ŷ=a+bx。

经计算,方程为ŷ=200—0.8x,该方程参数的计算( )A a值是明显不对的B b值是明显不对的C a值和b值都是不对的D a值和b值都是正确的7.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为:( )A 8B 0。

32C 2D 12.58.进行相关分析,要求相关的两个变量( )A都是随机的 B都不是随机的C一个是随机的,一个不是随机的 D随机或不随机都可以9.下列关系中,属于正相关关系的有( )A合理限度内,施肥量和平均单产量之间的关系B产品产量与单位产品成本之间的关系C商品的流通费用与销售利润之间的关系D流通费用率与商品销售量之间的关系10.相关分析是研究( )A变量之间的数量关系 B变量之间的变动关系C变量之间的相互关系的密切程度 D变量之间的因果关系11.在回归直线y c=a+bx,b〈0,则x与y之间的相关系数( )A r=0B r=lC 0〈 r<1D -1〈r 〈012.当相关系数r=0时,表明( )A现象之间完全无关 B相关程度较小C现象之间完全相关 D无直线相关关系13.下列现象的相关密切程度最高的是( )A某商店的职工人数与商品销售额之间的相关系数0。

统计学课后答案(第3版)第6章抽样分布与参数估计习题答案

统计学课后答案(第3版)第6章抽样分布与参数估计习题答案

第六章 抽样分布与参数估计习题答案一、单选1.B ;2.D ;3.D ;4.C ;5.A ;6.B ;7.C ;8.D ;9.A ;10.A 二、多选1.ADE ;2.ACDE ;3.ABCD ;4.ADE ;5.BCE6.ACD ;7.ACDE ;8.ACE ;9.BCE ;10.ABD 三、计算分析题1、解:n=10,小样本,由EXCEL 计算有:11.6498==S x ; (1)方差已知,由10596.14982⨯±=±nz x σα得,(494.9,501.1)(2)方差未知,由1011.62622.2498)1(2⨯±=-±nS n t x α得,(493.63,502.37)2、n=500为大样本,p=80/500=16%,则置信区间为 016.096.1%16500)16.01(16.096.1%16)1(2⨯±=-⨯±=-±n p p z p α=(14.4%,17.6%) 3、nx σσ=,由于大国抽取的样本容量大,则抽样平均误差小。

4、(1)3.10100103===nS x σ(小时);=-=-=100)95.01(95.0)1(n p p p σ 2.18%(2)=⨯±=±3.10211202x z x σα(1099.4,1140.6) ⨯±=±2%952p z p σα2.18%=(90.64,99.36)5、为简化起见,按照重复抽样形式计算 (1)∑∑=ff s Si22=22.292; 472.010072.4===nS x σ(2)93.0691472.096.1100691002±=⨯±=±nSz x α=(690.07,691.93) 6、由于总体标准差已知,则用标准状态分布统计量估计nz x σα2=∆(1)10160170102022=-===∆αασz nz x则58.12=αz ,有%29.94)58.1(=F α=1-94.29%=5.71%,则概率%58.88%71.5%29.941=-=-=α (2)=⇒⨯=⇒⨯=∆n n nz x 2096.142σα97(个)(3)=⇒⨯=⇒⨯=∆n nnz x 2096.122σα385(个)允许误差缩小一半,样本容量则为原来的4倍。

贾俊平《统计学》(第5版)课后习题-第6章 统计量及其抽样分布【圣才出品】

贾俊平《统计学》(第5版)课后习题-第6章 统计量及其抽样分布【圣才出品】

第6章 统计量及其抽样分布一、思考题1.什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数?答:(1)设12n X X X ,,…,是从总体X 中抽取的容量为n 的一个样本,如果由此样本构造一个函数12()n T X X X ,,…,,不依赖于任何未知参数,则称函数12()n T X X X ,,…,是一个统计量。

(2)在实际应用中,当从某总体中抽取一个样本后,并不能直接应用它去对总体的有关性质和特征进行推断,这是因为样本虽然是从总体中获取的代表,含有总体性质的信息,但仍较分散。

为了使统计推断成为可能,首先必须把分散在样本中关心的信息集中起来,针对不同的研究目的,构造不同的样本函数。

(3)统计量是样本的一个函数。

由样本构造具体的统计量,实际上是对样本所含的总体信息按某种要求进行加工处理,把分散在样本中的信息集中到统计量的取值上,不同的统计推断问题要求构造不同的统计量,所以统计量不包含未知参数。

2.判断下列样本函数哪些是统计量?哪些不是统计量?1121021210310410()/10min()T X X X T X X X T X T X μμσ=+++==-=-…,,…,()/答:统计量中不能含有未知参数,故1T 、2T 是统计量,3T 、4T 不是统计量。

3.什么是次序统计量?答:设12n X X X ,,…,是从总体X 中抽取的一个样本,()i X 称为第i 个次序统计量,它是样本12()n X X X ,,…,满足如下条件的函数:每当样本得到一组观测值12X X ,,…,n X 时,其由小到大的排序(1)(2)()()i n X X X X ≤≤≤≤≤……中,第i 个值()i X 就作为次序统计量()i X 的观测值,而(1)(2)()n X X X ,,…,称为次序统计量,其中(1)X 和()n X 分别为最小和最大次序统计量。

4.什么是充分统计量?答:在统计学中,假如一个统计量能把含在样本中有关总体的信息一点都不损失地提取出来,那对保证后边的统计推断质量具有重要意义。

统计学课后答案第六章

统计学课后答案第六章

统计学课后答案第六章【篇一:统计学第五版课后练答案(4-6章)】txt>4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下: 2 4 7 10 10 10 12 12 14 15 要求:(1)计算汽车销售量的众数、中位数和平均数。

(2)根据定义公式计算四分位数。

(3)计算销售量的标准差。

(4)说明汽车销售量分布的特征。

解:statisticsmean median mode std. deviation percentiles25 50 75 missing10 0 9.60 10.00 10 4.169 6.25 10.00单位:周岁19 15 29 25 24 23 21 38 22 18 30 20 19 19 16 23 27 22 34 24 4120 31 17 23要求;(1)计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄1(2)根据定义公式计算四分位数。

mean=24.00;std. deviation=6.652 (4)计算偏态系数和峰态系数:skewness=1.080;kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。

如需看清楚分布形态,需要进行分组。

21、确定组数:lg?2?5?1?1k?1?lg(2)lg2lgn()1.398?5.64k=6 ,取0.30103网络用户的年龄 (binned)分组后的直方图:3客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。

为比较哪种排队方式使顾客等待的时间更短.两种排队方式各随机抽取9名顾客。

得到第一种排队方式的平均等待时间为7.2分钟,标准差为1.97分钟。

第二种排队方式的等待时间(单位:分钟)如下:5.5 6.6 6.7 6.8 7.1 7.3 7.47.8 7.8 要求:(1)画出第二种排队方式等待时间的茎叶图。

《统计学》课后答案(第二版,贾俊平版)附录答案第6章-9章方差分析

《统计学》课后答案(第二版,贾俊平版)附录答案第6章-9章方差分析

《统计学》课后答案(第二版,贾俊平版)附录答案第6章-9章方差分析第6章方差分析6.1 0215.86574.401.0=<=F F (或01.00409.0=>=-αvalue P ),不能拒绝原假设。

6.2 579.48234.1501.0=>=F F (或01.000001.0=<=-αvalue P ),拒绝原假设。

6.3 4170.50984.1001.0=>=F F (或01.0000685.0=<=-αvalue P ),拒绝原假设。

6.4 6823.37557.1105.0=>=F F (或05.0000849.0=<=-αvalue P ),拒绝原假设。

6.5 8853.30684.1705.0=>=F F (或05.00003.0=<=-αvalue P ),拒绝原假设。

85.54.14304.44=>=-=-LSD x x B A ,拒绝原假设;85.58.16.424.44=<=-=-LSD x x C A ,不能拒绝原假设;85.56.126.4230=>=-=-LSD x x C B ,拒绝原假设。

6.6554131.3478.105.0=<=F F (或05.0245946.0=>=-αvalue P ),不能拒绝原假设。

第7章相关与回归分析7.1 (1)散点图(略),产量与生产费用之间正的线性相关关系。

(2)920232.0=r 。

(3)检验统计量2281.24222.142=>=αt t ,拒绝原假设,相关系数显著。

7.2 (1)散点图(略)。

(2)8621.0=r 。

7.3 (1)0?β表示当0=x 时y 的期望值。

(2)1?β表示x 每变动一个单位y 平均下降0.5个单位。

(3)7)(=y E 。

7.4 (1)%902=R 。

(2)1=e s 。

7.5 (1)散点图(略)。

统计学第6章习题答案精编版

一、选择题1、在用样本的估计量估计总体参数时,评价估计量的标准之一是使它与总体参数的离差越小越好。

这种评价标准称为(B)A、无偏性B、有效性C、一致性D、充分性2、根据一个具体的样本求出的总体均值95%的置信区间(D)A、以95%的概率包含总体均值B、有5%的可能性包含总体均值C、绝对包含总体均值D、绝对包含总体均值或绝对不包含总体均值3、估计量的无偏性是指(B)A、样本估计量的值恰好等于待估的总体参数B、所有可能样本估计值的期望值等于待估总体参数C、估计量与总体参数之间的误差最小D、样本量足够大时估计量等于总体参数4、下面的陈述中正确的是(C)A、95%的置信区间将以95%的概率包含总体参数B、当样本量不变时,置信水平越大得到的置信区间就越窄C、当置信水平不变时,样本量越大得到的置信区间就越窄D、当置信水平不变时,样本量越大得到的置信区间就越宽5、总体均值的置信区间等于样本均值加减估计误差,其中的估计误差等于所求置信水平的临界值乘以(A)A、样本均值的标准误差B、样本标准差C、样本方差D、总体标准差6、95%的置信水平是指(B)A、总体参数落在一个特定的样本所构造的区间内的概率为95%B、用同样的方法构造的总体参数的多个区间中,包含总体参数的区间的比例为95%C、总体参数落在一个特定的样本所构造的区间内的概率为5%D、用同样的方法构造的总体参数的多个区间中,包含总体参数的区间的比例为5%7、一个估计量的有效性是指(D)A、该估计量的期望值等于被估计的总体参数B、该估计量的一个具体数值等于被估计的总体参数C、该估计量的方差比其他估计量大D、该估计量的方差比其他估计量小8、一个估计量的一致性是指(C)A、该估计量的期望指等于被估计的总体参数B、该估计量的方差比其他估计量小C、随着样本量的增大该估计量的值越来越接近被估计的总体参数D、该估计量的方差比其他估计量大9、支出下面的说法哪一个是正确的(A)A、一个大样本给出的估计量比一个小样本给出的估计量更接近总体参数B、一个小样本给出的估计量比一个大样本给出的估计量更接近总体参数C 、一个大样本给出的总体参数的估计区间一定包含总体参数D 、一个小样本给出的总体参数的估计区间一定不包含总体参数10、用样本估计量的值直接作为总体参数的估计值,这一估计方法称为(A )A 、点估计B 、区间估计C 、无偏估计D 、有效估计11、将构造置信区间的步骤重复多次,其中包含总体参数真值的次数所占的比例称为(C )A 、置信区间B 、显著性水平C 、置信水平D 、临界值12、在总体均值和总体比例的区间估计中,估计误差由(C )A 、置信水平确定B 、统计量的抽样标准差确定C 、置信水平和统计量的抽样标准差确定D 、统计量的抽样方差确定13、在置信水平不变的条件下,要缩小置信区间,则(A )A 、需要增加样本量B 、需要减少样本量C 、需要保持样本量不变D 、需要改变统计量的抽样标准差14、估计一个正态总体的方差使用的分布是(C )A 、正态分布B 、t 分布C 、卡方分布D 、F 分布15、当正态总体的方差未知,且为小样本条件下,估计总体均值使用的分布是(B )A 、正态分布B 、t 分布C 、卡方分布D 、F 分布16、当正态总体的方差未知,在大样本条件下,估计总体均值使用的分布是(A )A 、正态分布B 、t 分布C 、卡方分布D 、F 分布17、在其他条件不变的条件下,要使估计时所需的样本量小,则应该(A )A 、提高置信水平B 、降低置信水平C 、使置信水平不变D 、使置信水平等于118、使用t 分布估计一个总体均值时,要求(D )A 、总体为正态分布且方差已知B 、总体为非正态分布C 、总体为非正态分布但方差已知D 、正态总体方差未知,且为小样本19、在大样本条件下,总体均值在(1-α)置信水平下的置信区间可以些为(C )A 、n t x σα2±B 、ns t x 2α± C 、n s z x 2α± D 、n s z x 22α±20、正态总体方差已知时,在小样本条件下,总体均值在α-1置信水平下的置信区间可以写为(C )A 、n z x 22σα± B 、n s t x 2α±C 、n z x σα2±D 、n t x σα2±21、正态总体方差未知时,在小样本条件下,总体均值在α-1置信水平下的置信区间可以写为(B )A 、n s z x 2α±B 、ns t x 2α±C 、n z x σα2±D 、n s z x 22α±22、指出下面的说法哪一个是正确的(A )A 、样本量越大,样本均值的抽样标准差就越小B 、样本量越大,样本均值的抽样标准差就越大C 、样本量越小,样本均值的抽样标准差就越小D 、样本均值的抽样标准差与样本量无关23、抽取一个样本量为100的随机样本,其均值为81=x ,标准差12=s 。

统计学课后习题答案第六章

统计学课后习题答案第六章第六章统计学课后习题答案统计学是一门研究数据收集、分析和解释的学科。

无论是在科学研究、商业决策还是社会调查中,统计学都起着重要的作用。

在学习统计学的过程中,课后习题是巩固知识和提高技能的重要方式。

本文将为大家提供第六章统计学课后习题的答案,希望能够帮助大家更好地理解和应用统计学知识。

第一题:根据给定的数据集,计算平均数、中位数和众数。

解答:平均数是将所有数据相加,然后除以数据的个数。

中位数是将数据按照大小顺序排列,找到中间的数值。

众数是数据集中出现次数最多的数值。

第二题:给定一个样本数据集,计算方差和标准差。

解答:方差是每个数据点与平均数的差的平方的平均数。

标准差是方差的平方根。

第三题:根据给定的数据集,计算相关系数。

解答:相关系数是用来衡量两个变量之间的线性关系的强度和方向。

相关系数的取值范围是-1到1,接近1表示正相关,接近-1表示负相关,接近0表示无相关。

第四题:利用给定的数据集,进行假设检验。

解答:假设检验是用来判断一个假设是否成立的统计方法。

首先,我们提出一个原假设和备择假设。

然后,根据样本数据进行计算,得到一个统计量。

最后,根据统计量的取值和临界值进行判断,接受或拒绝原假设。

第五题:根据给定的数据集,进行回归分析。

解答:回归分析是用来研究两个或多个变量之间关系的统计方法。

通过建立一个数学模型,我们可以预测一个变量对另一个变量的影响。

回归分析可以帮助我们理解和解释变量之间的关系。

第六题:根据给定的数据集,进行抽样调查。

解答:抽样调查是从总体中选择一部分样本进行调查和研究的方法。

通过合理地选择样本,我们可以从样本中得出总体的特征和规律。

抽样调查可以帮助我们节省时间和成本,同时保证研究的可靠性和有效性。

通过以上的答案,我们可以看到统计学在数据分析和解释中的重要性。

掌握统计学知识和技能,可以帮助我们更好地理解和应用数据,从而做出准确的决策和预测。

希望以上答案能够对大家的学习和实践有所帮助。

统计学第六章 假设检验课后答案

第六章假设检验一、单项选择题二、多项选择题三、判断题四、填空题1、原假设(零假设)备择假设(对立假设)2、双侧检验Z Z =xn︱Z︱<︱︱(或1-α)23、左单侧检验Z <-(或α)4、右单侧检验Z Z =xnZ >(或α)5、t t =︱t︱>︱︱(或α)sx2n6、弃真错误(或第一类错误)存伪错误(或第二类错误)7、越大越小8、临界值五、简答题(略)六、计算题1、已知:σx = 12 n = 400 x= 21 建立假设H0:X≤20H1:X>20右单侧检验,当α= 0.05时,Z0.05 = 1.645 构造统计量ZxZ =1.667>Z0.05 = 1.645,所以拒绝原假设,说明总体平均数会超过20。

2、已知:P0 = 2% n = 500 p = 建立假设H0:P ≥ 2%H1:P <2%左单侧检验,当α= 0.05时,Z0.05 = -1.645 构造统计量Z-1.597∣Z∣=1.597<∣Z0.05∣= 1.645,所以接受原假设,说明该产品不合格率没有明显降低。

3、已知:σx = 2.5 cm n = 100 X0 =12 cm x= 11.3 cm 建立假设H0:X≥12H1:X<12左单侧检验,当α= 0.01时,Z0.01 = -2.33 构造统计量Zx-2.8 2.5 ∣Z∣= 2.8>∣Z0.01∣= 2.33,所以拒绝原假设,说明所伐木头违反规定。

4、已知:P0 = 40% n = 60 p = 建立假设H0:P ≥ 40%H1:P <40% 21= 35% 60左单侧检验,当α= 0.05时,Z0.05 = -1.645 构造统计量Z-0.791∣Z∣= 0.791<∣Z0.05∣= 1.645,所以接受原假设,说明学生的近视率没有明显降低。

5、已知:X0 =5600 kg/cm2 σx = 280 kg/cm2 n = 100 x= 5570 kg/cm2 建立假设H0:X= 5600 H1:X≠5600双侧检验,当α= 0.05时,∣Z0.025∣= 1.96 构造统计量Z∣Z∣∣Z∣=1.07<∣Z0.025∣= 1.96,所以接受原假设,说明这批车轴符合要求。

统计学第6版第六章

《统计学第6版》练习题含答案第六章(统计量及其抽样分布)1、设X 1,X 2,。

X n 是从某总体X 中抽取的一个样本,下面哪一个不是统计量( ) A.X ̅=1n ∑X n i=1iB.S 2=1n ∑n i=1C.∑<X n i=1i -E(X)>2 D. S 2=1n−1∑(X n i−1i -X ̅)22、下列不是次序统计量的是( )A.中位数B.均数C.四分位数D.极差3、抽样分布是指( )A.一个样本各观测值的分布B.总体中各观测值的分布C.样本统计量的分布D.样本数量的分布4、根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的均值为( )A. uB. X̅ C. a 2D. a2n5、根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的方差为( )A. uB. X ̅C. a2D. a2n6、从均值为p、方差为σ(有限)的任意-一个总体中抽取大小为n的样本,则( )。

A. 当n充分大时,样本均值X̅的分布近似服从正态分布B.只有当n<30时,样本均值X̅的分布近似服从正态分布C.样本均值X̅的分布与n无关D.无论n多大,样本均值X̅的分布都为非正态分布7、从一个均值p=10、标准差σ=0.6的总体中随机选取容量为n= 36的样本。

假定该总体并不是很偏的,则样本均值X小于9. 9的近似概率为( ) 。

A.0.1587B. 0.1268C.0.2735D.0.63248、假设总体服从均匀分布,从此总体中抽取容量为36的样本,则样本均值的抽样分布( )。

A.服从非正态分布B近似正态分布C.服从均匀分布D.服从x分布9、从服从正态分布的无限总体中分别抽取容量4、16,、36 的样本,当样本容量增大时,样本均值的标准差( )。

A.保持不变B.增加C.减小D.无法确定10、总体均值为50,标准差为8,从此总体中随机抽取容量为64的样本,则样本均值的抽样分布的均值和标准误差分别为( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、某地区种植小麦4000亩,随机抽取200亩进行实割实测,测得结果如下:平均亩产量为300公斤,抽样总体的标准差为6公斤。

试在94.45%的概率保证下,估计小麦的平均亩产量和总产量的可能范围。

Z=2,x=300 6=6,
3、对某种产品的质量进行抽样调查,抽取200件检验,发现有6件废品,试在95.45%的概率保证下估计这种产品的合格率。

4、为了了解某地区职工家庭的收入情况,随机抽取300户进行调查,调查结果如下:
根据以上资料,在99.73的概率保证下,推算该地区职工家庭平均收入的可能范围。

5、某灯泡长对某种灯泡进行抽样检验测定其平均寿命,抽查了50只灯泡,测得平均寿命为3600小时,标准差为10小时。

要求:(1)在68.27%的概率保证下推算这批灯泡的平均寿命。

(2)如果要使抽样极限误差缩小为原来的一
半,概率仍为68.27%,应抽取多少只灯
泡才能满足要求?
6、某制鞋厂生产的一批旅游鞋,按1%的比例进行抽样调查,总共抽查500双,结果如下:
在95.45%的概率保证下,试求:
(1)这批旅游鞋的平均耐穿时间的可能范围
(2)如果耐穿时间在350天以上才算合格,求这批旅游鞋合格率的可能范围。

7、某地种植农作物6000亩,按照随机抽样,调查了300亩。

调查结果如下:平均亩产量为650公斤,
标准差为15公斤,概率为0.9545。

根据上述资料,试求:
(1)利用点估计,推算农作物的总产量
(2)全部农作物的平均亩产量
(3)利用区间估计,求这6000亩农作物的总产量的可能范围。

相关文档
最新文档